Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Med ; 20(1): 26, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35027067

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious respiratory virus which is responsible for the coronavirus disease 2019 (COVID-19) pandemic. It is increasingly clear that recovered individuals, even those who had mild COVID-19, can suffer from persistent symptoms for many months after infection, a condition referred to as "long COVID", post-acute sequelae of COVID-19 (PASC), post-acute COVID-19 syndrome, or post COVID-19 condition. However, despite the plethora of research on COVID-19, relatively little is known about the molecular underpinnings of these long-term effects. METHODS: We have undertaken an integrated analysis of immune responses in blood at a transcriptional, cellular, and serological level at 12, 16, and 24 weeks post-infection (wpi) in 69 patients recovering from mild, moderate, severe, or critical COVID-19 in comparison to healthy uninfected controls. Twenty-one of these patients were referred to a long COVID clinic and > 50% reported ongoing symptoms more than 6 months post-infection. RESULTS: Anti-Spike and anti-RBD IgG responses were largely stable up to 24 wpi and correlated with disease severity. Deep immunophenotyping revealed significant differences in multiple innate (NK cells, LD neutrophils, CXCR3+ monocytes) and adaptive immune populations (T helper, T follicular helper, and regulatory T cells) in convalescent individuals compared to healthy controls, which were most strongly evident at 12 and 16 wpi. RNA sequencing revealed significant perturbations to gene expression in COVID-19 convalescents until at least 6 months post-infection. We also uncovered significant differences in the transcriptome at 24 wpi of convalescents who were referred to a long COVID clinic compared to those who were not. CONCLUSIONS: Variation in the rate of recovery from infection at a cellular and transcriptional level may explain the persistence of symptoms associated with long COVID in some individuals.


Assuntos
COVID-19 , Anticorpos Antivirais , COVID-19/complicações , Humanos , Sistema Imunitário , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
3.
Mol Ther Nucleic Acids ; 34: 102056, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38028199

RESUMO

Zika virus (ZIKV) infections are spreading silently with limited global surveillance in at least 89 countries and territories. There is a pressing need to develop an effective vaccine suitable for equitable distribution globally. Consequently, we previously developed a proprietary DNA vaccine encoding secreted non-structural protein 1 of ZIKV (pVAX-tpaNS1) to elicit rapid protection in a T cell-dependent manner in mice. In the current study, we evaluated the stability, efficacy, and immunogenicity of delivering this DNA vaccine into the skin using a clinically effective and proprietary high-density microarray patch (HD-MAP). Dry-coating of pVAX-tpaNS1 on the HD-MAP device resulted in no loss of vaccine stability at 40°C storage over the course of 28 days. Vaccination of mice (BALB/c) with the HD-MAP-coated pVAX-tpaNS1 elicited a robust anti-NS1 IgG response in both the cervicovaginal mucosa and systemically and afforded protection against live ZIKV challenge. Furthermore, the vaccination elicited a significantly higher magnitude and broader NS1-specific T helper and cytotoxic T cell response in vivo compared with traditional needle and syringe intradermal vaccination. Overall, the study highlights distinctive immunological advantages coupled with an excellent thermostability profile of using the HD-MAP device to deliver a novel ZIKV DNA vaccine.

4.
Cell Rep Med ; 4(3): 100971, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36871558

RESUMO

Identifying the molecular mechanisms that promote optimal immune responses to coronavirus disease 2019 (COVID-19) vaccination is critical for future rational vaccine design. Here, we longitudinally profile innate and adaptive immune responses in 102 adults after the first, second, and third doses of mRNA or adenovirus-vectored COVID-19 vaccines. Using a multi-omics approach, we identify key differences in the immune responses induced by ChAdOx1-S and BNT162b2 that correlate with antigen-specific antibody and T cell responses or vaccine reactogenicity. Unexpectedly, we observe that vaccination with ChAdOx1-S, but not BNT162b2, induces an adenoviral vector-specific memory response after the first dose, which correlates with the expression of proteins with roles in thrombosis with potential implications for thrombosis with thrombocytopenia syndrome (TTS), a rare but serious adverse event linked to adenovirus-vectored vaccines. The COVID-19 Vaccine Immune Responses Study thus represents a major resource that can be used to understand the immunogenicity and reactogenicity of these COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas , Adulto , Humanos , Adenoviridae/genética , Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , RNA Mensageiro/genética
5.
Cell Rep Med ; 3(6): 100651, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35654046

RESUMO

Coronavirus disease 2019 (COVID-19) convalescents living in regions with low vaccination rates rely on post-infection immunity for protection against re-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluate humoral and T cell immunity against five variants of concern (VOCs) in mild-COVID-19 convalescents at 12 months after infection with ancestral virus. In this cohort, ancestral, receptor-binding domain (RBD)-specific antibody and circulating memory B cell levels are conserved in most individuals, and yet serum neutralization against live B.1.1.529 (Omicron) is completely abrogated and significantly reduced for other VOCs. Likewise, ancestral SARS-CoV-2-specific memory T cell frequencies are maintained in >50% of convalescents, but the cytokine response in these cells to mutated spike epitopes corresponding to B.1.1.529 and B.1.351 (Beta) VOCs were impaired. These results indicate that increased antigen variability in VOCs impairs humoral and spike-specific T cell immunity post-infection, strongly suggesting that COVID-19 convalescents are vulnerable and at risk of re-infection with VOCs, thus stressing the importance of vaccination programs.


Assuntos
COVID-19 , Linfócitos T , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Reinfecção , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa