Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Virol ; 97(11): e0149723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877719

RESUMO

IMPORTANCE: Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that replicates well in mosquito, bird, and mammalian cells. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in the serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and poses a threat to mammalian health. Thus, understanding the pathogenic mechanism of DTMUV is crucial for identifying potential antiviral targets. In this study, we discovered that NS3 can induce the mitochondria-mediated apoptotic pathway through the PERK/PKR pathway; it can also interact with voltage-dependent anion channel 2 to induce apoptosis. Our findings provide a theoretical basis for understanding the pathogenic mechanism of DTMUV infection and identifying potential antiviral targets and may also serve as a reference for exploring the pathogenesis of other flaviviruses.


Assuntos
Apoptose , Patos , Infecções por Flavivirus , Flavivirus , Especificidade de Hospedeiro , Animais , Humanos , Antivirais/farmacologia , Patos/virologia , eIF-2 Quinase/metabolismo , Flavivirus/enzimologia , Flavivirus/patogenicidade , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Mitocôndrias/metabolismo , Terapia de Alvo Molecular/tendências , Zoonoses Virais/diagnóstico , Zoonoses Virais/imunologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Canal de Ânion 2 Dependente de Voltagem/metabolismo
2.
J Virol ; 97(4): e0009523, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37014223

RESUMO

Many RING domain E3 ubiquitin ligases play critical roles in fine-tuning the innate immune response, yet little is known about their regulatory role in flavivirus-induced innate immunity. In previous studies, we found that the suppressor of cytokine signaling 1 (SOCS1) protein mainly undergoes lysine 48 (K48)-linked ubiquitination. However, the E3 ubiquitin ligase that promotes the K48-linked ubiquitination of SOCS1 is unknown. In the present study, we found that RING finger protein 123 (RNF123) binds to the SH2 domain of SOCS1 through its RING domain and facilitates the K48-linked ubiquitination of the K114 and K137 residues of SOCS1. Further studies found that RNF123 promoted the proteasomal degradation of SOCS1 and promoted Toll-like receptor 3 (TLR3)- and interferon (IFN) regulatory factor 7 (IRF7)-mediated type I IFN production during duck Tembusu virus (DTMUV) infection through SOCS1, ultimately inhibiting DTMUV replication. Overall, these findings demonstrate a novel mechanism by which RNF123 regulates type I IFN signaling during DTMUV infection by targeting SOCS1 degradation. IMPORTANCE In recent years, posttranslational modification (PTM) has gradually become a research hot spot in the field of innate immunity regulation, and ubiquitination is one of the critical PTMs. DTMUV has seriously endangered the development of the waterfowl industry in Southeast Asian countries since its outbreak in 2009. Previous studies have shown that SOCS1 is modified by K48-linked ubiquitination during DTMUV infection, but E3 ubiquitin ligase catalyzing the ubiquitination of SOCS1 has not been reported. Here, we identify for the first time that RNF123 acts as an E3 ubiquitin ligase that regulates TLR3- and IRF7-induced type I IFN signaling during DTMUV infection by targeting the K48-linked ubiquitination of the K114 and K137 residues of SOCS1 and the proteasomal degradation of SOCS1.


Assuntos
Infecções por Flavivirus , Flavivirus , Interferon Tipo I , Proteína 1 Supressora da Sinalização de Citocina , Animais , Patos , Flavivirus/fisiologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Receptor 3 Toll-Like/metabolismo , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação , Proteína 1 Supressora da Sinalização de Citocina/imunologia , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Ligação Proteica , Domínios Proteicos/imunologia , Replicação Viral , Células HEK293 , Embrião de Mamíferos , Humanos
3.
Antimicrob Agents Chemother ; 67(5): e0001023, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36912655

RESUMO

Due to the accelerated appearance of antimicrobial-resistant (AMR) pathogens in clinical infections, new first-in-class antibiotics, operating via novel modes of action, are desperately needed. Brevicidine, a bacterial nonribosomally produced cyclic lipopeptide, has shown potent and selective antimicrobial activity against Gram-negative pathogens. However, before our investigations, little was known about how brevicidine exerts its potent bactericidal effect against Gram-negative pathogens. In this study, we find that brevicidine has potent antimicrobial activity against AMR Enterobacteriaceae pathogens, with MIC values ranging between 0.5 µM (0.8 mg/L) and 2 µM (3.0 mg/L). In addition, brevicidine showed potent antibiofilm activity against the Enterobacteriaceae pathogens, with the same 100% inhibition and 100% eradication concentration of 4 µM (6.1 mg/L). Further mechanistic studies showed that brevicidine exerts its potent bactericidal activity by interacting with lipopolysaccharide in the outer membrane, targeting phosphatidylglycerol and cardiolipin in the inner membrane, and dissipating the proton motive force of bacteria. This results in metabolic perturbation, including the inhibition of ATP synthesis; the inhibition of the dehydrogenation of NADH; the accumulation of reactive oxygen species in bacteria; and the inhibition of protein synthesis. Finally, brevicidine showed a good therapeutic effect in a mouse peritonitis-sepsis model. Our findings pave the way for further research on the clinical applications of brevicidine to combat prevalent infections caused by AMR Gram-negative pathogens worldwide.


Assuntos
Antibacterianos , Enterobacteriaceae , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas
4.
J Virol ; 96(18): e0093022, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069544

RESUMO

Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that mainly causes a decrease in egg production in infected waterfowl. Similar to other members of the Flaviviridae family, it can proliferate in most mammalian cells and may also pose a potential threat to nonavian animals. In previous studies, we found that DTMUV infection can upregulate suppressor of cytokine signaling 1 (SOCS1) to inhibit type I interferon (IFN) production and promote virus replication, but the specific mechanism is unclear. Furthermore, little is known about the regulatory role of ubiquitination during flavivirus infection. In this study, we found that activation of Toll-like receptor 3 (TLR3) signaling rather than type I IFN stimulation led to the upregulation of SOCS1 during DTMUV infection. Further studies revealed that JOSD1 stabilized SOCS1 expression by binding to the SH2 domain of SOCS1 and mediating its deubiquitination. In addition, JOSD1 also inhibited type I IFN production through SOCS1. Finally, SOCS1 acts as an E3 ubiquitin ligase that binds to IFN regulatory factor 7 (IRF7) through its SH2 domain and mediates K48-linked ubiquitination and proteasomal degradation of IRF7, ultimately inhibiting type I IFN production mediated by IRF7 and promoting viral proliferation. These results will enrich and deepen our understanding of the mechanism by which DTMUV antagonizes the host interferon system. IMPORTANCE DTMUV is a newly discovered flavivirus that seriously harms the poultry industry. In recent years, there have been numerous studies on the involvement of ubiquitination in the regulation of innate immunity. However, little is known about the involvement of ubiquitination in the regulation of flavivirus-induced type I IFN signaling. In this study, we found that SOCS1 was induced by TLR3 signaling during DTMUV infection. Furthermore, we found for the first time that duck SOCS1 protein was also modified by K48-linked polyubiquitination, whereas our previous study found that SOCS1 was upregulated during DTMUV infection. Further studies showed that JOSD1 stabilized SOCS1 expression by mediating the deubiquitination of SOCS1. While SOCS1 acts as a negative regulator of cytokines, we found that DTMUV utilized SOCS1 to mediate the ubiquitination and proteasomal degradation of IRF7 and ultimately inhibit type I IFN production, thereby promoting its proliferation.


Assuntos
Infecções por Flavivirus , Flavivirus , Interações entre Hospedeiro e Microrganismos , Interferon Tipo I , Doenças das Aves Domésticas , Animais , Patos , Endopeptidases/genética , Endopeptidases/metabolismo , Retroalimentação Fisiológica , Flavivirus/metabolismo , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Receptor 3 Toll-Like/metabolismo , Ubiquitina-Proteína Ligases , Regulação para Cima
5.
Vet Res ; 54(1): 47, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308988

RESUMO

Duck Tembusu virus (DTMUV), an emerging pathogenic flavivirus, causes markedly decreased egg production in laying duck and neurological dysfunction and death in ducklings. Vaccination is currently the most effective means for prevention and control of DTMUV. In previous study, we have found that methyltransferase (MTase) defective DTMUV is attenuated and induces a higher innate immunity. However, it is not clear whether MTase-deficient DTMUV can be used as a live attenuated vaccine (LAV). In this study, we investigated the immunogenicity and immunoprotection of N7-MTase defective recombinant DTMUV K61A, K182A and E218A in ducklings. These three mutants were highly attenuated in both virulence and proliferation in ducklings but still immunogenic. Furthermore, a single-dose immunization with K61A, K182A or E218A could induce robust T cell responses and humoral immune responses, which could protect ducks from the challenge of a lethal-dose of DTMUV-CQW1. Together, this study provides an ideal strategy to design LAVs for DTMUV by targeting N7-MTase without changing the antigen composition. This attenuated strategy targeting N7-MTase may apply to other flaviviruses.


Assuntos
Patos , Imunidade Inata , Animais , Vacinas Atenuadas , Metiltransferases
6.
Bioorg Chem ; 135: 106501, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37015152

RESUMO

As one of the most common malignancies in female dogs, no drugs have been developed specifically for the treatment of canine mammary carcinoma. In our previous study, a series of diterpenoid alkaloids derivatives were synthesized and exhibited good anti-proliferative activity in vitro against both normal and adriamycin-resistant human breast cancer cells lines. In this study, a series of structurally diverse aconitine-type alkaloids derivatives were also synthesized basing on the minimal modification principle, by modifying on A-ring, C-ring, D-ring, N-atom or salt formation on aconitine skeleton. Their anti-proliferative effects and mechanism on canine mammary cancer cells were investigated, exhibiting the importance of the substitution at A ring, the long chain ester at the C8, the hydroxyl group at the C13, the phenyl ring at the C14 and the N-ethyl group, while the methoxy group at the C1 and C16 showed little effect on the activity. The results of the proliferation, apoptosis and ultrastructure tests of the treated canine mammary carcinoma cells referred that the representative compound, aconitine linoleate (25) could block the cell cycle of canine mammary carcinoma cells in the G0/G1 phase, and exhibit the anti-proliferative effect by inducing apoptosis.


Assuntos
Alcaloides , Neoplasias da Mama , Carcinoma , Diterpenos , Cães , Animais , Feminino , Humanos , Aconitina/farmacologia , Aconitina/química , Neoplasias da Mama/tratamento farmacológico , Alcaloides/farmacologia , Alcaloides/química , Diterpenos/farmacologia , Diterpenos/química
7.
Exp Parasitol ; 246: 108451, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36584786

RESUMO

"Shi Ying Zi" powder is a traditional Chinese herbal formula for preventing and treating coccidiosis. In our previous studies, it showed anticoccidial effects and exhibited the potential to control Eimeria tenella infection. In this research, we evaluated the antioxidation and immune effect of "Shi Ying Zi" powder and its effective active ingredient osthole on coccidiosis-infected broilers to explore the mechanism of its anticoccidial effect. We analyzed changes in the antioxidant index, the pathological changes in cecum, immune index of serum and composition of cecal flora. The results showed that the use of "Shi Ying Zi" powder and osthole alleviated the pathological changes in the cecum, spleen and bursa of Fabricius, upregulated the spleen and bursal weigh index. "Shi Ying Zi" powder of 10 g/kg effectively rocovered the contents of interleukins and immunoglobulin in serum. Osthole increased the proportion of Firmicutes, Actino-bacteria and Lactobacillus in the cecum. In summary, "Shi Ying Zi" powder and osthole have anticoccidial effects, and they also can active the immunity, antioxidant functions and upregulate the beneficial bacteria population in Eimeria tenella-infected broilers.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Galinhas , Pós , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , Bactérias , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Ceco/patologia
8.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770700

RESUMO

The synthesis of dicyclic spiropyridazine oxoindole derivatives by using [3+3]-cycloaddition of N-unsubstituted isatin N,N'-cyclic azomethine imine 1,3-dipoles was reported. The products bearing two consecutive stereocenters, including spiroquaternary stereocenters in one ring structure, can be effectively obtained in moderate to excellent yields (20-93%) and low to moderate diastereoselectivities (1:9-10:1 dr). The synthesized compounds (>35 examples) were characterized by single-crystal XRD, FTIR, NMR, and mass spectral analysis.

9.
J Sci Food Agric ; 103(1): 328-338, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35871477

RESUMO

BACKGROUND: This study characterized an acidic polysaccharide (OHC-LDPA) isolated from the medicinal and edible homologous plant Onosma hookeri Clarke var. longiforum Duthie. The structure of OHC-LDPA was elucidated based on the analysis of infrared, one-/two-dimensional nuclear magnetic resonance, and gas chromatography-mass spectrometry data. The immunostimulatory effects of OHC-LDPA were identified by both in vitro and in vivo models. RESULTS: The structure of OHC-LDPA was elucidated as a typical pectin polysaccharide, consisting of galacturonic acid, galactose, arabinose, and rhamnose as the primary sugars, with linear galacturonic acid as the main chain and arabinogalacturonic acid as the main branched components. OHC-LDPA could significantly stimulate the proliferation and phagocytosis of RAW264.7 macrophages and the release of nitric oxide in vitro. Also, it could accelerate the recovery of spleen and thymus indexes, enhance the splenic lymphocyte proliferation responses, and restore the levels of interleukin-2, interleukin-10, interferon-γ, and immunoglobulin G in the serum in a cyclophosphamide-induced immunosuppressed-mice model. In addition, OHC-LDPA could restore the intestinal mucosal immunity and reduce the inflammatory damage. CONCLUSION: OHC-LDPA could improve the immunity both in vitro and in vivo and could be used as a potential immunostimulant agent. © 2022 Society of Chemical Industry.


Assuntos
Boraginaceae , Polissacarídeos , Camundongos , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Ácidos Hexurônicos , Fagocitose , Células RAW 264.7
10.
BMC Genomics ; 23(1): 509, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836133

RESUMO

BACKGROUND: Duck plague virus (DPV), belonging to herpesviruses, is a linear double-stranded DNA virus. There are many reports about the outbreak of the duck plague in a variety of countries, which caused huge economic losses. Recently, increasing reports revealed that multiple long non-coding RNAs (lncRNAs) can possess great potential in the regulation of host antiviral immune response. Furthermore, it remains to be determined which specific molecular mechanisms are responsible for the DPV-host interaction in host immunity. Here, lncRNAs and mRNAs in DPV infected duck embryonic fibroblast (DEF) cells were identified by high-throughput RNA-sequencing (RNA-seq). And we predicted target genes of differentially expressed genes (DEGs) and formed a complex regulatory network depending on in-silico analysis and prediction. RESULT: RNA-seq analysis results showed that 2921 lncRNAs were found at 30 h post-infection (hpi). In our study, 218 DE lncRNAs and 2840 DE mRNAs were obtained in DEF after DPV infection. Among these DEGs and target genes, some have been authenticated as immune-related molecules, such as a Macrophage mannose receptor (MR), Anas platyrhynchos toll-like receptor 2 (TLR2), leukocyte differentiation antigen, interleukin family, and their related regulatory factors. Furthermore, according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis, we found that the target genes may have important effects on biological development, biosynthesis, signal transduction, cell biological regulation, and cell process. Also, we obtained, the potential targeting relationship existing in DEF cells between host lncRNAs and DPV-encoded miRNAs by software. CONCLUSIONS: This study revealed not only expression changes, but also the possible biological regulatory relationship of lncRNAs and mRNAs in DPV infected DEF cells. Together, these data and analyses provide additional insight into the role of lncRNAs and mRNAs in the host's immune response to DPV infection.


Assuntos
Patos/embriologia , Fibroblastos/virologia , Doença de Marek/virologia , Doenças das Aves Domésticas/virologia , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Animais , Surtos de Doenças/veterinária , Patos/genética , Patos/virologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Infecções por Herpesviridae/metabolismo , Mardivirus , Doença de Marek/epidemiologia , Doença de Marek/imunologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/imunologia , RNA Longo não Codificante/análise , RNA Longo não Codificante/genética , RNA Mensageiro/análise , RNA Mensageiro/genética
11.
Vet Res ; 53(1): 53, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799206

RESUMO

Duck Tembusu virus (DTMUV) is a pathogenic flavivirus that has caused enormous economic losses in Southeast Asia. Our previous study showed that DTMUV could induce duck embryo fibroblast (DEF) apoptosis, but the specific mechanism was not clear. In this study, we confirmed that DTMUV could induce the apoptosis of DEFs by DAPI staining and TUNEL staining. Furthermore, we found that the expression levels of cleaved-caspase-3/7/8/9 were significantly upregulated after DTMUV infection. After treatment of cells with an inhibitor of caspase-8 or caspase-9, DTMUV-induced apoptosis rates were significantly decreased, indicating that the caspase-8-mediated death receptor apoptotic pathway and caspase-9-mediated mitochondrial apoptotic pathway were involved in DTMUV-induced apoptosis. Moreover, we found that DTMUV infection not only caused the release of mitochondrial cytochrome C (Cyt C) and the downregulation of the apoptosis-inhibiting protein Bcl-2 but also reduced the mitochondrial membrane potential (MMP) and the accumulation of intracellular reactive oxygen species (ROS). Key genes in the mitochondrial apoptotic pathway and death receptor apoptotic pathway were upregulated to varying degrees, indicating the activation of the mitochondrial apoptosis pathway and death receptor apoptosis pathway. In conclusion, this study clarifies the molecular mechanism of DTMUV-induced apoptosis and provides a theoretical basis for revealing the pathogenic mechanism of DTMUV infection.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Apoptose , Caspase 8/metabolismo , Caspase 9/metabolismo , Patos/metabolismo , Fibroblastos , Flavivirus/fisiologia , Infecções por Flavivirus/veterinária , Receptores de Morte Celular/metabolismo
12.
Vet Res ; 53(1): 34, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585616

RESUMO

Duck Tembusu virus (DTMUV), a member of the family Flaviviridae and an economically important pathogen with a broad host range, leads to markedly decreased egg production. However, the molecular mechanism underlying the host-DTMUV interaction remains unclear. Here, we performed high-throughput RNA sequencing (RNA-Seq) to study the dynamic changes in host gene expression at 12, 24, 36, 48 and 60 h post-infection (hpi) in duck embryo fibroblasts (DEF) infected with DTMUV. A total of 3129 differentially expressed genes (DEG) were identified after DTMUV infection. Gene Ontology (GO) category and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that these DEG were associated with multiple biological functions, including signal transduction, host immunity, virus infection, cell apoptosis, cell proliferation, and pathogenicity-related and metabolic process signaling pathways. This study analyzed viral infection and host immunity induced by DTMUV infection from a novel perspective, and the results provide valuable information regarding the mechanisms underlying host-DTMUV interactions, which will prove useful for the future development of antiviral drugs or vaccines for poultry, thus benefiting the entire poultry industry.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Patos , Fibroblastos , Flavivirus/fisiologia , Infecções por Flavivirus/veterinária , Expressão Gênica , Análise de Sequência de RNA/veterinária
13.
Mediators Inflamm ; 2022: 7138756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990040

RESUMO

Resveratrol is a naturally occurring stilbene phytoalexin phenolic compound, which has been extensively studied on its biological activity. It has been widely accepted that resveratrol possesses anti-inflammatory and antiviral activities. In this review, we summarize the anti-inflammatory dosages and mechanism and antiviral mechanism of resveratrol. Since viral infections are often accompanied by inflammation, we propose that the NF-κB signaling pathway is a key and common molecular mechanism of resveratrol to exert anti-inflammatory and antiviral effects. For future studies, we believe that resveratrol's anti-inflammatory and antiviral mechanisms can consider the upstream signaling molecules of the NF-κB signaling pathway. For resveratrol antivirus, future studies can be conducted on the interaction of resveratrol with key proteins or important enzymes of the virus. In addition, we also think that the clinical application of resveratrol is very important. In short, resveratrol is a promising anti-inflammatory and antiviral drug, and research on it needs to be expanded.


Assuntos
NF-kappa B , Estilbenos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , NF-kappa B/metabolismo , Resveratrol , Estilbenos/farmacologia , Estilbenos/uso terapêutico
14.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232424

RESUMO

A. hydrophila is an important pathogen that mainly harms aquatic animals and has exhibited resistance to a variety of antibiotics. Here, to seek an effective alternative for antibiotics, the effects of umbelliferone (UM) at sub-MICs on A. hydrophila virulence factors and the quorum-sensing system were studied. Subsequently, RNA sequencing was employed to explore the potential mechanisms for the antivirulence activity of umbelliferone. Meanwhile, the protective effect of umbelliferone on grass carp infected with A. hydrophila was studied in vivo. Our results indicated that umbelliferone could significantly inhibit A. hydrophila virulence such as hemolysis, biofilm formation, swimming and swarming motility, and their quorum-sensing signals AHL and AI-2. Transcriptomic analysis showed that umbelliferone downregulated expression levels of genes related to exotoxin, the secretory system (T2SS and T6SS), iron uptake, etc. Animal studies demonstrated that umbelliferone could significantly improve the survival of grass carps infected with A. hydrophila, reduce the bacterial load in the various tissues, and ameliorate cardiac, splenic, and hepatopancreas injury. Collectively, umbelliferone can reduce the pathogenicity of A. hydrophila and is a potential drug for treating A. hydrophila infection.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila , Animais , Antibacterianos/farmacologia , Exotoxinas/farmacologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/genética , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/microbiologia , Ferro/farmacologia , Umbeliferonas/farmacologia , Fatores de Virulência/genética , Fatores de Virulência/farmacologia
15.
J Sci Food Agric ; 102(3): 1205-1215, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34346509

RESUMO

BACKGROUND: Resveratrol, a kind of polyphenolic phytoalexin, can be obtained from numerous natural foods. Although resveratrol is demonstrated to have various bioactivities, little is known about the regulation of intestinal barrier function under immunosuppression. The present study is aimed at investigating the regulatory effect of resveratrol on intestinal barrier function in immunosuppression in mice induced by cyclophosphamide. RESULTS: The effects of resveratrol on intestinal biological barrier were evaluated by 16S rRNA and metagenome sequencing analysis. The results showed that resveratrol could improve diversity of the intestinal microbiota and intestinal flora structure by increasing the abundance of probiotics, and resveratrol regulated the function of gut microbiota to resist immunosuppression. Resveratrol could significantly upregulate the secretion of secretory immunoglobulin A and promote the transcriptional levels of test cytokines, including tumor necrosis factor α, interferon γ, interleukin 4 and interleukin 6 in jejunum and ileum mucosa, suggesting improved intestinal immune barrier by resveratrol. The mRNA and protein levels of tight junction proteins involved in intestinal physical barrier function, including zonula occludens 1 (ZO-1), claudin 1 and occludin, were increased after resveratrol treatment. The protein levels of toll-like receptor 4 (TLR4), phosphorylation nuclear factor kappa-B (NF-κB-p65) and inhibitor of nuclear factor kappa-B kinase α were decreased by resveratrol treatment when compared with the untreated group, indicating inhibition of the TLR4/NF-ĸB signaling pathway. CONCLUSION: These results provide new insights into regulation of the intestinal barrier function by resveratrol under immunosuppression and potential applications of resveratrol in recovering intestinal function. © 2021 Society of Chemical Industry.


Assuntos
Ciclofosfamida/efeitos adversos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Resveratrol/administração & dosagem , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Hospedeiro Imunocomprometido , Interferon gama/genética , Interferon gama/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/genética , Ocludina/genética , Ocludina/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
16.
Vet Res ; 52(1): 98, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193256

RESUMO

Flaviviruses are enveloped single positive-stranded RNA viruses. The capsid (C), a structural protein of flavivirus, is dimeric and alpha-helical, with several special structural and functional features. The functions of the C protein go far beyond a structural role in virions. It is not only responsible for encapsidation to protect the viral RNA but also able to interact with various host proteins to promote virus proliferation. Therefore, the C protein plays an important role in infected host cells and the viral life cycle. Flaviviruses have been shown to affect the health of humans and animals. Thus, there is an urgent need to effectively control flavivirus infections. The structure of the flavivirus virion has been determined, but there is relatively little information about the function of the C protein. Hence, a greater understanding of the role of the C protein in viral infections will help to discover novel antiviral strategies and provide a promising starting point for the further development of flavivirus vaccines or therapeutics.


Assuntos
Proteínas do Capsídeo/genética , Infecções por Flavivirus/veterinária , Flavivirus/fisiologia , Vacinas Virais/farmacologia , Proteínas do Capsídeo/metabolismo , Infecções por Flavivirus/prevenção & controle , Infecções por Flavivirus/terapia
17.
Bioorg Chem ; 113: 105011, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34091289

RESUMO

In the 21st century, cancer is the major public health problem worldwide. Based on the important roles of protein tyrosine kinase, the accelerated hunt for potent small-molecule tyrosine kinase inhibitors has led to the success of 30 newly inhibitors in this family for the cancer therapy in last five years. In this review, we updated their synthesis methods, and compared the original research routes with the optimized routes for each PTK inhibitor against different target, in order to make an outlook on the future synthesis of potential PTK inhibitors for anticancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/síntese química , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias/patologia , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismo
18.
Bioorg Chem ; 109: 104699, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33611138

RESUMO

Aconitine linoleate (11) isolated from the Aconitum sinchiangense W. T. Wang exhibited significant anti-tumor activity. Based on this, a series of novel lipo-diterpenoid alkaloids were synthesized and evaluated for their anticancer activities against MCF-7 and MCF-7/ADR cell lines. Seventeen compounds, including 18-20, 22, 24-32, 36, 39, 41-42 possessed higher anti-proliferative activities (IC50 < 20 µM) against MCF-7 cell lines, which were better than the reference drug etoposide (IC50 = 18.01 ± 1.64 µM), among which compound 24 (IC50 = 4.00 ± 0.30 µM) was found to be the most potent derivative, being 4.5-fold more active than etoposide. Meanwhile, eighteen compounds, including 18-22, 24, 26-32, 36, 38-39, 41-42 presented excellent activities (IC50 < 20 µM) against MCF-7/ADR cell lines, better than etoposide (IC50 = 35.48 ± 0.29 µM) and doxorubicin (IC50 = 67.61 ± 6.5 µM). The most potent compound (19) was 13.5- and 25.7-fold more active than etoposide and doxorubicin against MCF-7/ADR cell lines, respectively. The structure-activity relationship (SAR) studies indicated that the 3-OH, 8-lipo, 14-benzene ring, and nitrogen atom with proper alkaline are crucial elements for anti-proliferative activity of target lipo-diterpenoid compounds. The proper length, the double bonds or di-fluoro-substituted at C-8 fatty acid chain, the para-donating electron group on 14-benzene group, and 13-OH are all favorable for the enhancement of anti-proliferative activities. In conclusion, the introduction of the 8-lipo group into aconitine leads to significant increase of anti-proliferative activity against MCF-7 and MCF-7/ADR cells, which suggests these kinds of lipo-alkaloids are powerful and promising antitumor compounds for breast cancer, especially for drug-resistant breast cancer.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Alcaloides Diterpenos/química , Alcaloides Diterpenos/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/química , Neoplasias da Mama , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA Topoisomerases Tipo II/genética , Doxorrubicina/farmacologia , Desenho de Fármacos , Etoposídeo/farmacologia , Feminino , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
19.
BMC Vet Res ; 17(1): 247, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34275451

RESUMO

BACKGROUND: Pseudorabies virus (PRV), a member of the Alphaherpesviruses, is one of the most important pathogens that harm the global pig industry. Accumulated evidence indicated that PRV could infect humans under certain circumstances, inducing severe clinical symptoms such as acute human encephalitis. Currently, there are no antiviral drugs to treat PRV infections, and vaccines available only for swine could not provide full protection. Thus, new control measures are urgently needed. RESULTS: In the present study, kaempferol exhibited anti-PRV activity in mice through improving survival rate by 22.22 %, which was higher than acyclovir (Positive control) with the survival rate of 16.67 % at 6 days post infection (dpi); meanwhile, the survival rate was 0 % at 6 dpi in the infected-untreated group. Kaempferol could inhibit the virus replication in the brain, lung, kidney, heart and spleen, especially the viral gene copies were reduced by over 700-fold in the brain, which was further confirmed by immunohistochemical examination. The pathogenic changes induced by PRV infection in these organs were also alleviated. The transcription of the only immediate-early gene IE180 in the brain was significantly inhibited by kaempferol, leading to the decreased transcriptional levels of the early genes (EPO and TK). The expression of latency-associated transcript (LAT) was also inhibited in the brain, which suggested that kaempferol could inhibit PRV latency. Kaempferol-treatment could induce higher levels of IL-1ß, IL-4, IL-6, TNF-α and IFN-γ in the serum at 3 dpi which were then declined to normal levels at 5 dpi. CONCLUSIONS: These results suggested that kaempferol was expected to be a new alternative control measure for PRV infection.


Assuntos
Antivirais/farmacologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Quempferóis/farmacologia , Pseudorraiva/tratamento farmacológico , Aciclovir/farmacologia , Animais , Encéfalo , Regulação Viral da Expressão Gênica , Genes Precoces/efeitos dos fármacos , Herpesvirus Suídeo 1/genética , Masculino , Camundongos , Pseudorraiva/mortalidade , Pseudorraiva/patologia , Replicação Viral/efeitos dos fármacos
20.
J Sci Food Agric ; 101(14): 6043-6052, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33857333

RESUMO

BACKGROUND: Codonopsis pilosula and Codonopsis tangshen are plants widely used in traditional Chinese medicine. Two pectic polysaccharides from the roots of C. pilosula and C. tangshen named as CPP-1 and CTP-1 were obtained by boiling water extraction and column chromatography. RESULTS: The core structures of both CPP-1 and CTP-1 comprise the long homogalacturonan region (HG) as the backbone and the rhamnogalacturonan I (RG-I) region as the side chains. CPP-1 has methyl esterified galacturonic acid units and a slightly lower molecular weight than CTP-1. Biological testing suggested that CPP-1 and CTP-1 can protect IPEC-J2 cells against the H2 O2 -induced oxidative stress by up-regulating nuclear factor-erythroid 2-related factor 2 and related genes in IPEC-J2 cells. The different antioxidative activities of polysaccharides from different source of C. pilosula may be result of differences in their structures. CONCLUSION: All of the results indicated that pectic polysaccharides CPP-1 and CTP-1 from different species of C. pilosula roots could be used as a potential natural antioxidant source. These findings will be valuable for further studies and new applications of pectin-containing health products. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Codonopsis/química , Pectinas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Linhagem Celular , Humanos , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pectinas/farmacologia , Raízes de Plantas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa