Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 105, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702628

RESUMO

BACKGROUND: Histone H3K4 tri-methylation (H3K4me3) catalyzed by Set1/COMPASS, is a prominent epigenetic mark found in promoter-proximal regions of actively transcribed genes. H3K4me3 relies on prior monoubiquitination at the histone H2B (H2Bub) by Rad6 and Bre1. Swd2/Cps35, a Set1/COMPASS component, has been proposed as a key player in facilitating H2Bub-dependent H3K4me3. However, a more comprehensive investigation regarding the relationship among Rad6, Swd2, and Set1 is required to further understand the mechanisms and functions of the H3K4 methylation. RESULTS: We investigated the genome-wide occupancy patterns of Rad6, Swd2, and Set1 under various genetic conditions, aiming to clarify the roles of Set1 and Rad6 for occupancy of Swd2. Swd2 peaks appear on both the 5' region and 3' region of genes, which are overlapped with its tightly bound two complexes, Set1 and cleavage and polyadenylation factor (CPF), respectively. In the absence of Rad6/H2Bub, Set1 predominantly localized to the 5' region of genes, while Swd2 lost all the chromatin binding. However, in the absence of Set1, Swd2 occupancy near the 5' region was impaired and rather increased in the 3' region. CONCLUSIONS: This study highlights that the catalytic activity of Rad6 is essential for all the ways of Swd2's binding to the transcribed genes and Set1 redistributes the Swd2 to the 5' region for accomplishments of H3K4me3 in the genome-wide level.


Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Histonas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Metilação , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética
2.
Chembiochem ; 24(23): e202300556, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37749055

RESUMO

A lipoxygenase from Pleurotus sajor-caju (PsLOX) was cloned, expressed in Escherichia coli, and purified as a soluble protein with a specific activity of 629 µmol/min/mg for arachidonic acid (AA). The native PsLOX exhibited a molecular mass of 146 kDa, including a 73-kDa homodimer, as estimated by gel-filtration chromatography. The major products converted from polyunsaturated fatty acids (PUFAs), including AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), were identified as trioxilins (TrXs), namely 13,14,15-TrXB3 , 13,14,15-TrXB4 , and 15,16,17-TrXB5 , respectively, through high-performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses. The enzyme displayed its maximum activity at pH 8.0 and 20 °C. Under these conditions, the specific activity and catalytic efficiency of PsLOX for PUFAs exhibited the following order: AA>EPA>DHA. Based on HPLC analysis and substrate specificity, PsLOX was identified as an arachidonate 15-LOX. PsLOX efficiently converted 10 mM of AA, EPA, and DHA to 8.7 mM of 13,14,15-TrXB3 (conversion rate: 87 %), 7.9 mM of 13,14,15-TrXB4 (79 %), and 7.2 mM of 15,16,17-TrXB5 (72 %) in 15, 20, and 20 min, respectively, marking the highest conversion rates reported to date. Collectively, our results demonstrate that PsLOX is an efficient TrXs-producing enzyme.


Assuntos
Lipoxigenase , Espectrometria de Massas em Tandem , Lipoxigenase/metabolismo , Cromatografia Líquida , Ácidos Graxos Insaturados , Biotransformação , Ácidos Docosa-Hexaenoicos/metabolismo
3.
Int J Mol Sci ; 23(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35409349

RESUMO

One- or two-carbon (C1 or C2) compounds have been considered attractive substrates because they are inexpensive and abundant. Methanol and ethanol are representative C1 and C2 compounds, which can be used as bio-renewable platform feedstocks for the biotechnological production of value-added natural chemicals. Methanol-derived formaldehyde and ethanol-derived acetaldehyde can be converted to 3-hydroxypropanal (3-HPA) via aldol condensation. 3-HPA is used in food preservation and as a precursor for 3-hydroxypropionic acid and 1,3-propanediol that are starting materials for manufacturing biocompatible plastic and polytrimethylene terephthalate. In this study, 3-HPA was biosynthesized from formaldehyde and acetaldehyde using deoxyribose-5-phosphate aldolase from Thermotoga maritima (DERATma) and cloned and expressed in Escherichia coli for 3-HPA production. Under optimum conditions, DERATma produced 7 mM 3-HPA from 25 mM substrate (formaldehyde and acetaldehyde) for 60 min with 520 mg/L/h productivity. To demonstrate the one-pot 3-HPA production from methanol and ethanol, we used methanol dehydrogenase from Lysinibacillus xylanilyticus (MDHLx) and DERATma. One-pot 3-HPA production via aldol condensation of formaldehyde and acetaldehyde from methanol and ethanol, respectively, was investigated under optimized reaction conditions. This is the first report on 3-HPA production from inexpensive alcohol substrates (methanol and ethanol) by cascade reaction using DERATma and MDHLx.


Assuntos
Escherichia coli , Metanol , Acetaldeído , Escherichia coli/genética , Etanol , Formaldeído , Metanol/química
4.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540582

RESUMO

Methanol dehydrogenase (Mdh), is a crucial enzyme for utilizing methane and methanol as carbon and energy sources in methylotrophy and synthetic methylotrophy. Engineering of Mdh, especially NAD-dependent Mdh, has thus been actively investigated to enhance methanol conversion. However, its poor catalytic activity and low methanol affinity limit its wider application. In this study, we applied a transcriptional factor-based biosensor for the direct evolution of Mdh from Lysinibacillus xylanilyticus (Lxmdh), which has a relatively high turnover rate and low KM value compared to other wild-type NAD-dependent Mdhs. A random mutant library of Lxmdh was constructed in Escherichia coli and was screened using formaldehyde-detectable biosensors by incubation with low methanol concentrations. Positive clones showing higher fluorescence were selected by fluorescence-activated cell sorting (FACS) system, and their catalytic activities toward methanol were evaluated. The successfully isolated mutants E396V, K318N, and K46E showed high activity, particularly at very low methanol concentrations. In kinetic analysis, mutant E396V, K318N, and K46E had superior methanol conversion efficiency, with 79-, 23-, and 3-fold improvements compared to the wild-type, respectively. These mutant enzymes could thus be useful for engineering synthetic methylotrophy and for enhancing methanol conversion to various useful products.


Assuntos
Oxirredutases do Álcool/genética , Bacillaceae/enzimologia , Mutação , Oxirredutases do Álcool/metabolismo , Bacillaceae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Cinética , Metanol/metabolismo
5.
Int J Mol Sci ; 20(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067766

RESUMO

The microbial assimilation of one-carbon (C1) gases is a topic of interest, given that products developed using this pathway have the potential to act as promising substrates for the synthesis of valuable chemicals via enzymatic oxidation or C-C bonding. Despite extensive studies on C1 gas assimilation pathways, their key enzymes have yet to be subjected to high-throughput evolution studies on account of the lack of an efficient analytical tool for C1 metabolites. To address this challenging issue, we attempted to establish a fine-tuned single-cell-level biosensor system constituting a combination of transcription factors (TFs) and several C1-converting enzymes that convert target compounds to the ligand of a TF. This enzymatic conversion broadens the detection range of ligands by the genetic biosensor systems. In this study, we presented new genetic enzyme screening systems (GESSs) to detect formate, formaldehyde, and methanol from specific enzyme activities and pathways, named FA-GESS, Frm-GESS, and MeOH-GESS, respectively. All the biosensors displayed linear responses to their respective C1 molecules, namely, formate (1.0-250 mM), formaldehyde (1.0-50 µM), and methanol (5-400 mM), and they did so with high specificity. Consequently, the helper enzymes, including formaldehyde dehydrogenase and methanol dehydrogenase, were successfully combined to constitute new versatile combinations of the C1-biosensors.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais/métodos , Formaldeído/análise , Formiatos/análise , Metanol/análise , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Transcrição
6.
Biochem Biophys Res Commun ; 495(1): 1328-1334, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180013

RESUMO

Successful utilization of cellulose as renewable biomass depends on the development of economically feasible technologies, which can aid in enzymatic hydrolysis. In this study, we developed a whole-cell biosensor for detecting cellulolytic activity that relies on the recognition of cellobiose using the transcriptional factor CelR from Thermobifida fusca and transcriptional activation of its downstream gfp reporter gene. The fluorescence intensity of whole-cell biosensor, which was named as cellobiose-detectible genetic enzyme screening system (CBGESS), was directly proportional to the concentration of cellobiose. The strong fluorescence intensity of CBGESS demonstrated the ability to detect cellulolytic activity with two cellulosic substrates, carboxymethyl cellulose and p-nitrophenyl ß-D-cellobioside in cellulase-expressing Escherichia coli. In addition, CBGESS easily sensed crystalline cellulolytic activity when commercial Celluclast 1.5L was dropped on an Avicel plate. Therefore, CBGESS is a powerful tool for detecting cellulolytic activity with high sensitivity in the presence of soluble or insoluble cellulosic substrates. CBGESS may be further applied to excavate novel cellulases or microbes from both genetic libraries and various environments.


Assuntos
Bioensaio/métodos , Técnicas Biossensoriais/métodos , Celulase/metabolismo , Celulose/metabolismo , Escherichia coli/metabolismo , Espectrometria de Fluorescência/métodos , Fatores de Transcrição/metabolismo , Celulose/análise , Cristalização , Hidrólise , Técnicas de Sonda Molecular
7.
BMC Plant Biol ; 18(1): 118, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29902970

RESUMO

BACKGROUND: Isoprene is a five-carbon chemical that is an important starting material for the synthesis of rubber, elastomers, and medicines. Although many plants produce huge amounts of isoprene, it is very difficult to obtain isoprene directly from plants because of its high volatility and increasing environmental regulations. Over the last decade, microorganisms have emerged as a promising alternative host for efficient and sustainable bioisoprene production. Isoprene synthase (IspS) has received much attention for the conversion of isoprene from dimethylallyl diphosphate (DMAPP). Herein, we isolated a highly expressible novel IspS gene from Metrosideros polymorpha (MpIspS), which was cloned and expressed in Escherichia coli, using a plant cDNA library and characterized its molecular and biochemical properties. RESULTS: The signal sequence deleted MpIspS was cloned and expressed in E. coli as a 65-kDa monomer. The maximal activity of the purified MpIspS was observed at pH 6.0 and 55 °C in the presence of 5 mM Mn2+. The Km, kcat, and kcat/Km for DMAPP as a substrate were 8.11 mM, 21 min- 1, and 2.59 mM- 1 min- 1, respectively. MpIspS was expressed along with the exogenous mevalonate pathway to produce isoprene in E. coli. The engineered cells produced isoprene concentrations of up to 23.3 mg/L using glycerol as the main carbon source. CONCLUSION: MpIspS was expressed in large amounts in E. coli, which led to increased enzymatic activity and resulted in isoprene production in vivo. These results demonstrate a new IspS enzyme that is useful as a key biocatalyst for bioisoprene production in engineered microbes.


Assuntos
Alquil e Aril Transferases/genética , Myrtaceae/enzimologia , Proteínas de Plantas/genética , Alquil e Aril Transferases/isolamento & purificação , Alquil e Aril Transferases/metabolismo , Butadienos/metabolismo , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Genes de Plantas/genética , Hemiterpenos/metabolismo , Microrganismos Geneticamente Modificados , Myrtaceae/genética , Filogenia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
8.
Metab Eng ; 40: 41-49, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28038953

RESUMO

Metabolons in nature have evolved to facilitate more efficient catalysis of multistep reactions through the co-localization of functionally related enzymes to cellular organelles or membrane structures. To mimic the natural metabolon architecture, we present a novel artificial metabolon that was created by targeting multi-enzyme cascade reactions onto inclusion body (IB) in Escherichia coli. The utility of this system was examined by co-localizing four heterologous enzymes of the 1-butanol pathway onto an IB that was formed in E. coli through overexpression of the cellulose binding domain (CBD) of Cellulomonas fimi exoglucanase. To target the 1-butanol pathway enzymes to the CBD IB, we utilized a peptide-peptide interaction between leucine zipper (LZ) peptides. We genetically fused the LZ peptide to the N-termini of four heterologous genes involved in the synthetic 1-butanol pathway, whereas an antiparallel LZ peptide was fused to the CBD gene. The in vivo activity of the CBD IB-based metabolon was examined through the determination of 1-butanol synthesis using E. coli transformed with two plasmids containing the LZ-fused CBD and LZ-fused 1-butanol pathway genes, respectively. In vivo synthesis of 1-butanol using the engineered E. coli yielded 1.98g/L of 1-butanol from glucose, representing a 1.5-fold increase over that obtained from E. coli expressing the LZ-fused 1-butanol pathway genes alone. In an attempt to examine the in vitro 1-butanol productivity, we reconstituted CBD IB-based metabolon using CBD IB and individual enzymes of 1-butanol pathway. The 1-butanol productivity of in vitro reconstituted CBD IB-based metabolon using acetoacetyl-CoA as the starting material was 2.29mg/L/h, 7.9-fold higher than that obtained from metabolon-free enzymes of 1-butanol pathway. Therefore, this novel CBD-based artificial metabolon may prove useful in metabolic engineering both in vivo and in vitro for the efficient production of desired products.


Assuntos
1-Butanol/metabolismo , Vias Biossintéticas/genética , Escherichia coli/fisiologia , Melhoramento Genético/métodos , Corpos de Inclusão/metabolismo , Zíper de Leucina/genética , Complexos Multienzimáticos/genética , 1-Butanol/isolamento & purificação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Marcação de Genes/métodos , Corpos de Inclusão/genética , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Complexos Multienzimáticos/metabolismo
9.
Biotechnol Lett ; 38(10): 1775-80, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27388916

RESUMO

OBJECTIVES: To optimize conversion of rutin to isoquercetin by commercial α-L-rhamnosidase using high hydrostatic pressure (HHP). RESULTS: The de-rhamnosylation activity of α-L-rhamnosidase for isoquercetin production was maximal at pH 6.0 and 50 °C using HHP (150 MPa). The enzyme showed high specificity for rutin. The specific activity for rutin at HHP was 1.5-fold higher than that at atmospheric pressure. The enzyme completely hydrolysed 20 mM rutin in tartary buckwheat extract after 2 h at HHP, with a productivity of 10 mM h(-1). The productivity and conversion were 2.2- and 1.5-fold higher at HHP than at atmospheric pressure, respectively. CONCLUSIONS: This is the first report concerning the enzymatic hydrolysis of isoquercetin in tartary buckwheat at HHP.


Assuntos
Fagopyrum/química , Glicosídeo Hidrolases/metabolismo , Quercetina/análogos & derivados , Rutina/química , Cromatografia Líquida de Alta Pressão , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise , Pressão Hidrostática , Quercetina/análise , Quercetina/isolamento & purificação , Sementes/química
10.
BMC Biotechnol ; 15: 1, 2015 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-25636680

RESUMO

BACKGROUND: Alkaline phosphatase (AP) catalyzes the hydrolytic cleavage of phosphate monoesters under alkaline conditions and plays important roles in microbial ecology and molecular biology applications. Here, we report on the first isolation and biochemical characterization of a thermolabile AP from a metagenome. RESULTS: The gene encoding a novel AP was isolated from a metagenomic library constructed with ocean-tidal flat sediments from the west coast of Korea. The metagenome-derived AP (mAP) gene composed of 1,824 nucleotides encodes a polypeptide with a calculated molecular mass of 64 kDa. The deduced amino acid sequence of mAP showed a high degree of similarity to other members of the AP family. Phylogenetic analysis revealed that the mAP is shown to be a member of a recently identified family of PhoX that is distinct from the well-studied classical PhoA family. When the open reading frame encoding mAP was cloned and expressed in recombinant Escherichia coli, the mature mAP was secreted to the periplasm and lacks an 81-amino-acid N-terminal Tat signal peptide. Mature mAP was purified to homogeneity as a monomeric enzyme with a molecular mass of 56 kDa. The purified mAP displayed typical features of a psychrophilic enzyme: high catalytic activity at low temperature and a remarkable thermal instability. The optimal temperature for the enzymatic activity of mAP was 37°C and complete thermal inactivation of the enzyme was observed at 65°C within 15 min. mAP was activated by Ca(2+) and exhibited maximal activity at pH 9.0. Except for phytic acid and glucose 1-phosphate, mAP showed phosphatase activity against various phosphorylated substrates indicating that it had low substrate specificity. In addition, the mAP was able to remove terminal phosphates from cohesive and blunt ends of linearized plasmid DNA, exhibiting comparable efficiency to commercially available APs that have been used in molecular biology. CONCLUSIONS: The presented mAP enzyme is the first thermolabile AP found in cold-adapted marine metagenomes and may be useful for efficient dephosphorylation of linearized DNA.


Assuntos
Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Sedimentos Geológicos/microbiologia , Metagenoma , Fosfatase Alcalina/química , Sequência de Aminoácidos , Cálcio/metabolismo , Clonagem Molecular , Ativação Enzimática , Estabilidade Enzimática , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , República da Coreia , Alinhamento de Sequência , Especificidade por Substrato
11.
J Microbiol Biotechnol ; 34(1): 39-46, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-37957109

RESUMO

Gene expression in eukaryotic cells is intricately regulated by chromatin structure and various factors, including histone proteins. In Saccharomyces cerevisiae, transcriptionally silenced regions, such as telomeres and homothallic mating (HM) loci, are essential for genome stability and proper cellular function. We firstly observed the defective HM silencing in alanine substitution mutant of 80th threonine residue of histone H3 (H3T80A). To identify which properties in the H3T80 residue are important for the HM silencing, we created several substitution mutants of H3T80 residue by considering the changed states of charge, polarity, and structural similarity. This study reveals that the structural similarity of the 80th position of H3 to the threonine residue, not the polarity and charges, is the most important thing for the transcriptional silencing in the HM loci.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Histonas/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/genética , Regulação Fúngica da Expressão Gênica
12.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195009, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331025

RESUMO

Swd2/Cps35 is a common component of the COMPASS H3K4 methyltransferase and CPF transcription termination complex in Saccharomyces cerevisiae. The deletion of SWD2 is lethal, which results from transcription termination defects in snoRNA genes. This study isolated a yeast strain that showed significantly reduced protein level of Swd2 following epitope tagging at its N-terminus (9MYC-SWD2). The reduced level of Swd2 in the 9MYC-SWD2 strain was insufficient for the stability of the Set1 H3K4 methyltransferase, H3K4me3 and snoRNA termination, but the level was enough for viability and growth similar to the wildtype strain. In addition, we presented the genes differentially regulated by the essential protein Swd2 under optimal culture conditions for the first time. The expression of genes known to be decreased in the absence of Set1 and H3K4me3, including NAD biosynthetic process genes and histone genes, was decreased in the 9MYC-SWD2 strain, as expected. However, the effects of Swd2 on the ribosome biogenesis (RiBi) genes were opposite to those of Set1, suggesting that the expression of RiBi genes is regulated by more complex relationship between COMPASS and other Swd2-containing complexes. These data suggest that different concentrations of Swd2 are required for its roles in H3K4me3 and viability and that it may be either contributory or contrary to the transcriptional regulation of Set1/H3K4me3, depending on the gene group.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Histonas/metabolismo , Metilação , Epitopos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Regulação Fúngica da Expressão Gênica
13.
Bioresour Bioprocess ; 11(1): 9, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38647973

RESUMO

The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min-1 mg-1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L-1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L-1 h-1 and a specific productivity of 357.6 mg mg-enzyme-1 h-1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L-1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L-1 h-1 and 583.4 mg mg-enzyme-1 h-1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde.

14.
Appl Environ Microbiol ; 79(3): 982-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23204422

RESUMO

Phosphosugar isomerases can catalyze the isomerization of not only phosphosugar but also of monosaccharides, suggesting that the phosphosugar isomerases can be used as sugar isomerases that do not exist in nature. Determination of active-site residues of phosphosugar isomerases, including ribose-5-phosphate isomerase from Clostridium difficile (CDRPI), mannose-6-phosphate isomerase from Bacillus subtilis (BSMPI), and glucose-6-phosphate isomerase from Pyrococcus furiosus (PFGPI), was accomplished by docking of monosaccharides onto the structure models of the isomerases. The determinant residues, including Arg133 of CDRPI, Arg192 of BSMPI, and Thr85 of PFGPI, were subjected to alanine substitutions and found to act as phosphate-binding sites. R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI displayed the highest catalytic efficiencies for monosaccharides at each position. These residues exhibited 1.8-, 3.5-, and 4.9-fold higher catalytic efficiencies, respectively, for the monosaccharides than the wild-type enzyme. However, the activities of these 3 variant enzymes for phosphosugars as the original substrates disappeared. Thus, R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI are no longer phosphosugar isomerases; instead, they are changed to a d-ribose isomerase, an l-ribose isomerase, and an l-talose isomerase, respectively. In this study, we used substrate-tailored optimization to develop novel sugar isomerases which are not found in nature based on phosphosugar isomerases.


Assuntos
Bacillus subtilis/enzimologia , Clostridioides difficile/enzimologia , Isomerases/genética , Isomerases/metabolismo , Monossacarídeos/metabolismo , Pyrococcus furiosus/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Análise Mutacional de DNA , Isomerases/química , Cinética , Engenharia Metabólica , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Engenharia de Proteínas
15.
J Agric Food Chem ; 71(10): 4328-4336, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36856566

RESUMO

One-carbon chemicals (C 1s) are potential building blocks as they are cheap, sustainable, and abiotic components. Methanol-derived formaldehyde can be another versatile building block for the production of 2-keto-4-hydroxyacid derivatives that can be used for amino acids, hydroxy carboxylic acids, and chiral aldehydes. To produce 2-keto-4-hydroxybutyrate from C 1s in an environment-friendly way, we characterized an aldolase from Pseudomonas aeruginosa PAO1 (PaADL), which showed much higher catalytic activity in condensing formaldehyde and pyruvate than the reported aldolases. By applying a structure-based rational approach, we found a variant (PaADLV121A/L241A) that exhibited better catalytic activities than the wild-type enzyme. Next, we constructed a one-pot cascade biocatalyst system by combining PaADL and a methanol dehydrogenase (MDH) and, for the first time, effectively produced 2-keto-4-hydroxybutyrate as the main product from pyruvate and methanol via an enzymatic reaction. This simple process applied here will help design a green process for the production of 2-keto-4-hydroxyacid derivatives.


Assuntos
Frutose-Bifosfato Aldolase , Ácido Pirúvico , Frutose-Bifosfato Aldolase/metabolismo , Ácido Pirúvico/metabolismo , Metanol/metabolismo , Aldeído Liases/química , Formaldeído
16.
Appl Environ Microbiol ; 78(11): 3880-4, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22447612

RESUMO

A triple-site variant (W17Q N90A L129F) of mannose-6-phosphate isomerase from Geobacillus thermodenitrificans was obtained by combining variants with residue substitutions at different positions after random and site-directed mutagenesis. The specific activity and catalytic efficiency (k(cat)/K(m)) for L-ribulose isomerization of this variant were 3.1- and 7.1-fold higher, respectively, than those of the wild-type enzyme at pH 7.0 and 70°C in the presence of 1 mM Co(2+). The triple-site variant produced 213 g/liter l-ribose from 300 g/liter L-ribulose for 60 min, with a volumetric productivity of 213 g liter(-1) h(-1), which was 4.5-fold higher than that of the wild-type enzyme. The k(cat)/K(m) and productivity of the triple-site variant were approximately 2-fold higher than those of the Thermus thermophilus R142N variant of mannose-6-phosphate isomerase, which exhibited the highest values previously reported.


Assuntos
Variação Genética , Geobacillus/enzimologia , Manose-6-Fosfato Isomerase/genética , Manose-6-Fosfato Isomerase/metabolismo , Pentoses/metabolismo , Ribose/biossíntese , Biotecnologia/métodos , Estabilidade Enzimática , Geobacillus/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Mutagênese Sítio-Dirigida
17.
Biotechnol Lett ; 34(1): 125-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21898127

RESUMO

The specific activity of a recombinant ß-glucosidase from Sulfolobus solfataricus for isoflavones was: daidzin > glycitin > genistin > malonyl genistin > malonyl daidzin > malonyl glycitin. The hydrolytic activity of this enzyme for daidzin was highest at pH 5.5 and 90°C with a half-life of 18 h, a K (m) of 0.5 mM, and a k (cat) of 2532 s(-1). The enzyme converted 1 mM daidzin to 1 mM daidzein after 1 h with a molar yield of 100% and a productivity of 1 mM h(-1). Among ß-glucosidases, that from S. solfataricus ß had the highest thermostability, k (cat), k (cat)/K (m), conversion yield, and productivity in the hydrolysis of daidzin.


Assuntos
Glicosídeos/metabolismo , Isoflavonas/metabolismo , Sulfolobus solfataricus/enzimologia , beta-Glucosidase/metabolismo , Estabilidade Enzimática , Meia-Vida , Concentração de Íons de Hidrogênio , Cinética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
18.
Genes Genomics ; 44(3): 359-367, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35034281

RESUMO

BACKGROUND: In the budding yeast Saccharomyces cerevisiae, a silent chromatin structure is formed at three distinct loci, including telomeres, rDNA, and mating-type loci, which silence the expression of genes within their structures. Sir2 is the only common factor, regulating the three silent chromatin regions. S. cerevisiae has 32 telomeres, but studies on gene silencing in budding yeast have been performed using some reporter genes, artificially inserted in the telomeric regions. Therefore, insights into the global landscape of Sir-dependent silencing of genes within the silent chromatin regions are required. OBJECTIVE: This study aimed to obtain global insights into Sir2-dependent gene silencing on all silent chromatin regions in budding yeast. METHODS: RNA-sequencing was performed to identify genes that are silenced by Sir2. By comparing with the chromatin immunoprecipitation-sequencing (ChIP-seq) of Sir2 in the wild-type strain, we confirmed Sir2-regulated genes. RESULTS: Using Sir2 ChIP-seq data, we identified that the Sir2 binding domain length caused by Sir2 spreading from the chromosomal end is different in each telomere in budding yeast. Expression of most subtelomeric genes increased in the ∆sir2 strain. Some Sir2-regulated subtelomeric genes were positioned within the telomeric Sir2-binding domain, while the others were outside the Sir2-binding domain. In addition, Sir2 was bound to the mating-type loci and rDNA region, and gene expression increased in the ∆sir2 strain. CONCLUSION: We concluded that S. cerevisiae has two modes of Sir2-mediated gene silencing: one is dependent on chromatin binding and spreading of Sir2, and the other is independent of spreading of Sir2.


Assuntos
Saccharomyces cerevisiae , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Sirtuína 2 , Cromatina/genética , Cromatina/metabolismo , DNA Ribossômico/genética , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo
19.
Trends Biotechnol ; 40(2): 166-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34243985

RESUMO

Plastic contamination currently threatens a wide variety of ecosystems and presents damaging repercussions and negative consequences for many wildlife species. Sustainable plastic waste management is an important approach to environmental protection and a necessity in the current life cycle of plastics in nature. Plastic biodegradation by microorganisms is a notable possible solution. This opinion article includes a proposal to use hypothetical P450 enzymes with an engineered active site as potent trigger biocatalysts to biodegrade polyethylene (PE) via in-chain hydroxylation into smaller products of linear aliphatic alcohols and alkanoic acids based on cascade enzymatic reactions. Furthermore, we propose the adoption of P450 into plastic-eating synthetic bacteria for PE biodegradation. This strategy can be applicable to other dense plastics, such as polypropylene (PP) and polystyrene (PS).


Assuntos
Ecossistema , Plásticos , Bactérias/metabolismo , Biodegradação Ambiental , Sistema Enzimático do Citocromo P-450/metabolismo , Plásticos/metabolismo
20.
Epigenetics Chromatin ; 15(1): 5, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101096

RESUMO

Budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe are good models for heterochromatin study. In S. pombe, H3K9 methylation and Swi6, an ortholog of mammalian HP1, lead to heterochromatin formation. However, S. cerevisiae does not have known epigenetic silencing markers and instead has Sir proteins to regulate silent chromatin formation. Although S. cerevisiae and S. pombe form and maintain heterochromatin via mechanisms that appear to be fundamentally different, they share important common features in the heterochromatin structural proteins. Heterochromatin loci are localized at the nuclear periphery by binding to perinuclear membrane proteins, thereby producing distinct heterochromatin foci, which sequester heterochromatin structural proteins. In this review, we discuss the nuclear peripheral anchoring of heterochromatin foci and its functional relevance to heterochromatin formation and maintenance.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Animais , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa