Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 174, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609922

RESUMO

Photothermal therapy is favored by cancer researchers due to its advantages such as controllable initiation, direct killing and immune promotion. However, the low enrichment efficiency of photosensitizer in tumor site and the limited effect of single use limits the further development of photothermal therapy. Herein, a photo-responsive multifunctional nanosystem was designed for cancer therapy, in which myeloid-derived suppressor cell (MDSC) membrane vesicle encapsulated decitabine-loaded black phosphorous (BP) nanosheets (BP@ Decitabine @MDSCs, named BDM). The BDM demonstrated excellent biosafety and biochemical characteristics, providing a suitable microenvironment for cancer cell killing. First, the BDM achieves the ability to be highly enriched at tumor sites by inheriting the ability of MDSCs to actively target tumor microenvironment. And then, BP nanosheets achieves hyperthermia and induces mitochondrial damage by its photothermal and photodynamic properties, which enhancing anti-tumor immunity mediated by immunogenic cell death (ICD). Meanwhile, intra-tumoral release of decitabine induced G2/M cell cycle arrest, further promoting tumor cell apoptosis. In vivo, the BMD showed significant inhibition of tumor growth with down-regulation of PCNA expression and increased expression of high mobility group B1 (HMGB1), calreticulin (CRT) and caspase 3. Flow cytometry revealed significantly decreased infiltration of MDSCs and M2-macrophages along with an increased proportion of CD4+, CD8+ T cells as well as CD103+ DCs, suggesting a potentiated anti-tumor immune response. In summary, BDM realizes photothermal therapy/photodynamic therapy synergized chemotherapy for cancer.


Assuntos
Células Supressoras Mieloides , Neoplasias , Fotoquimioterapia , Biomimética , Linfócitos T CD8-Positivos , Decitabina/farmacologia , Terapia Fototérmica , Neoplasias/tratamento farmacológico
2.
Nat Chem Biol ; 17(12): 1314-1323, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34608293

RESUMO

Spindle position control is essential for cell fate determination and organogenesis. Early studies indicate the essential role of the evolutionarily conserved Gαi/LGN/NuMA network in spindle positioning. However, the regulatory mechanisms that couple astral microtubules dynamics to the spindle orientation remain elusive. Here we delineated a new mitosis-specific crotonylation-regulated astral microtubule-EB1-NuMA interaction in mitosis. EB1 is a substrate of TIP60, and TIP60-dependent crotonylation of EB1 tunes accurate spindle positioning in mitosis. Mechanistically, TIP60 crotonylation of EB1 at Lys66 forms a dynamic link between accurate attachment of astral microtubules to the lateral cell cortex defined by NuMA-LGN and fine tune of spindle positioning. Real-time imaging of chromosome movements in HeLa cells expressing genetically encoded crotonylated EB1 revealed the importance of crotonylation dynamics for accurate control of spindle orientation during metaphase-anaphase transition. These findings delineate a general signaling cascade that integrates protein crotonylation with accurate spindle positioning for chromosome stability in mitosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Lisina Acetiltransferase 5/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Sequência de Aminoácidos , Cromossomos/ultraestrutura , Escherichia coli/genética , Células HeLa , Humanos , Cinética , Mitose , Ligação Proteica , Conformação Proteica
3.
Cell Mol Biol Lett ; 28(1): 47, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259060

RESUMO

BACKGROUND: Resistance to immune checkpoint inhibitor (ICI) therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB is a promising drug target as a costimulatory molecule of immune cells, no 4-1BB agonist has been given clinical approval because of severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy. METHODS: HK010 was generated by antibody engineering, and the Fab/antigen complex structure was analyzed using crystallography. The affinity and activity of HK010 were detected by multiple in vitro bioassays, including enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), flow cytometry, and luciferase-reporter assays. Humanized mice bearing human PD-L1-expressing MC38 (MC38/hPDL1) or CT26 (CT26/hPDL1) tumor transplants were established to assess the in vivo antitumor activity of HK010. The pharmacokinetics (PK) and toxicity of HK010 were evaluated in cynomolgus monkeys. RESULTS: HK010 was generated as an Fc-muted immunoglobulin (Ig)G4 PD-L1x4-1BB bispecific antibody (BsAb) with a distinguished Fab/antigen complex structure, and maintained a high affinity for human PD-L1 (KD: 2.27 nM) and low affinity for human 4-1BB (KD: 493 nM) to achieve potent PD-1/PD-L1 blockade and appropriate 4-1BB agonism. HK010 exhibited synergistic antitumor activity by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously, and being strictly dependent on the PD-L1 receptor in vitro and in vivo. In particular, when the dose was decreased to 0.3 mg/kg, HK010 still showed a strong antitumor effect in a humanized mouse model bearing MC38/hPDL1 tumors. Strikingly, HK010 treatment enhanced antitumor immunity and induced durable antigen-specific immune memory to prevent rechallenged tumor growth by recruiting CD8+ T cells and other lymphocytes into tumor tissue and activating tumor-infiltrating lymphocytes. Moreover, HK010 not only did not induce nonspecific production of proinflammatory cytokines but was also observed to be well tolerated in cynomolgus monkeys in 5 week repeated-dose (5, 15, or 50 mg/kg) and single-dose (75 or 150 mg/kg) toxicity studies. CONCLUSION: We generated an Fc-muted anti-PD-L1x4-1BB BsAb, HK010, with a distinguished structural interaction with PD-L1 and 4-1BB that exhibits a synergistic antitumor effect by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously. It is strictly dependent on the PD-L1 receptor with no systemic toxicity, which may offer a new option for cancer immunotherapy.


Assuntos
Anticorpos Biespecíficos , Neoplasias Colorretais , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Imunoterapia , Macaca fascicularis , Anticorpos Biespecíficos/farmacologia
4.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686337

RESUMO

CHD7, an encoding ATP-dependent chromodomain helicase DNA-binding protein 7, has been identified as the causative gene involved in CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia choanae, Retardation of growth and/or development, Genital abnormalities and Ear abnormalities). Although studies in rodent models have expanded our understanding of CHD7, its role in oligodendrocyte (OL) differentiation and myelination in zebrafish is still unclear. In this study, we generated a chd7-knockout strain with CRISPR/Cas9 in zebrafish. We observed that knockout (KO) of chd7 intensely impeded the oligodendrocyte progenitor cells' (OPCs) migration and myelin formation due to massive expression of chd7 in oilg2+ cells, which might provoke upregulation of the MAPK signal pathway. Thus, our study demonstrates that chd7 is critical to oligodendrocyte migration and myelination during early development in zebrafish and describes a mechanism potentially associated with CHARGE syndrome.


Assuntos
Síndrome CHARGE , Células Precursoras de Oligodendrócitos , Animais , Diferenciação Celular/genética , Síndrome CHARGE/genética , DNA Helicases/genética , Oligodendroglia , Peixe-Zebra/genética
5.
J Transl Med ; 20(1): 415, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076251

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignancies and the patient survival rate remains unacceptably low. The anti-programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) antibody-based immune checkpoint inhibitors have been added to CRC treatment regimens, however, only a fraction of patients benefits. As an important co-stimulatory molecule, 4-1BB/CD137 is mainly expressed on the surface of immune cells including T and natural killer (NK) cells. Several agonistic molecules targeting 4-1BB have been clinically unsuccessful due to systemic toxicity or weak antitumor effects. We generated a humanized anti-4-1BB IgG4 antibody, HuB6, directed against a unique epitope and hypothesized that it would promote antitumor immunity with high safety. METHODS: The antigen binding specificity, affinity and activity of HuB6 were determined by enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), biolayer interferometry (BLI) and flow cytometry. The antitumor effects were evaluated in humanized mice bearing syngeneic tumors, and possible toxicity was evaluated in humanized mice and cynomolgus monkeys. RESULTS: HuB6 showed high specificity and affinity for a binding epitope distinct from those of other known 4-1BB agonists, including utomilumab and urelumab, and induced CD8 + T, CD4 + T and NK cell stimulation dependent on Fcγ receptor (FcγR) crosslinking. HuB6 inhibited CRC tumor growth in a dose-dependent manner, and the antitumor effect was similar with urelumab and utomilumab in humanized mouse models of syngeneic CRC. Furthermore, HuB6 combined with an anti-PD-L1 antibody significantly inhibited CRC growth in vivo. Additionally, HuB6 induced antitumor immune memory in tumor model mice rechallenged with 4 × 106 tumor cells. Toxicology data for humanized 4-1BB mice and cynomolgus monkeys showed that HuB6 could be tolerated up to a 180 mg/kg dose without systemic toxicity. CONCLUSIONS: This study demonstrated that HuB6 should be a suitable candidate for further clinical development and a potential agent for CRC immunotherapy.


Assuntos
Neoplasias Colorretais , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Neoplasias Colorretais/tratamento farmacológico , Epitopos , Imunoterapia , Macaca fascicularis , Camundongos , Receptores de IgG
6.
J Sep Sci ; 45(23): 4280-4291, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36168848

RESUMO

Fructus Psoralea is widely used to treat osteoporosis and skin inflammatory diseases. Because of the side effects on the liver, renal and cardiovascular systems, it is processed to salt-processed Fructus Psoraleae to meet the requirements of clinical use. However, the mechanisms involved in the transformation of the chemical components are unclear. In this study, ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry was used to analyze the chemical profiles of this herbal medicine and the chemical transformation mechanism involved during the salt processing was studied. A total of 83 compounds were identified. Principal component analysis and orthogonal partial least squares discriminate analysis were used to observe the distribution trend of all samples and visualize the difference. Raw and processed Fructus Psoraleae were clearly clustered into two groups. Furthermore, 17 marker compounds were identified as primary contributors to their differences based on t-test analysis (p < 0.01) and orthogonal partial least squares discriminate analysis (variable importance for the projection > 1). Finally, ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry was used to evaluate the quality of Fructus Psoraleae by simultaneous analysis of 13 components highly related to efficacy. There were variations in the contents of 13 chemicals of Fructus Psoraleae and salt-processed products. The results of untargeted and targeted metabolomics revealed that salt processing affected the chemical composition of Fructus Psoraleae.


Assuntos
Metabolômica
7.
Molecules ; 27(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014586

RESUMO

Two new guaiane sesquiterpenes, aquisinenoids A and B (1 and 2), two new eudesmane-type sesquiterpenoids, aquisinenoids C and D (3 and 4), one new cucurbitacin, aquisinenoid E (5), and five known cucurbitacins (6-10) were isolated from agarwood of Aquilaria sinensis. The structures of these new compounds, including their absolute configurations, were characterized by spectroscopic and computational methods. The biological evaluation showed that compounds 3 and 9 had an anti-cancer effect on most of the cancer cells at 5 µM, especially in human breast cancer cells. Interestingly, the new compound 3 exhibited more sensitivity on cancer cells than normal cells, highlighting its potential as a novel anti-cancer agent. Mechanically, compound 3 treatment increased the ROS generation and triggered apoptosis of human breast cancer cells.


Assuntos
Neoplasias da Mama , Sesquiterpenos , Thymelaeaceae , Triterpenos , Neoplasias da Mama/tratamento farmacológico , Cucurbitacinas , Feminino , Humanos , Estrutura Molecular , Sesquiterpenos/química , Sesquiterpenos de Guaiano , Thymelaeaceae/química , Triterpenos/análise , Triterpenos/farmacologia , Madeira/química
8.
Hum Genet ; 140(5): 791-803, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33392778

RESUMO

PIGK gene, encoding a key component of glycosylphosphatidylinositol (GPI) transamidase, was recently reported to be associated with inherited GPI deficiency disorders (IGDs). However, little is known about the specific downstream effects of PIGK on neurodevelopment due to the rarity of the disease and the lack of in vivo study. Here, we described 2 patients in a Chinese family presented with profound global developmental delay, severe hypotonia, seizures, and postnatal progressive global brain atrophy including hemisphere, cerebellar and corpus callosum atrophy. Two novel compound heterozygous variants in PIGK were identified via genetic analysis, which was proved to cause significant decrease of PIGK protein and reduced cell surface presence of GPI-APs in the patients. To explore the role of Pigk on embryonic and neuronal development, we constructed Pigk knock-down zebrafish and knock-in mouse models. Zebrafish injected with a small dose of morpholino oligonucleotides displayed severe developmental defects including small eyes, deformed head, curly spinal cord, and unconsumed yolk sac. Primary motor neuronal dysplasia and extensive neural cell apoptosis were further observed. Meanwhile, the mouse models, carrying the two variants respectively homologous with the patients, both resulted in complete embryonic lethality of the homozygotes, which suggested the intolerable effect caused by amino acid substitution of Asp204 as well as the truncated mutation. Our findings provide the in vivo evidence for the essential role of PIGK during the embryonic and neuronal development. Based on these data, we propose a basis for further study of pathological and molecular mechanisms of PIGK-related neurodevelopmental defects.


Assuntos
Encefalopatias/genética , Moléculas de Adesão Celular/genética , Glicosilfosfatidilinositóis/deficiência , Malformações do Sistema Nervoso/genética , Neurogênese/genética , Convulsões/genética , Anormalidades Múltiplas/genética , Animais , Apoptose/genética , Linhagem Celular , Pré-Escolar , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Técnicas de Introdução de Genes , Glicosilfosfatidilinositóis/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peixe-Zebra
9.
Am J Hum Genet ; 103(3): 448-455, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122539

RESUMO

Neurodevelopment is a transcriptionally orchestrated process. Cyclin K, a regulator of transcription encoded by CCNK, is thought to play a critical role in the RNA polymerase II-mediated activities. However, dysfunction of CCNK has not been linked to genetic disorders. In this study, we identified three unrelated individuals harboring de novo heterozygous copy number loss of CCNK in an overlapping 14q32.3 region and one individual harboring a de novo nonsynonymous variant c.331A>G (p.Lys111Glu) in CCNK. These four individuals, though from different ethnic backgrounds, shared a common phenotype of developmental delay and intellectual disability (DD/ID), language defects, and distinctive facial dysmorphism including high hairline, hypertelorism, thin eyebrows, dysmorphic ears, broad nasal bridge and tip, and narrow jaw. Functional assay in zebrafish larvae showed that Ccnk knockdown resulted in defective brain development, small eyes, and curly spinal cord. These defects were partially rescued by wild-type mRNA coding CCNK but not the mRNA with the identified likely pathogenic variant c.331A>G, supporting a causal role of CCNK variants in neurodevelopmental disorders. Taken together, we reported a syndromic neurodevelopmental disorder with DD/ID and facial characteristics caused by CCNK variations, possibly through a mechanism of haploinsufficiency.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Ciclinas/genética , Deficiências do Desenvolvimento/genética , Atrofia Muscular/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Haploinsuficiência/genética , Heterozigoto , Humanos , Hipertelorismo/genética , Deficiência Intelectual/genética , Masculino , Anormalidades Musculoesqueléticas/genética , Malformações do Sistema Nervoso/genética , Fenótipo , Síndrome , Peixe-Zebra
10.
Biomed Chromatogr ; 35(12): e5199, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34144633

RESUMO

Rhein is an active component from Chinese herbal medicine. It can cause diarrhea by inhibiting Na+ , K+ -ATPase activity on intestinal epithelial cells, thus decreasing the re-absorption of Na+ from intestinal tract to blood. However, when this Na+ , K+ -ATPase inhibition was quantitated by a colorimetric method that measures ATPase-catalyzed release of inorganic phosphorus, the data obtained were inconsistent and showed great variation. We developed a novel method using inductively coupled plasma mass spectrometry (ICP-MS) to quantitate the amount of intracellular Rb+ . This method largely mimics the 86 RbCl tracer flux assay, but it uses non-radioactive RbCl as a flux substrate. The results demonstrated that this method has better precision and accuracy than the conventional colorimetric method. More importantly, this method is free from radioactive substances, which is expected to make it safer and more convenient than the radioactive 86 RbCl tracer flux method. In conclusion, the ICP-MS method for Na+ , K+ -ATPase activity determination is novel and accurate. It can also provide a reference for studying the transport of other metal ions across membranes under biological conditions.


Assuntos
Antraquinonas/farmacologia , Espectrometria de Massas/métodos , ATPase Trocadora de Sódio-Potássio , Cloretos , Colorimetria , Células HCT116 , Humanos , Limite de Detecção , Reprodutibilidade dos Testes , Rubídio , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo
11.
Sheng Li Xue Bao ; 73(6): 893-900, 2021 Dec 25.
Artigo em Zh | MEDLINE | ID: mdl-34961863

RESUMO

The purpose of the present study was to investigate the effect and potential mechanism of knockdown of sphingosine kinase-1 (SPHK1) on the proliferation, cell cycle and apoptosis of non-small cell lung cancer (NSCLC) cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect SPHK1 mRNA expression in human healthy lung fibroblasts (MRC-5 cells) and four NSCLC cell lines. Then, A549 and H1299 cells were transfected with SPHK1-shRNA and corresponding negative control. CCK-8, Annexin V-FITC/PI dual staining and cell cycle assay were performed to evaluate cell proliferation, apoptosis and cell cycle distribution, respectively. JC-1 mitochondrial membrane potential measurement kit was adopted to measure mitochondrial membrane potential. Western blot was used to detect the protein expression levels of cell cycle and mitochondrial apoptotic pathway-related proteins, as well as MEK/ERK signaling pathway. The results showed that the mRNA expression of SPHK1 in NSCLC cells was higher than that in MRC-5 cells. SPHK1-shRNA significantly inhibited the proliferation of A549 and H1299 cells, blocked the cell cycle in G0/G1 phase, and promoted cell apoptosis through the mitochondrial pathway. Compared with the control group, the expression of p-MEK and p-ERK proteins in the SPHK1-shRNA group was significantly down-regulated. Moreover, MEK/ERK inhibitor could dramatically suppress cell proliferation and promote cell apoptosis. These results suggest that SPHK1 knockdown can inhibit the proliferation of NSCLC cells and might promote mitochondrial apoptotic pathway by inhibiting MEK/ERK signaling pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética
12.
Hum Brain Mapp ; 41(9): 2406-2430, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32128935

RESUMO

Although substantial progress has been made in the identification of genetic substrates underlying physiology, neuropsychology, and brain organization, the genotype-phenotype associations remain largely unknown in the context of high-altitude (HA) adaptation. Here, we related HA adaptive genetic variants in three gene loci (EGLN1, EPAS1, and PPARA) to interindividual variance in a set of physiological characteristics, neuropsychological tests, and topological attributes of large-scale structural and functional brain networks in 135 indigenous Tibetan highlanders. Analyses of individual HA adaptive single-nucleotide polymorphisms (SNPs) revealed that specific SNPs selectively modulated physiological characteristics (erythrocyte level, ratio between forced expiratory volume in the first second to forced vital capacity, arterial oxygen saturation, and heart rate) and structural network centrality (the left anterior orbital gyrus) with no effects on neuropsychology or functional brain networks. Further analyses of genetic adaptive scores, which summarized the overall degree of genetic adaptation to HA, revealed significant correlations only with structural brain networks with respect to local interconnectivity of the whole networks, intermodule communication between the right frontal and parietal module and the left occipital module, nodal centrality in several frontal regions, and connectivity strength of a subnetwork predominantly involving in intramodule edges in the right temporal and occipital module. Moreover, the associations were dependent on gene loci, weight types, or topological scales. Together, these findings shed new light on genotype-phenotype interactions under HA hypoxia and have important implications for developing new strategies to optimize organism and tissue responses to chronic hypoxia induced by extreme environments or diseases.


Assuntos
Aclimatação/genética , Aclimatação/fisiologia , Adaptação Fisiológica/genética , Córtex Cerebral/fisiologia , Conectoma , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Adolescente , Adulto , Altitude , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Córtex Cerebral/anatomia & histologia , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Masculino , Rede Nervosa/anatomia & histologia , PPAR alfa/genética , Projetos Piloto , Polimorfismo de Nucleotídeo Único , Tibet , Adulto Jovem
13.
Biochem Biophys Res Commun ; 526(3): 685-691, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32248976

RESUMO

Epithelial ovarian cancer (EOC) is one of the most common and lethal gynecological cancers. Novel therapeutic agents have been developed for EOC, but patient survival remains poor. Trastuzumab has been approved for breast and gastric cancers with high expression of human epidermal growth factor receptor 2 (HER2), but it has not achieved any clinical success in EOC. Dysregulated Wnt/ß-catenin signaling is involved in cancer development, but whether it plays a role in EOC resistance to trastuzumab remains largely unknown. Here, we observed that high expression of Wnt3a, ß-catenin and TCF7L2, which can form a signaling axis in the Wnt/ß-catenin pathway, commonly existed in HER2-positive EOC tissue samples and was correlated with a poor patient prognosis. Cell proliferation and migration assays and nude mouse xenograft model experiments demonstrated that the Wnt3a/ß-catenin/TCF7L2 signaling axis promoted tumor cell growth and metastasis and reduced tumor sensitivity to trastuzumab. Analysis of downstream Akt signaling suggested that the function of the Wnt3a/ß-catenin/TCF7L2 signaling axis was mediated, at least in part, through increasing Akt phosphorylation. Overall, this study reveals a crucial role for the Wnt3a/ß-catenin/TCF7L2 signaling axis in EOC resistance to trastuzumab and the potential application of HER2-targeted drugs combined with inhibitors of this signaling axis for EOC treatment.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Receptor ErbB-2/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Trastuzumab/farmacologia , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Lentivirus , Camundongos Nus , Neoplasias Experimentais , Fosforilação , Prognóstico , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Transfecção , Via de Sinalização Wnt
14.
Biol Pharm Bull ; 43(3): 533-539, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115512

RESUMO

Renal interstitial fibrosis (RIF) is a common pathological characteristic associated with end-stage renal disease. However, treatment strategies for RIF are still very limited. In this study, we reported that kaempferol, a classic flavonoid, exhibited strong and widely inhibitory effect on the expression of fibrosis related genes in transforming growth factor beta 1 (TGF-ß1) treated NRK-52E cells. Further studies revealed that kaempferol inhibited TGF-ß1 induced epithelial-mesenchymal transition (EMT) process of NRK-52E cells and improved renal function deterioration and RIF in unilateral ureteral obstruction (UUO) rats. After exploring the underlying mechanisms, we found that kaempferol was able to activate the BMP-7-Smad1/5 pathway, rather than the TGF-ß1-Smad2/3 pathway. To further validate these results, DMH1 and BMP-7 knockdown were utilized at the cellular level and the results showed that both methods were able to antagonize the effects of kaempferol on the EMT process of NRK-52E cells induced by TGF-ß1. In UUO rats, inhibition of BMP-7 signaling by DMH1 also reversed the effects of kaempferol on renal function decline and RIF. Taken together, our findings demonstrated that kaempferol could be a good candidate for renal fibrosis treatment.


Assuntos
Proteína Morfogenética Óssea 7/metabolismo , Quempferóis/farmacologia , Nefropatias/metabolismo , Proteínas Smad Reguladas por Receptor/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Animais , Linhagem Celular , Colágeno/metabolismo , Células Epiteliais , Fibrose , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
15.
J Clin Lab Anal ; 34(7): e23270, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32363594

RESUMO

OBJECTIVE: To investigate the value of platelet count in evaluating the degree of liver fibrosis in patients with chronic hepatitis B (CHB). METHODS: A total of 158 CHB patients who underwent liver biopsy in our hospital were included, and the clinical characteristics of these patients were retrospectively analyzed. The diagnostic values of platelet count, aspartate aminotransferase-to-platelet ratio index (APRI), and the fibrosis index based on four factors (FIB-4) for significant fibrosis (F ≥ 2) and early cirrhosis (F = 4) stages in CHB patients were assessed by the use of receiver operating characteristic (ROC) analysis. RESULTS: The median (F0: 221.0; F1: 210.0; F2: 188.0; F3: 171.0; and F4: 155.5) and mean rank (F0: 120.4; F1: 100.1; F2: 82.2; F3: 67.9; and F4: 49.5) of platelet count decreased along the aggravation of fibrosis (F0-F4). The areas under the ROC curve for the platelet count in diagnosis of significant fibrosis stage was 0.70, which had no significant difference with FIB-4 (0.73) and APRI (0.68) in diagnostic efficacy (P = .428). The areas under the ROC curve of platelet count in diagnosis of early cirrhosis were 0.72, which had no significant difference with FIB-4 (0.76) and APRI (0.68) (P = .094). CONCLUSION: The platelet count, as a simple and non-invasive index, could evaluate the degree of liver fibrosis in CHB individuals. At the same time, the diagnostic efficiency of platelet count to evaluate the significant liver fibrosis and early cirrhosis is comparable to FIB-4 and APRI.


Assuntos
Hepatite B Crônica/sangue , Hepatite B Crônica/patologia , Cirrose Hepática/patologia , Contagem de Plaquetas , Adulto , Aspartato Aminotransferases/sangue , Feminino , Humanos , Cirrose Hepática/sangue , Cirrose Hepática/virologia , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos
16.
J Med Internet Res ; 22(7): e19029, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32716300

RESUMO

BACKGROUND: Data coordination across multiple health care facilities has become increasingly important for many emerging health care applications. Distrust has been recognized as a key barrier to the success of such applications. Leveraging blockchain technology could provide potential solutions tobuild trust between data providers and receivers by taking advantage of blockchain properties such as security, immutability, anonymity, decentralization, and smart contracts. Many health technologies have empirically proven that blockchain designs fit well with the needs of health care applications with certain degrees of success. However, there is a lack of robust architecture to provide a practical framework for developers to implement applications and test the performance of stability, efficiency, and scalability using standard blockchain designs. A generalized blockchain model is needed for the health care community to adopt blockchain technology and develop applications in a timely fashion. OBJECTIVE: This study aimed at building a generalized blockchain architecture that provides data coordination functions, including data requests, permission granting, data exchange, and usage tracking, for a wide spectrum of health care application developments. METHODS: An augmented, 3-layered blockchain architecture was built on a private blockchain network. The 3 layers, from bottom to top, are as follows: (1) incorporation of fundamental blockchain settings and smart contract design for data collection; (2) interactions between the blockchain and health care application development environment using Node.js and web3.js; and (3) a flexible development platform that supports web technologies such as HTML, https, and various programing languages. Two example applications, health information exchange (HIE) and clinical trial recruitment, were developed in our design to demonstrate the feasibility of the layered architecture. Case studies were conducted to test the performance in terms of stability, efficiency, and scalability of the blockchain system. RESULTS: A total of 331,142 simulated HIE requests from accounts of 40,000 patients were successfully validated through this layered blockchain architecture with an average exchange time of 11.271 (SD 2.208) seconds. We also simulated a clinical trial recruitment scenario with the same set of patients and various recruitment criteria to match potential subjects using the same architecture. Potential subjects successfully received the clinical trial recruitment information and granted permission to the trial sponsors to access their health records with an average time of 3.07 seconds. CONCLUSIONS: This study proposes a generalized layered blockchain architecture that offers health technology community blockchain features for application development without requiring developers to have extensive experience with blockchain technology. The case studies tested the performance of our design and empirically proved the feasibility of the architecture in 2 relevant health application domains.


Assuntos
Blockchain/normas , Atenção à Saúde/normas , Troca de Informação em Saúde/normas , Projetos de Pesquisa/normas , Humanos
17.
Molecules ; 25(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255656

RESUMO

Staphylococcus aureus (S. aureus)-induced acute lung injury (ALI) is a serious disease that has a high risk of death among infants and teenagers. Acetylharpagide, a natural compound of Ajuga decumbens Thunb. (family Labiatae), has been found to have anti-tumor, anti-inflammatory and anti-viral effects. This study investigates the therapeutic effects of acetylharpagide on S. aureus-induced ALI in mice. Here, we found that acetylharpagide alleviated S. aureus-induced lung pathological morphology damage, protected the pulmonary blood-gas barrier and improved the survival of S. aureus-infected mice. Furthermore, S. aureus-induced myeloperoxidase (MPO) activity of lung homogenate and pro-inflammatory factors in bronchoalveolar lavage (BAL) fluid were suppressed by acetylharpagide. Mechanically, acetylharpagide inhibited the interaction between polyubiquitinated receptor interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO), thereby suppressing NF-κB activity. In summary, these results show that acetylharpagide protects mice from S. aureus-induced ALI by suppressing the NF-κB signaling pathway. Acetylharpagide is expected to become a potential treatment for S. aureus-induced ALI.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Infecções Estafilocócicas/complicações , Staphylococcus aureus , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Animais , Biópsia , Barreira Alveolocapilar/efeitos dos fármacos , Barreira Alveolocapilar/metabolismo , Barreira Alveolocapilar/patologia , Citocinas/metabolismo , Histocitoquímica , Mediadores da Inflamação/metabolismo , Lamiaceae/química , Camundongos , Estrutura Molecular , Extratos Vegetais/química , Células RAW 264.7
18.
J Cell Biochem ; 120(1): 756-767, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30145802

RESUMO

AZD9291, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is highly selective against EGFR T790M-mutant non-small cell lung cancer (NSCLC). On investigating the growth inhibitory effects of AZD9291 on NSCLC and the underlying mechanism, we found that AZD9291 can trigger autophagy-mediated cell death in both A549 and H1975 cells by increasing the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3) and decreasing the expression of p62. In the presence of the autophagy inhibitor chloroquine, the AZD9291-induced increase in LC3 level was further augmented. AZD9291 decreased the levels of phosphoinositide-3 kinase (PI3K), protein kinase B (Akt), and phosphorylated Akt. AZD9291-induced cell death was enhanced by Akt knockdown, and the levels of both EGFR and phosphorylated EGFR were decreased by AZD9291. AZD9291 was also found to significantly suppress the tumor growth in H1975 xenograft nude mice. Thus, AZD9291 was found to induce autophagy, decrease in EGFR levels, and show a strong inhibitory effect on NSCLC both in vitro and in vivo. Furthermore, the PI3K/Akt signaling pathway was found to play a critical role in AZD9291-induced cell death.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Ligação a RNA/metabolismo , Transfecção , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
BMC Nephrol ; 20(1): 328, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31438882

RESUMO

BACKGROUND: Focal segmental lesions (FSLs) are not uncommon in idiopathic membranous nephropathy (IMN). The reported percentage of IMN patients with focal segmental glomerulosclerosis (FSGS) lesions varies widely between studies. The objective of this study was to differentiate atypical FSL (aFSL) from typical FSGS in IMN and to analyse the clinicopathological predictors of primary outcome of IMN patients. METHODS: A total of 716 patients with biopsy-proven IMN between January 1, 2007 and December 31, 2017 were enrolled in the study. An atypical focal segmental lesion was defined as pure synechia, segmental hyperplasia of podocytes or thickening of the GBM accompanied by proliferation of the mesangial matrix, and absence of typical FSGS. The patients were divided into three groups: patients without FSL (FSL-), patients with typical FSGS (FSGS+), and patients with aFSL (aFSL+).The primary outcome was a 50% decline in the initial estimated glomerular filtration rate or end-stage renal disease (ESRD) incidence. Secondary outcomes included all-cause death and ESRD. RESULTS: FSGS was present in 174 patients, while aFSL was noted in 161 patients. Systolic blood pressure was higher in both aFSL+ group and FSGS+ groups compared with the FSL- group. IMN patients without FSL and with aFSL had lower serum creatinine levels than IMN patients with FSGS. Both the FSGS+ and aFSL+ groups had higher levels of proteinuria and lower albumin levels than the FSL- group. Renal tissue lesions, including tubulointerstitial fibrosis, glomerular obsolescence, and vascular sclerosis were significantly more severe in the FSGS+ group. Cox multivariate analysis showed that older age ≥ 60 years, eGFR< 60 ml/(min·1.73m2), tubulointerstitial fibrosis area ≥ 15% and FSGS at biopsy were independent risk factors for the primary outcome. CONCLUSIONS: No significant difference in outcome was found between the FSL- and aFSL+ groups, although the patients with aFSL had lower levels of serum albumin and eGFR, higher level of urinary protein, more severe renal lesions with proliferation of the mesangial area,tubulointerstitial fibrosis and vascular sclerosis. FSGS, excluding atypical lesions, was an independent predictor of the primary outcome.


Assuntos
Glomerulonefrite Membranosa/patologia , Glomerulosclerose Segmentar e Focal/patologia , Biópsia , Causas de Morte , Diagnóstico Diferencial , Feminino , Seguimentos , Taxa de Filtração Glomerular , Glomerulonefrite Membranosa/fisiopatologia , Glomerulosclerose Segmentar e Focal/fisiopatologia , Humanos , Rim/patologia , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/etiologia , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Retrospectivos
20.
Am J Physiol Endocrinol Metab ; 315(3): E416-E424, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509438

RESUMO

Numerous studies have implicated dyslipidemia as a key factor in mediating insulin resistance. Ceramides have received special attention since their levels are inversely associated with normal insulin signaling and positively associated with factors that are involved in cardiometabolic disease. Despite the growing literature surrounding ceramide biology, there are limited data regarding the activity of ceramide synthesis and turnover in vivo. Herein, we demonstrate the ability to measure ceramide kinetics by coupling the administration of [2H]water with LC-MS/MS analyses. As a "proof-of-concept" we determined the effect of a diet-induced alteration on ceramide flux; studies also examined the effect of myriocin (a known inhibitor of serine palmitoyltransferase, the first step in sphingosine biosynthesis). Our data suggest that one can estimate ceramide synthesis and draw conclusions regarding the source of fatty acids; we discuss caveats in regards to method development in this area.


Assuntos
Ceramidas/farmacocinética , Animais , Cromatografia Líquida de Alta Pressão , Óxido de Deutério/farmacocinética , Dieta , Inibidores Enzimáticos , Ácidos Graxos Monoinsaturados/farmacologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Traçadores Radioativos , Serina C-Palmitoiltransferase/antagonistas & inibidores , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa