Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(14): 1215-1228, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38652261

RESUMO

Immunotherapy has revolutionized the treatment of tumors, but there are still a large number of patients who do not benefit from immunotherapy. Pericytes play an important role in remodeling the immune microenvironment. However, how pericytes affect the prognosis and treatment resistance of tumors is still unknown. This study jointly analyzed single-cell RNA sequencing (scRNA-seq) data and bulk RNA sequencing data of multiple cancers to reveal pericyte function in the colorectal cancer microenvironment. Analyzing over 800 000 cells, it was found that colorectal cancer had more pericyte enrichment in tumor tissues than other cancers. We then combined the TCGA database with multiple public datasets and enrolled more than 1000 samples, finding that pericyte may be closely related to poor prognosis due to the higher epithelial-mesenchymal transition (EMT) and hypoxic characteristics. At the same time, patients with more pericytes have higher immune checkpoint molecule expressions and lower immune cell infiltration. Finally, the contributions of pericyte in poor treatment response have been demonstrated in multiple immunotherapy datasets (n = 453). All of these observations suggest that pericyte can be used as a potential biomarker to predict patient disease progression and immunotherapy response.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Imunoterapia , Pericitos , Análise de Célula Única , Microambiente Tumoral , Humanos , Pericitos/imunologia , Pericitos/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Análise de Célula Única/métodos , Prognóstico , Imunoterapia/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Biomarcadores Tumorais/genética , Análise de Sequência de RNA/métodos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica
2.
Hum Mol Genet ; 33(4): 342-354, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944069

RESUMO

Peripheral blood mononuclear cells (PBMCs) reflect systemic immune response during cancer progression. However, a comprehensive understanding of the composition and function of PBMCs in cancer patients is lacking, and the potential of these features to assist cancer diagnosis is also unclear. Here, the compositional and status differences between cancer patients and healthy donors in PBMCs were investigated by single-cell RNA sequencing (scRNA-seq), involving 262,025 PBMCs from 68 cancer samples and 14 healthy samples. We observed an enhanced activation and differentiation of most immune subsets in cancer patients, along with reduction of naïve T cells, expansion of macrophages, impairment of NK cells and myeloid cells, as well as tumor promotion and immunosuppression. Based on characteristics including differential cell type abundances and/or hub genes identified from weight gene co-expression network analysis (WGCNA) modules of each major cell type, we applied logistic regression to construct cancer diagnosis models. Furthermore, we found that the above models can distinguish cancer patients and healthy donors with high sensitivity. Our study provided new insights into using the features of PBMCs in non-invasive cancer diagnosis.


Assuntos
Leucócitos Mononucleares , Neoplasias , Humanos , Análise da Expressão Gênica de Célula Única , Neoplasias/diagnóstico , Neoplasias/genética , Diferenciação Celular , Transformação Celular Neoplásica
3.
Mol Microbiol ; 122(1): 68-80, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845079

RESUMO

Iron is an essential element for microbial survival and secondary metabolism. However, excess iron availability and overloaded secondary metabolites can hinder microbial growth and survival. Microorganisms must tightly control iron homeostasis and secondary metabolism. Our previous studies have found that the stringent starvation protein A (SspA) positively regulates prodiginine biosynthesis by activating iron uptake in Pseudoalteromonas sp. strain R3. It is believed that the interaction between SspA and the small nucleotide ppGpp is important for iron to exert regulation functions. However, the roles of ppGpp in iron absorption and prodiginine biosynthesis, and the underlying relationship between ppGpp and SspA in strain R3 remain unclear. In this study, we found that ppGpp accumulation in strain R3 could be induced by limiting iron. In addition, ppGpp not only positively regulated iron uptake and prodiginine biosynthesis via increasing the SspA level but also directly repressed iron uptake and prodiginine biosynthesis independent of SspA, highlighting the finding that ppGpp can stabilize both iron levels and prodiginine production. Notably, the abolishment of ppGpp significantly increased prodiginine production, thus providing a theoretical basis for manipulating prodiginine production in the future. This dynamic ppGpp-mediated interaction between iron uptake and prodiginine biosynthesis has significant implications for understanding the roles of nutrient uptake and secondary metabolism for the survival of bacteria in unfavorable environments.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Ferro , Prodigiosina , Pseudoalteromonas , Pseudoalteromonas/metabolismo , Pseudoalteromonas/genética , Ferro/metabolismo , Prodigiosina/metabolismo , Prodigiosina/biossíntese , Prodigiosina/análogos & derivados , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Homeostase , Metabolismo Secundário
4.
J Am Chem Soc ; 146(7): 4557-4569, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38345667

RESUMO

Intelligent utilization of the anionic redox reaction (ARR) in Li-rich cathodes is an advanced strategy for the practical implementation of next-generation high-energy-density rechargeable batteries. However, due to the intrinsic complexity of ARR (e.g., nucleophilic attacks), the instability of the cathode-electrolyte interphase (CEI) on a Li-rich cathode presents more challenges than typical high-voltage cathodes. Here, we manipulate CEI interfacial engineering by introducing an all-fluorinated electrolyte and exploiting its interaction with the nucleophilic attack to construct a gradient CEI containing a pair of fluorinated layers on a Li-rich cathode, delivering enhanced interfacial stability. Negative/detrimental nucleophilic electrolyte decomposition has been efficiently evolved to further reinforce CEI fabrication, resulting in the construction of LiF-based indurated outer shield and fluorinated polymer-based flexible inner sheaths. Gradient interphase engineering dramatically improved the capacity retention of the Li-rich cathode from 43 to 71% after 800 cycles and achieved superior cycling stability in anode-free and pouch-type full cells (98.8% capacity retention, 220 cycles), respectively.

5.
Appl Environ Microbiol ; 90(10): e0146824, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39264182

RESUMO

Oxidative stress caused by reactive oxygen species (ROS) is inevitable for all aerobic microorganisms as ROS are the byproducts of aerobic respiration. For gut pathogens, ROS are an integrated part of colonization resistance which protects the host against bacteria invasion. Alkyl hydroperoxide reductase (AhpR) and organic hydroperoxide resistance (Ohr) proteins are considered as the main enzymes responsible for the degradation of organic peroxides (OPs) in most bacteria. To elucidate how enteric pathogen Yersinia pseudotuberculosis YPIII deals with oxidative stress induced by OPs, we performed transcriptomic analysis and identified the OP scavenging system, which is composed of glutathione peroxidase (Gpx), thiol peroxidase (Tpx), and AhpR. Gpx serves as the main scavenger of OPs, and Tpx assists in the degradation of OPs. Transcriptional factor OxyR regulates Gpx expression, suggesting that OxyR is the regulator mediating the cellular response to OPs. Although AhpR has little influence on OP degradation, its deletion would greatly impair the scavenging ability of OPs in the absence of gpx or tpx. In addition, we found that catalase KatG and KatE are responsive to OPs but do not participate in the removal of OPs.IMPORTANCEIn bacteria, oxidative stress caused by ROS is a continuously occurring cellular response and requires multiple genes to participate in this process. The elimination of OPs is mainly dependent on AhpR and Ohr protein. Here, we carried out transcriptomic analysis to search for enzymes responsible for the removal of organic peroxides in Yersinia pseudotuberculosis. We found that Gpx was the primary OP scavenger in bacteria, which was positively regulated by the oxidative stress regulator OxyR. The OP scavenging system in Y. pseudotuberculosis was composedof Gpx, Tpx, and AhpR. OxyR is the critical global regulator mediating gene expression involved in OPs and H2O2 stress. These findings suggest that Y. pseudotuberculosis has a unique defense system in response to oxidative stress.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Peróxidos , Yersinia pseudotuberculosis , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo , Peróxidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo
6.
Appl Environ Microbiol ; 90(2): e0177923, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193673

RESUMO

The Pseudoalteromonas genus marine bacteria have attracted increasing interest because of their abilities to produce bioactive metabolites. The pigmented Pseudoalteromonas group encodes more secondary metabolite biosynthetic gene clusters (BGCs) than the non-pigmented group. Here, we report a yellow pigmented bacterium Pseudoalteromonas sp. strain T1lg65, which was isolated from a mangrove forest sediment. We showed that the yellow pigments of T1lg65 belong to the group of lipopeptide alterochromides. Further genetic analyses of the alterochromide BGC revealed that the yellow pigments are biosynthesized by aryl-polyene synthases and nonribosomal peptide synthases. Within the gene cluster, altA encodes a tyrosine ammonia acid lyase, which catalyzes synthesis of the precursor 4-hydroxycinnamic acid (4-HCA) from tyrosine in the alterochromide biosynthetic pathway. In addition, altN, encoding a putative flavin-dependent halogenase, was proven to be responsible for the bromination of alterochromides based on gene deletion, molecular docking, and site mutagenesis analyses. In summary, the biosynthetic pathway, precursor synthesis, and bromination mechanism of the lipopeptide alterochromides were studied in-depth. Our results expand the knowledge on biosynthesis of Pseudoalteromonas pigments and could promote the development of active pigments in the future.IMPORTANCEThe marine bacteria Pseudoalteromonas spp. are important biological resources because they are producers of bioactive natural products, including antibiotics, pigments, enzymes, and antimicrobial peptides. One group of the microbial pigments, alterochromides, holds a great value for their novel lipopeptide structures and antimicrobial activities. Previous studies were limited to the structural characterization of alterochromides and genome mining for the alterochromide biosynthesis. This work focused on the biosynthetic mechanism for alterochromide production, especially revealing functions of two key genes within the gene cluster for the alterochromide biosynthesis. On the one hand, our study provides a target for metabolic engineering of the alterochromide biosynthesis; on the other hand, the 4-HCA synthase AltA and brominase AltN show potential in the biocatalyst industry.


Assuntos
Pseudoalteromonas , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Simulação de Acoplamento Molecular , Flavinas/metabolismo , Lipopeptídeos/metabolismo , Tirosina/metabolismo
7.
Sensors (Basel) ; 24(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38544110

RESUMO

Compact high-frequency arrays are of interest for clinical and preclinical applications in which a small-footprint or endoscopic device is needed to reach the target anatomy. However, the fabrication of compact arrays entails the connection of several dozens of small elements to the imaging system through a combination of flexible printed circuit boards at the array end and micro-coaxial cabling to the imaging system. The methods currently used, such as wire bonding, conductive adhesives, or a dry connection to a flexible circuit, considerably increase the array footprint. Here, we propose an interconnection method that uses vacuum-deposited metals, laser patterning, and electroplating to achieve a right-angle, compact, reliable connection between array elements and flexible-circuit traces. The array elements are thickened at the edges using patterned copper traces, which increases their cross-sectional area and facilitates the connection. We fabricated a 2.3 mm by 1.7 mm, 64-element linear array with elements at a 36 µm pitch connected to a 4 cm long flexible circuit, where the interconnect adds only 100 µm to each side of the array. Pulse-echo measurements yielded an average center frequency of 55 MHz and a -6 dB bandwidth of 41%. We measured an imaging resolution of 35 µm in the axial direction and 114 µm in the lateral direction and demonstrated the ex vivo imaging of porcine esophageal tissue and the in vivo imaging of avian embryonic vasculature.


Assuntos
Transdutores , Animais , Suínos , Desenho de Equipamento , Ultrassonografia , Imagens de Fantasmas , Impedância Elétrica
8.
Angew Chem Int Ed Engl ; 63(6): e202316790, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38116869

RESUMO

Electrolyte engineering is a fascinating choice to improve the performance of Li-rich layered oxide cathodes (LRLO) for high-energy lithium-ion batteries. However, many existing electrolyte designs and adjustment principles tend to overlook the unique challenges posed by LRLO, particularly the nucleophilic attack. Here, we introduce an electrolyte modification by locally replacing carbonate solvents in traditional electrolytes with a fluoro-ether. By benefit of the decomposition of fluoro-ether under nucleophilic O-related attacks, which delivers an excellent passivation layer with LiF and polymers, possessing rigidity and flexibility on the LRLO surface. More importantly, the fluoro-ether acts as "sutures", ensuring the integrity and stability of both interfacial and bulk structures, which contributed to suppressing severe polarization and enhancing the cycling capacity retention from 39 % to 78 % after 300 cycles for the 4.8 V-class LRLO. This key electrolyte strategy with comprehensive analysis, provides new insights into addressing nucleophilic challenge for high-energy anionic redox related cathode systems.

9.
Angew Chem Int Ed Engl ; 63(5): e202316112, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38088222

RESUMO

Compensating the irreversible loss of limited active lithium (Li) is essentially important for improving the energy-density and cycle-life of practical Li-ion battery full-cell, especially after employing high-capacity but low initial coulombic efficiency anode candidates. Introducing prelithiation agent can provide additional Li source for such compensation. Herein, we precisely implant trace Co (extracted from transition metal oxide) into the Li site of Li2 O, obtaining (Li0.66 Co0.11 □0.23 )2 O (CLO) cathode prelithiation agent. The synergistic formation of Li vacancies and Co-derived catalysis efficiently enhance the inherent conductivity and weaken the Li-O interaction of Li2 O, which facilitates its anionic oxidation to peroxo/superoxo species and gaseous O2 , achieving 1642.7 mAh/g~Li2O prelithiation capacity (≈980 mAh/g for prelithiation agent). Coupled 6.5 wt % CLO-based prelithiation agent with LiCoO2 cathode, substantial additional Li source stored within CLO is efficiently released to compensate the Li consumption on the SiO/C anode, achieving 270 Wh/kg pouch-type full-cell with 92 % capacity retention after 1000 cycles.

10.
Mol Microbiol ; 118(6): 716-730, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36308522

RESUMO

The peptidoglycan (PG) layer of bacterial cells is essential for maintaining the cell shape and survival of cells; therefore, the synthesis of PG needs to be spatiotemporally controlled. While it is well established that PG synthesis is mediated posttranslationally through interactions between PG synthases and their cognate partners, much less is known about the transcriptional regulation of genes encoding these synthases. Based on a previous finding that the Gram-negative bacterium Shewanella oneidensis lacking the prominent PG synthase exhibits impaired cell wall integrity, we performed genetic selections to isolate the suppressors. We discovered that disrupting the sspA gene encoding stringent starvation protein A (SspA) is sufficient to suppress compromised PG. SspA serves as a transcriptional repressor that regulates the expression of the two types of PG synthases, class A penicillin-binding proteins and SEDS/bPBP protein complexes. SspA is an RNA polymerase-associated protein, and its regulation involves interactions with the σ70 -RNAP complex and an antagonistic effect of H-NS, a global nucleoid-associated protein. We also present evidence that the regulation of PG synthases by SspA is conserved in Escherichia coli, adding a new dimension to the current understanding of PG synthesis and its regulation.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Proteína Estafilocócica A/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Parede Celular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
11.
Small ; 19(50): e2303929, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37621028

RESUMO

Both LiFePO4 (LFP) and NaFePO4 (NFP) are phosphate polyanion-type cathode materials, which have received much attention due to their low cost and high theoretical capacity. Substitution of manganese (Mn) elements for LFP/NFP materials can improve the electrochemical properties, but the connection between local structural changes and electrochemical behaviors after Mn substitution is still not clear. This study not only achieves improvements in energy density of LFP and cyclic stability of NFP through Mn substitution, but also provides an in-depth analysis of the structural evolutions induced by the substitution. Among them, the substitution of Mn enables LiFe0.5 Mn0.5 PO4 to achieve a high energy density of 535.3 Wh kg-1 , while NaFe0.7 Mn0.3 PO4 exhibits outstanding cyclability with 89.6% capacity retention after 250 cycles. Specifically, Mn substitution broadens the ion-transport channels, improving the ion diffusion coefficient. Moreover, LiFe0.5 Mn0.5 PO4 maintains a more stable single-phase transition during the charge/discharge process. The transition of NaFe0.7 Mn0.3 PO4 to the amorphous phase is avoided, which can maintain structural stability and achieve better electrochemical performance. With systematic analysis, this research provides valuable guidance for the subsequent design of high-performance polyanion-type cathodes.

12.
Appl Environ Microbiol ; 89(5): e0043323, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098893

RESUMO

Bacteria employ multiple transcriptional regulators to orchestrate cellular responses to adapt to constantly varying environments. The bacterial biodegradation of polycyclic aromatic hydrocarbons (PAHs) has been extensively described, and yet, the PAH-related transcriptional regulators remain elusive. In this report, we identified an FadR-type transcriptional regulator that controls phenanthrene biodegradation in Croceicoccus naphthovorans strain PQ-2. The expression of fadR in C. naphthovorans PQ-2 was induced by phenanthrene, and its deletion significantly impaired both the biodegradation of phenanthrene and the synthesis of acyl-homoserine lactones (AHLs). In the fadR deletion strain, the biodegradation of phenanthrene could be recovered by supplying either AHLs or fatty acids. Notably, FadR simultaneously activated the fatty acid biosynthesis pathway and repressed the fatty acid degradation pathway. As intracellular AHLs are synthesized with fatty acids as substrates, boosting the fatty acid supply could enhance AHL synthesis. Collectively, these findings demonstrate that FadR in C. naphthovorans PQ-2 positively regulates PAH biodegradation by controlling the formation of AHLs, which is mediated by the metabolism of fatty acids. IMPORTANCE Master transcriptional regulation of carbon catabolites is extremely important for the survival of bacteria that face changes in carbon sources. Polycyclic aromatic hydrocarbons (PAHs) can be utilized as carbon sources by some bacteria. FadR is a well-known transcriptional regulator involved in fatty acid metabolism; however, the connection between FadR regulation and PAH utilization in bacteria remains unknown. This study revealed that a FadR-type regulator in Croceicoccus naphthovorans PQ-2 stimulated PAH biodegradation by controlling the biosynthesis of the acyl-homoserine lactone quorum-sensing signals that belong to fatty acid-derived compounds. These results provide a unique perspective for understanding bacterial adaptation to PAH-containing environments.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Percepção de Quorum , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Ácidos Graxos
13.
J Med Virol ; 95(2): e28510, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36661054

RESUMO

Estrogen receptor alpha (ESR1) has been implicated in the pathological process of Hepatitis B virus (HBV) infection and is probably an important determinant for gender differences. In this study, a total of 975 subjects including 368 healthy controls, 323 hepatocellular carcinoma (HCC) patients with HBsAg positive, and 284 HBV-infected subjects without HCC were included. Three single nucleotide polymorphisms of ESR1 (rs2234693, rs2077647, rs2228480) were detected to investigate the correlation between ESR1 polymorphisms and the susceptibility to HBV persistence and the clinical outcomes. The association of ESR1 polymorphisms with HCC prognosis was investigated in our cohort enrolling 376 HBV-HCC patients. The frequency of rs2234693 C allele was lower in chronic Hepatitis B (CHB) and liver cirrhosis (LC) than that in HCC patients in the males (adjusted odds ratio [AOR] = 0.63, 95% confidence interval [CI] = 0.41-0.96). rs2228480 A allele was associated with increased risk of LC (AOR = 2.20, 95% CI = 1.06-4.56) in HBV genotype C, and significantly decreased the risk of HCC recurrence (p = 0.010) and ESR1 mRNA level in tumor tissues (p = 0.032). Haplotype C-G-G was associated with significantly increased risk of HBV persistence (OR = 1.37, 95% CI = 1.08-1.73), while it was opposite for C-A-G and T-G-G (OR = 0.41, 95% CI = 0.27-0.62; OR = 0.53, 95% CI = 0.32-0.85, respectively). These results imply that combinations of these ESR1 polymorphisms may be valuable for the prediction of HBV persistence.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Humanos , Masculino , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Hepatite B/complicações , Vírus da Hepatite B/genética , Cirrose Hepática , Polimorfismo de Nucleotídeo Único
14.
Int J Cancer ; 150(11): 1825-1837, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020946

RESUMO

APOBEC3-related somatic mutations are predominant in biliary tract cancers (BTCs). We aimed to elucidate the roles of APOBEC3A/3B functional polymorphisms and their influencing factors on the development of cholangiocarcinoma (CCA) and gallbladder cancer (GBC). Polymorphisms at the promoter regions of APOBEC3A and APOBEC3B were genotyped in 3231 participants using quantitative PCR. Dual-luciferase reporter assay was applied to investigate the promoter activity. The difference in gene accessibility between CCA cells and GBC cells was analyzed through single-cell transposase accessible chromatin sequencing. The effect of APOBEC3A on apoptosis was examined by cytometry. It is found that rs2267401-G at the APOBEC3B promoter decreases CCA risk (age-, gender-adjusted odds ratio [AOR], 0.69; 95% confidence interval [CI], 0.51-0.94) but increases GBC risk (AOR, 2.04; 95% CI, 1.35-3.10). rs2267401-G confers a decreased APOBEC3B promoter activity in CCA cells but an increased activity in GBC cells, possibly because the transcriptional repressor TFAP2A is over-expressed in CCA. Tumor necrosis factor-α (TNF-α) increases the level of APOBEC3B via inhibiting TFAP2A expression rather than directly increasing the accessibility of APOBEC3B promoter. APOBEC3A promoter rs12157810-C decreased the risks of CCA and GBC, with an AOR (95% CI) of 0.80 (0.66-0.97) and 0.75 (0.59-0.95), respectively. rs12157810-C upregulated the promoter activity in both CCA and GBC cells. TNF-α upregulated the activity of the APOBEC3A promoter with rs12157810-C via increasing the accessibility of Ets-1 p68. APOBEC3A overexpression attenuates cancer evolution by causing apoptosis, in contrast to APOBEC3B. The heterogeneity in the transcriptional regulation of APOBEC3B affects the evolutionary potential of cancer cells in the inflammatory microenvironment.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias da Vesícula Biliar , Apoptose/genética , Ductos Biliares Intra-Hepáticos , Citidina Desaminase/genética , Neoplasias da Vesícula Biliar/genética , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas , Microambiente Tumoral
15.
Biochem Biophys Res Commun ; 590: 177-183, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34990892

RESUMO

Gram-negative bacteria usually use acyl-homoserine lactones (AHLs)-mediated LuxI/LuxR-type quorum sensing (QS) systems for cell-cell cooperation and/or bacteria-environment communication. LuxI and LuxR are AHLs synthase and receptor, respectively. These two parts could form a positive regulatory feedback loop, controlling various types of group behaviors. However, the autoregulation mechanisms between them are fragmented and could be highly differentiated in different bacteria. Here, we clarified the autoregulation mechanism between LuxI and LuxR in Pseudoalteromonas sp. R3. YasI (LuxI in strain R3) synthesizes two types of AHLs, C8-HSL and 3-OH-C8-HSL. It is worth noting that YasR (LuxR in strain R3) only responds to C8-HSL rather than 3-OH-C8-HSL. YasR-C8HSL can activate the yasI transcription by recognizing "lux box" at yasI upstream. Interestingly, YasR can directly promote the yasR expression with AHL-independent manner, but AHL absence caused by the yasI-deficiency led to the significant decrease in the yasR expression. Further study demonstrated that the yasI-deficiency can result in the decrease in the yasR mRNA stability. Notably, both yasI-deficiency and yasR-deficiency led to the significant decrease in the expression of hfq encoding RNA chaperone. Therefore, it was speculated that not only YasR itself can directly regulate the yasR transcription, but YasR-C8HSL complex indirectly affects the yasR mRNA stability by regulating Hfq.


Assuntos
Proteínas de Bactérias/metabolismo , Homeostase , Pseudoalteromonas/fisiologia , Percepção de Quorum , Acil-Butirolactonas/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Pseudoalteromonas/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
16.
BMC Plant Biol ; 22(1): 612, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36572865

RESUMO

BACKGROUND: Phytochromes are important photoreceptors in plants, and play essential roles in photomorphogenesis. The functions of PhyA and PhyB in plants have been fully analyzed, while those of PhyC in plant are not well understood. RESULTS: A rice mutant, late heading date 3 (lhd3), was characterized, and the gene LHD3 was identified with a map-based cloning strategy. LHD3 encodes phytochrome C in rice. Animo acid substitution in OsphyC disrupted its interaction with OsphyB or itself, restraining functional forms of homodimer or heterodimer formation. Compared with wild-type plants, the lhd3 mutant exhibited delayed flowering under both LD (long-day) and SD (short-day) conditions, and delayed flowering time was positively associated with the day length via the Ehd1 pathway. In addition, lhd3 showed a pale-green-leaf phenotype and a slower chlorophyll synthesis rate during the greening process. The transcription patterns of many key genes involved in photoperiod-mediated flowering and chlorophyll synthesis were altered in lhd3. CONCLUSION: The dimerization of OsPhyC is important for its functions in the regulation of chlorophyll synthesis and heading. Our findings will facilitate efforts to further elucidate the function and mechanism of OsphyC and during light signal transduction in rice.


Assuntos
Oryza , Fitocromo , Oryza/metabolismo , Flores/metabolismo , Mutação , Fitocromo/genética , Fotoperíodo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Mol Carcinog ; 61(10): 933-940, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880842

RESUMO

Signal transducer and activator of transcription 4 (STAT4) is closely related to liver diseases and affects the processes of inflammation and carcinogenesis by regulating immune responses. A single-nucleotide polymorphism rs7574865 (T > G) in STAT4 has been reported to be associated with the risk of hepatocellular carcinoma (HCC). In addition, hepatitis B virus (HBV) mutations are crucial risk factors for HBV-induced HCC. However, the effects of the interactions of STAT4 rs7574865 with HBV mutations on the risk of HCC remain unknown. Rs7574865 was genotyped in 846 healthy controls (HCs), 968 chronic hepatitis B (CHB) subjects, 316 liver cirrhosis (LC) subjects and 1021 HCC subjects using Sequenom MassArray. HBV mutations were detected via direct sequencing. Multivariate logistic regression analysis was used to evaluate the effects of the interactions of STAT4 rs7574865 with HBV mutations on the risk of HCC. We found that the rs7574865 TT genotype was significantly associated with HBeAg seroconversion (TT vs. GG, p = 0.012; TT vs. GT, p = 0.033). The rs7574865 GG genotype was significantly associated with increased risks of CHB (p = 0.048), LC (p = 0.005) and HCC (p < 0.001). The interaction term between rs7574865 and HBV C1913A significantly increased the risk of progression from CHB to HCC (p = 0.038), while the interaction term between rs7574865 and HBV T1674C significantly increased the risk of progression from LC to HCC (p = 0.023). STAT4 rs7574865 is significantly associated with the risks of CHB, LC and HCC. The interactions of rs7574865 with HBV C1913A and T1674C mutations significantly increase the risk of HCC, which have the potential to identify HBV-infected individuals who tend to progress from CHB or LC to HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Fator de Transcrição STAT4 , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Vírus da Hepatite B , Hepatite B Crônica/complicações , Hepatite B Crônica/genética , Humanos , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Mutação , Polimorfismo de Nucleotídeo Único , Fator de Transcrição STAT4/genética
18.
J Transl Med ; 20(1): 563, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474268

RESUMO

BACKGROUND: Little is known on the tumor microenvironment (TME) response after neoadjuvant chemotherapy (NACT) in gastric cancer on the molecular level. METHODS: Here, we profiled 33,589 cell transcriptomes in 14 samples from 11 gastric cancer patients (4 pre-treatment samples, 4 post-treatment samples and 3 pre-post pairs) using single-cell RNA sequencing (scRNA-seq) to generate the cell atlas. The ligand-receptor-based intercellular communication networks of the single cells were also characterized before and after NACT. RESULTS: Compered to pre-treatment samples, CD4+ T cells (P = 0.018) and CD8+ T cells (P = 0.010) of post-treatment samples were significantly decreased, while endothelial cells and fibroblasts were increased (P = 0.034 and P = 0.005, respectively). No significant difference observed with respect to CD4+ Tregs cells, cycling T cells, B cells, plasma cells, macrophages, monocytes, dendritic cells, and mast cells (P > 0.05). In the unsupervised nonnegative matrix factorization (NMF) analysis, we revealed that there were three transcriptional programs (NMF1, NMF2 and NMF3) shared among these samples. Compared to pre-treatment samples, signature score of NMF1 was significantly downregulated after treatment (P = 0.009), while the NMF2 signature was significantly upregulated after treatment (P = 0.013). The downregulated NMF1 and upregulated NMF2 signatures were both associated with improved overall survival outcomes based on The Cancer Genome Atlas (TCGA) database. Additionally, proangiogenic pathways were activated in tumor and endothelial cells after treatment, indicating that NACT triggers vascular remodeling by cancer cells together with stromal cells. CONCLUSIONS: In conclusion, our study provided transcriptional profiles of TME between pre-treatment and post-treatment for in-depth understanding on the mechanisms of NACT in gastric cancer and empowering the development of potential optimized therapy procedures and novel drugs.


Assuntos
Neoplasias Gástricas , Microambiente Tumoral , Humanos , Terapia Neoadjuvante , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Células Endoteliais
19.
Appl Environ Microbiol ; 88(18): e0084622, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36040151

RESUMO

There is an urgent need to develop novel antibiotics since antibiotic resistance is an increasingly serious threat to global public health. Whole-cell biosensors are one of the promising strategies for new antibiotic discovery. The peptidoglycan (PG) of the bacterial cell wall is one of the most important targets for antibiotics. However, the biosensors for the detection of PG-targeting antibiotics in Gram-negative bacteria have not been developed, mainly because of the lack of the regulatory systems that sense and respond to PG stress. Recently, we identified a novel two-component signal transduction system (PghKR) that is responsible for sensing and responding to PG damage in the Gram-negative bacterium Shewanella oneidensis. Based on this system, we developed biosensors for the detection of PG-targeting antibiotics. Using ampicillin as an inducer for PG stress and the bacterial luciferase LuxCDABE as the reporter, we found that the PghKR biosensors are specific to antibiotics targeting PG synthesis, including ß-lactams, vancomycin, and d-cycloserine. Deletion of genes encoding PG permease AmpG and ß-lactamase BlaA improves the sensitivity of the biosensors substantially. The PghKR biosensor in the background of ΔblaA is also functional on agar plates, providing a simple method for screening bacteria that produce PG-targeting antibiotics. IMPORTANCE The growing problem of antibiotic resistance in Gram-negative bacteria urgently needs new strategies so that researchers can develop novel antibiotics. Microbial whole-cell biosensors are capable of sensing various stimuli with a quantifiable output and show tremendous potential for the discovery of novel antibiotics. As the Achilles' heel of bacteria, the synthesis of the peptidoglycan (PG) is targeted by many antibiotics. However, the regulatory systems that sense and respond to PG-targeting stress in Gram-negative bacteria are reported rarely, restricting the development of biosensors for the detection of PG-targeting antibiotics. In this study, we developed a highly sensitive and specific biosensor based on a novel two-component system in the Gram-negative bacterium Shewanella oneidensis that is responsible for the sensing and responding to PG stress. Our biosensors have great potential for discovering novel antibiotics and determining the mode of action of antibiotics.


Assuntos
Técnicas Biossensoriais , Shewanella , Ágar , Ampicilina , Antibacterianos/farmacologia , Parede Celular/metabolismo , Ciclosserina , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Luciferases Bacterianas , Proteínas de Membrana Transportadoras , Peptidoglicano/metabolismo , Shewanella/genética , Shewanella/metabolismo , Vancomicina , beta-Lactamases/genética , beta-Lactamas/farmacologia
20.
Appl Environ Microbiol ; 88(22): e0116422, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36326244

RESUMO

Organisms need sufficient intracellular iron to maintain biological processes. However, cells can be damaged by excessive iron-induced oxidation stress. Therefore, iron homeostasis must be strictly regulated. In general, bacteria have evolved complex mechanisms to maintain iron homeostasis. In this study, we showed that Pseudoalteromonas sp. R3 has four sets of iron uptake systems. Among these, the siderophore pyoverdine-dependent iron uptake system and the ferrous iron transporter Feo system are more important for iron uptake and prodiginine biosynthesis. Stringent starvation protein SspA positively controls iron uptake and iron-dependent prodiginine biosynthesis by regulating the expression of all iron uptake systems. In turn, the expression of SspA can be induced and repressed by extracellular iron deficiency and excess, respectively. Interestingly, extracytoplasmic function sigma factor PvdS also regulates iron uptake and prodiginine production and responds to extracellular iron levels, exhibiting a similar phenomenon as SspA. Notably, not only do SspA and PvdS function independently, but they can also compensate for each other, and their expression can be affected by the other. All of these findings demonstrate that SspA and PvdS coordinate iron homeostasis and prodiginine biosynthesis in strain R3. More importantly, our results also showed that SspA and PvdS homologs in Pseudomonas aeruginosa PAO1 have similar functions in iron uptake to their counterparts in Pseudoalteromonas, suggesting that coordination between SspA and PvdS on iron homeostasis could be conserved in typical Gram-negative bacteria. Since master regulation of iron homeostasis is extremely important for cell survival, this cross talk between SspA and PvdS may be environmentally significant. IMPORTANCE Both deficiency and excess of intracellular iron can be harmful, and thus, the iron homeostasis needs to be tightly regulated in organisms. At present, the ferric uptake regulator (Fur) is the best-characterized regulator involved in bacterial iron homeostasis, while other regulators of iron homeostasis remain to be further explored. Here, we demonstrated that the stringent starvation protein SspA and the extracytoplasmic function sigma factor PvdS coordinate iron uptake and iron-dependent prodiginine biosynthesis in Pseudoalteromonas sp. R3. These two regulators work independently, but their functions can compensate for the other and their expression can be affected by the other. Moreover, their expression can be activated and repressed by extracellular iron deficiency and excess, respectively. Notably, SspA and PvdS homologs in Pseudomonas aeruginosa PAO1 exhibit similar functions in iron uptake to their counterparts in Pseudoalteromonas, suggesting that this novel fine-tuned mode of iron homeostasis could be conserved in typical Gram-negative bacteria.


Assuntos
Pseudoalteromonas , Fator sigma , Fator sigma/genética , Fator sigma/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Ferro/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa