Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol ; 39(6): 3434-3447, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450985

RESUMO

BACKGROUND: Previous observational studies have linked circulating cytokines to sarcopenia, but their causal relationship remains unclear. This study employed Mendelian Randomization (MR) to investigate the causal links between circulating cytokines and sarcopenia-related traits using genetic data. METHODS: A two-sample bidirectional MR analysis was conducted using data from individuals of European ancestry, utilizing genome-wide association studies (GWAS) statistics. The study selected instrumental single nucleotide polymorphisms (SNPs) significantly associated with circulating cytokines and applied multiple MR methods, including inverse variance weighted (IVW), Weighted Median, MR-Egger, Weighted Mode, Simple Mode, and MR-PRESSO. The traits analyzed were appendicular lean mass (ALM) and grip strength. Heterogeneity, robustness, and consistency of results were assessed using Cochran's Q statistic, MR-Egger regression, and "leave-one-out" sensitivity analyses. RESULTS: The IVM-MR analysis showed a casual association between genetically predicted circulating levels of interleukin-16 and both ALM and grip strength (ALM: OR = 0.990, 95% CI: 0.980-1.000, p = .049; grip strength: OR = 0.971, 95% CI: 0.948-0.995, p = .020). Additionally, interferon-gamma-induced protein 10 (IP-10), interleukin-1-beta (IL-1ß), and hepatocyte growth factor (HGF) were correlated with ALM and vascular endothelial growth factor (VEGF), interleukin-12 (IL-12), and interleukin-5 (IL-5) with grip strength. Comparable results were confirmed via the MR-Egger, Weighted Median, Weighted Mode, and Simple Mode methods. Sensitivity analysis showed no horizontal pleiotropy to bias the causal estimates. CONCLUSION: The results suggest a significant causal effect of inflammatory cytokines on sarcopenia, offering new avenues for therapeutic target development. However, the study's focus on a European ancestry cohort limits its generalizability to other populations. Future research should aim to include diverse ethnic groups to validate and broaden these findings, thereby enhancing our understanding of sarcopenia's mechanisms in a global context.


Assuntos
Citocinas , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Sarcopenia , Humanos , Sarcopenia/sangue , Sarcopenia/genética , Citocinas/sangue , Citocinas/genética , Força da Mão
2.
Planta ; 257(6): 109, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37145304

RESUMO

MAIN CONCLUSION: Serine/arginine-rich (SR) proteins participate in RNA processing by interacting with precursor mRNAs or other splicing factors to maintain plant growth and stress responses. Alternative splicing is an important mechanism involved in mRNA processing and regulation of gene expression at the posttranscriptional level, which is the main reason for the diversity of genes and proteins. The process of alternative splicing requires the participation of many specific splicing factors. The SR protein family is a splicing factor in eukaryotes. The vast majority of SR proteins' existence is an essential survival factor. Through its RS domain and other unique domains, SR proteins can interact with specific sequences of precursor mRNA or other splicing factors and cooperate to complete the correct selection of splicing sites or promote the formation of spliceosomes. They play essential roles in the composition and alternative splicing of precursor mRNAs, providing pivotal functions to maintain growth and stress responses in animals and plants. Although SR proteins have been identified in plants for three decades, their evolutionary trajectory, molecular function, and regulatory network remain largely unknown compared to their animal counterparts. This article reviews the current understanding of this gene family in eukaryotes and proposes potential key research priorities for future functional studies.


Assuntos
Proteínas de Ligação a RNA , Serina , Animais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Serina/genética , Serina/metabolismo , Proteínas Nucleares/genética , Splicing de RNA/genética , Processamento Alternativo/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Processamento de RNA/metabolismo , Arginina
3.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982373

RESUMO

Alternative splicing (AS) is one of the major post-transcriptional regulation mechanisms that contributes to plant responses to various environmental perturbations. Darkness and heat are two common abiotic factors affecting plant growth, yet the involvement and regulation of AS in the plant responses to these signals remain insufficiently examined. In this study, we subjected Arabidopsis seedlings to 6 h of darkness or heat stress and analyzed their transcriptome through short-read RNA sequencing. We revealed that both treatments altered the transcription and AS of a subset of genes yet with different mechanisms. Dark-regulated AS events were found enriched in photosynthesis and light signaling pathways, while heat-regulated AS events were enriched in responses to abiotic stresses but not in heat-responsive genes, which responded primarily through transcriptional regulation. The AS of splicing-related genes (SRGs) was susceptible to both treatments; while dark treatment mostly regulated the AS of these genes, heat had a strong effect on both their transcription and AS. PCR analysis showed that the AS of the Serine/Arginine-rich family gene SR30 was reversely regulated by dark and heat, and heat induced the upregulation of multiple minor SR30 isoforms with intron retention. Our results suggest that AS participates in plant responses to these two abiotic signals and reveal the regulation of splicing regulators during these processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Processamento Alternativo , Arabidopsis/metabolismo , Splicing de RNA , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Isoformas de Proteínas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
4.
Planta ; 255(1): 25, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34940917

RESUMO

MAIN CONCLUSION: This study systematically identifies 112 U2A genes from 80 plant species by combinatory bioinformatics analysis, which is important for understanding their phylogenetic history, expression profiles and for predicting specific functions. In eukaryotes, a pre-mRNA can generate multiple transcripts by removing certain introns and joining corresponding exons, thus greatly expanding the transcriptome and proteome diversity. The spliceosome is a mega-Dalton ribonucleoprotein (RNP) complex that is essential for the process of splicing. In spliceosome components, the U2 small nuclear ribonucleoprotein (U2 snRNP) forms the pre-spliceosome by association with the branch site. An essential component that promotes U2 snRNP assembly, named U2A, has been extensively identified in humans, yeast and nematodes. However, studies examining U2A genes in plants are scarce. In this study, we performed a comprehensive analysis and identified a total of 112 U2A genes from 80 plant species representing dicots, monocots, mosses and algae. Comparisons of the gene structures, protein domains, and expression patterns of 112 U2A genes indicated that the conserved functions were likely retained by plant U2A genes and important for responses to internal and external stimuli. In addition, analysis of alternative transcripts and splice sites of U2A genes indicated that the fifth intron contained a conserved alternative splicing event that might be important for its molecular function. Our work provides a general understanding of this splicing factor family in terms of genes and proteins, and it will serve as a fundamental resource that will contribute to further mechanistic characterization in plants.


Assuntos
Plantas/genética , Ribonucleoproteína Nuclear Pequena U2 , Spliceossomos , Filogenia , Splicing de RNA/genética , Fatores de Processamento de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo
5.
Plant Physiol ; 182(3): 1510-1526, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31857423

RESUMO

Rice (Oryza sativa) molecular breeding has gained considerable attention in recent years, but inaccurate genome annotation hampers its progress and functional studies of the rice genome. In this study, we applied single-molecule long-read RNA sequencing (lrRNA_seq)-based proteogenomics to reveal the complexity of the rice transcriptome and its coding abilities. Surprisingly, approximately 60% of loci identified by lrRNA_seq are associated with natural antisense transcripts (NATs). The high-density genomic arrangement of NAT genes suggests their potential roles in the multifaceted control of gene expression. In addition, a large number of fusion and intergenic transcripts have been observed. Furthermore, 906,456 transcript isoforms were identified, and 72.9% of the genes can generate splicing isoforms. A total of 706,075 posttranscriptional events were subsequently categorized into 10 subtypes, demonstrating the interdependence of posttranscriptional mechanisms that contribute to transcriptome diversity. Parallel short-read RNA sequencing indicated that lrRNA_seq has a superior capacity for the identification of longer transcripts. In addition, over 190,000 unique peptides belonging to 9,706 proteoforms/protein groups were identified, expanding the diversity of the rice proteome. Our findings indicate that the genome organization, transcriptome diversity, and coding potential of the rice transcriptome are far more complex than previously anticipated.


Assuntos
Oryza/genética , Oryza/metabolismo , Proteogenômica/métodos , Proteoma/metabolismo , RNA Antissenso/genética , Análise de Sequência de RNA , Transcriptoma
6.
Plant Cell Environ ; 44(1): 88-101, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32677712

RESUMO

Germination is a plant developmental process by which radicle of mature seeds start to penetrate surrounding barriers for seedling establishment and multiple environmental factors have been shown to affect it. Little is known how high salinity affects seed germination of C4 plant, Zea mays. Preliminary germination assay suggested that isolated embryo alone was able to germinate under 200 mM NaCl treatment, whereas the intact seeds were highly repressed. We hypothesized that maize endosperm may function in perception and transduction of salt signal to surrounding tissues such as embryo, showing a completely different response to that in Arabidopsis. Since salt response involves ABA, we analysed in vivo ABA distribution and quantity and the result demonstrated that ABA level in isolated embryo under NaCl treatment failed to increase in comparison with the water control, suggesting that the elevation of ABA level is an endosperm dependent process. Subsequently, by using advanced profiling techniques such as RNA sequencing and SWATH-MS-based quantitative proteomics, we found substantial differences in post-transcriptional and translational changes between salt-treated embryo and endosperm. In summary, our results indicate that these regulatory mechanisms, such as alternative splicing, are likely to mediate early responses to salt stress during maize seed germination.


Assuntos
Sementes/metabolismo , Cloreto de Sódio/metabolismo , Zea mays/genética , Ácido Abscísico/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteoma , Estresse Salino , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
7.
Plant J ; 94(4): 612-625, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29495079

RESUMO

Rice (Oryza sativa L.) has two ecotypes, upland and lowland rice, that have been observed to show different tolerance levels under flooding stress. In this study, two rice cultivars, upland (Up221, flooding-intolerant) and lowland (Low88, flooding-tolerant), were initially used to study their molecular mechanisms in response to flooding germination. We observed that variations in the OsCBL10 promoter sequences in these two cultivars might contribute to this divergence in flooding tolerance. Further analysis using another eight rice cultivars revealed that the OsCBL10 promoter could be classified as either a flooding-tolerant type (T-type) or a flooding-intolerant type (I-type). The OsCBL10 T-type promoter only existed in japonica lowland cultivars, whereas the OsCBL10 I-type promoter existed in japonica upland, indica upland and indica lowland cultivars. Flooding-tolerant rice cultivars containing the OsCBL10 T-type promoter have shown lower Ca2+ flow and higher α-amylase activities in comparison to those in flooding-intolerant cultivars. Furthermore, the OsCBL10 overexpression lines were sensitive to both flooding and hypoxic treatments during rice germination with enhanced Ca2+ flow in comparison to wild-type. Subsequent findings also indicate that OsCBL10 may affect OsCIPK15 protein abundance and its downstream pathways. In summary, our results suggest that the adaptation to flooding stress during rice germination is associated with two different OsCBL10 promoters, which in turn affect OsCBL10 expression in different cultivars and negatively affect OsCIPK15 protein accumulation and its downstream cascade.


Assuntos
Adaptação Fisiológica , Calcineurina/metabolismo , Cálcio/metabolismo , Oryza/genética , Regiões Promotoras Genéticas/genética , Calcineurina/genética , Ecótipo , Inundações , Variação Genética , Germinação , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sementes/genética , Sementes/fisiologia , Especificidade da Espécie , Estresse Fisiológico
8.
BMC Plant Biol ; 19(1): 445, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31651235

RESUMO

BACKGROUND: Apple is one of the most popular fruit crops world-wide and its skin color is an important quality consideration essential for commercial value. However, the strategy on genetic breeding for red skin apple and the genetic basis of skin color differentiation is very limited and still largely unknown. RESULTS: Here, we reported a bud sport mutant of Fuji apple with red skin color and enhanced anthocyanins accumulation. Quantitative SWATH-MS (sequential window acquisition of all theoretical spectra-mass spectrometry) proteomics investigations revealed proteome changes in the apple red skin bud mutation and a total of 451 differentially expressed proteins were identified in apple skin. The mutant showed significantly increased expression levels of photosynthesis-related proteins, stress-related proteins as well as anthocyanins biosynthesis pathway. On the other hand, substantial downregulation of mitogen-activated protein kinase 4 (MAPK4) and mevalonate kinase (MVK) were detected, indicating a promising role for the red skin color development in the mutant. Furthermore, we also hypothesize that a post-transcriptional regulation of the skin color formation occurs in the mutant through the advanced SWATH-MS analysis. CONCLUSION: Our work provides important information on the application of proteomic methods for analysing proteomes changes in Fuji apple and highlights a clade of regulatory proteins potentially contributing for the molecular breeding of fruit skin color.


Assuntos
Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/fisiologia , Proteínas de Plantas/metabolismo , Proteoma , Frutas/genética , Frutas/imunologia , Frutas/metabolismo , Frutas/fisiologia , Malus/genética , Espectrometria de Massas , Mutação , Fotossíntese , Pigmentação , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteômica
9.
Planta ; 250(4): 1355-1369, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31278465

RESUMO

MAIN CONCLUSION: Rhizosheath comprises soil that adheres firmly to roots. In this study, two ecotypes of switchgrass with different rhizosheath sizes after drought stress were analyzed which showed metabolic differences under drought conditions. The rhizosheath comprises soil that adheres firmly to roots by a combination of root hairs and mucilage and may aid in root growth under soil drying. The aim of this work is to reveal the potential metabolites involved in rhizosheath formation under drought stress conditions. Panicum virgatum L. (switchgrass), which belongs to the Poaceae family, is an important biofuel and fodder crop in drought areas. Five switchgrass ecotypes (cv. Alamo, cv. Blackwake, cv. Summer, cv. Cave-in-Rock and cv. Kanlow) have a broad range of rhizosheath weight under drought conditions. For two selected ecotypes with contrast rhizosheath weight (cv. Alamo and cv. Kanlow), root hair length and density, lateral root number, root morphological parameters were measured, and real-time qRT-PCR was performed. Gas chromatography mass spectrophotometry (GC-MS) was used to determine the primary metabolites in the shoots and roots of selected ecotypes under drought stress conditions. The change trends of root hair length and density, lateral root number and related gene expression were consistent with rhizosheath weight in Alamo and Kanlow under drought and watered conditions. For root morphological parameters, Alamo grew deeper than Kanlow, while Kanlow exhibited higher values for other parameters. In this study, the levels of amino acids, sugars and organic acids were significantly changed in response to drought stress in two switchgrass ecotypes. Several metabolites including amino acids (arginine, isoleucine, methionine and cysteine) and sugars (kestose, raffinose, fructose, fucose, sorbose and xylose) in the large soil-sheathed roots of Alamo and Kanlow were significantly increased compared to small or no soil-sheathed roots of Alamo and Kanlow. Difference in rhizosheath size is reflected in the plant internal metabolites under drought stress conditions. Additionally, our results highlight the importance of using metabolite profiling and provide a better understanding of rhizosheath formation at the cellular level.


Assuntos
Panicum/fisiologia , Biocombustíveis , Secas , Ecótipo , Metabolômica , Panicum/crescimento & desenvolvimento , Panicum/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Solo/química , Água/fisiologia
10.
Planta ; 249(2): 583-600, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30317439

RESUMO

MAIN CONCLUSION: This study systematically identifies plant SYF2/NTC31/p29 genes from 62 plant species by a combinatory bioinformatics approach, revealing the importance of this gene family in phylogenetics, duplication, transcriptional, and post-transcriptional regulation. Alternative splicing is a post-transcriptional regulatory mechanism, which is critical for plant development and stress responses. The entire process is strictly attenuated by a complex of splicing-related proteins, designated splicing factors. Human p29, also referred to as synthetic lethal with cdc forty 2 (SYF2) or the NineTeen complex 31 (NTC31), is a core protein found in the NTC complex of humans and yeast. This splicing factor participates in a variety of biological processes, including DNA damage repair, control of the cell cycle, splicing, and tumorigenesis. However, its function in plants has been seldom reported. Thus, we have systematically identified 89 putative plant SYF2s from 62 plant species among the deposited entries in the Phytozome database. The phylogenetic relationships and evolutionary history among these plant SYF2s were carefully examined. The results revealed that plant SYF2s exhibited distinct patterns regarding their gene structure, promoter sequences, and expression levels, suggesting their functional diversity in response to developmental cues or stress treatments. Although local duplication events, such as tandem duplication and retrotransposition, were found among several plant species, most of the plant species contained only one copy of SYF2, suggesting the existence of additional mechanisms to confer duplication resistance. Further investigation using the model dicot and monocot representatives Arabidopsis and rice SYF2s indicated that the splicing pattern and resulting protein isoforms might play an alternative role in the functional diversity.


Assuntos
Genes de Plantas/genética , Plantas/genética , Sítios de Splice de RNA/genética , Arabidopsis/genética , Sequência Conservada/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Filogenia , Regiões Promotoras Genéticas/genética , Mutações Sintéticas Letais/genética , Sequências de Repetição em Tandem/genética
11.
J Exp Bot ; 70(3): 817-833, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30535157

RESUMO

Post-transcriptional mechanisms (PTMs), including alternative splicing (AS) and alternative translation initiation (ATI), may explain the diversity of proteins involved in plant development and stress responses. Transcriptional regulation is important during the hypoxic germination of rice seeds, but the potential roles of PTMs in this process have not been characterized. We used a combination of proteomics and RNA sequencing to discover how AS and ATI contribute to plant responses to hypoxia. In total, 10 253 intron-containing genes were identified. Of these, ~1741 differentially expressed AS (DAS) events from 811 genes were identified in hypoxia-treated seeds compared with controls. Over 95% of these were not present in the list of differentially expressed genes. In particular, regulatory pathways such as the spliceosome, ribosome, endoplasmic reticulum protein processing and export, proteasome, phagosome, oxidative phosphorylation, and mRNA surveillance showed substantial AS changes under hypoxia, suggesting that AS responses are largely independent of transcriptional regulation. Considerable AS changes were identified, including the preferential usage of some non-conventional splice sites and enrichment of splicing factors in the DAS data sets. Taken together, these results not only demonstrate that AS and ATI function during hypoxic germination but they have also allowed the identification of numerous novel proteins/peptides produced via ATI.


Assuntos
Processamento Alternativo , Germinação/genética , Oryza/crescimento & desenvolvimento , Biossíntese de Proteínas , Anaerobiose , Oryza/genética , Oxigênio/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
12.
Plant J ; 91(3): 518-533, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28407323

RESUMO

In eukaryotes, mechanisms such as alternative splicing (AS) and alternative translation initiation (ATI) contribute to organismal protein diversity. Specifically, splicing factors play crucial roles in responses to environment and development cues; however, the underlying mechanisms are not well investigated in plants. Here, we report the parallel employment of short-read RNA sequencing, single molecule long-read sequencing and proteomic identification to unravel AS isoforms and previously unannotated proteins in response to abscisic acid (ABA) treatment. Combining the data from the two sequencing methods, approximately 83.4% of intron-containing genes were alternatively spliced. Two AS types, which are referred to as alternative first exon (AFE) and alternative last exon (ALE), were more abundant than intron retention (IR); however, by contrast to AS events detected under normal conditions, differentially expressed AS isoforms were more likely to be translated. ABA extensively affects the AS pattern, indicated by the increasing number of non-conventional splicing sites. This work also identified thousands of unannotated peptides and proteins by ATI based on mass spectrometry and a virtual peptide library deduced from both strands of coding regions within the Arabidopsis genome. The results enhance our understanding of AS and alternative translation mechanisms under normal conditions, and in response to ABA treatment.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteogenômica/métodos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Processamento Alternativo/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Éxons/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/efeitos dos fármacos , Genoma de Planta/genética , Íntrons/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Plântula/genética
14.
Plant Cell Physiol ; 58(8): 1391-1404, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575477

RESUMO

Carbon reserves in rice straw (stem and sheath) before flowering contribute to a significant portion of grain filling. However, the molecular mechanism of carbon reserve remobilization from straw to grains remains unclear. In this study, super rice LYP9 and conventional rice 9311 showed different carbon reserve remobilization behaviors. The transcriptomic profiles of straws of LYP9 and 9311 were analyzed at three stages of grain filling. Among the differentially expressed genes (DGs), 5,733 genes were uniquely up- or down-regulated at 30 days after anthesis (DAA) between LYP9 and 9311 in comparison with 681 at 10 DAA and 495 at 20 DAA, suggesting that the gene expression profile of LYP9 was very different from that of 9311 at the late stage of grain filling. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Ontology (GO) classification of DGs both showed that the carbohydrate catabolic pathway, plant hormone signal transduction and photosynthesis pathway were enriched in DGs, suggesting their roles in carbon reserve remobilization, which explains to a certain extent the difference in non-structural carbohydrate content, photosynthesis and ABA content between the two cultivars during grain filling. Further comparative analysis and confirmation by quantitative real-time PCR and enzyme assays suggest that genes involved in trehalose synthesis (trehalose-phosphate phosphatase and trehalose 6-phosphate synthase/phosphatase), starch degradation (ß-amylase) and sucrose synthesis (sucrose-phosphate synthase and sucrose synthase) were important for carbon reserve remobilization, whereas ABA content was determined by the counteraction of NCED1 and ABA8ox1 genes. The higher expression level of all these genes and ABA content in 9311 resulted in better efficiency of carbon reserve remobilization in 9311 than in LYP9.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Caules de Planta/metabolismo , Sementes/crescimento & desenvolvimento , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Metabolismo dos Carboidratos/genética , Ontologia Genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Caules de Planta/genética , Sementes/genética , Análise de Sequência de RNA , Amido/genética , Amido/metabolismo , Sacarose/metabolismo
15.
Plant Cell ; 26(3): 1053-68, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24619610

RESUMO

Seed development includes an early stage of endosperm proliferation and a late stage of embryo growth at the expense of the endosperm in Arabidopsis thaliana. Abscisic acid (ABA) has known functions during late seed development, but its roles in early seed development remain elusive. In this study, we report that ABA-deficient mutants produced seeds with increased size, mass, and embryo cell number but delayed endosperm cellularization. ABSCISIC ACID DEFICIENT2 (ABA2) encodes a unique short-chain dehydrogenase/reductase that functions in ABA biosynthesis, and its expression pattern overlaps that of SHORT HYPOCOTYL UNDER BLUE1 (SHB1) during seed development. SHB1 RNA accumulation was significantly upregulated in the aba2-1 mutant and was downregulated by the application of exogenous ABA. Furthermore, RNA accumulation of the basic/region leucine zipper transcription factor ABSCISIC ACID-INSENSITIVE5 (ABI5), involved in ABA signaling, was decreased in aba2-1. Consistent with this, seed size was also increased in abi5. We further show that ABI5 directly binds to two discrete regions in the SHB1 promoter. Our results suggest that ABA negatively regulates SHB1 expression, at least in part, through the action of its downstream signaling component ABI5. Our findings provide insights into the molecular mechanisms by which ABA regulates early seed development.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/embriologia , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Sementes/crescimento & desenvolvimento , Transcrição Gênica/fisiologia , Oxirredutases do Álcool/genética , RNA/metabolismo
16.
Med Sci Monit ; 23: 5760-5766, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29200411

RESUMO

BACKGROUND The aim of this study was to evaluate the efficacy and safety of bicyclol treatment in statin-induced liver injury. MATERIAL AND METHODS The study included 168 patients with liver injury caused by statins. Patients were randomized into two four-week treatment groups: bicyclol 25 mg three times daily or polyene phosphatidylcholine 456 mg three times daily as control. Serum biochemical indexes were compared before and after treatment. RESULTS Significant differences in alanine transaminase (ALT) levels among the three measurements before and after treatment in the two groups at different time points were observed (p<0.01). There was a significant difference (p<0.01) between two weeks and four weeks after treatment compared to the baseline period. There was a significant interaction (p=0.003) between the two groups and time factors. After two and four weeks of treatment, the ALT levels in the control group (68.20±26.31, 50.71±27.13 respectively) were higher compared to the ALT in the bicyclol group (49.33±21.39, 30.36±17.41 respectively) (p<0.01). After four weeks of treatment, the normalization rates of bicyclol and polyene phosphatidylcholine groups were 74.68% and 46.15%, respectively. The efficacy of bicyclol was significantly better than that of polyene phosphatidylcholine (p<0.05). The incidence of adverse reactions in the bicyclol and polyene phosphatidylcholine groups were 2.53% and 2.56%, respectively, with no statistically significant differences observed between the two groups (p>0.05). CONCLUSIONS These findings suggest that trends of ALT changes in the two groups were different, and the improvement of ALT was more obvious in the bicyclol group. Bicyclol is considered to be safe and effective in the treatment of statin-induced liver injury.


Assuntos
Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Adulto , Idoso , Alanina Transaminase/sangue , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Fígado/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas/farmacologia , Fosfatidilcolinas/uso terapêutico
18.
Biochem Biophys Res Commun ; 444(4): 451-4, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24486541

RESUMO

Glucose-stimulated insulin secretion (GSIS) is essential for the control of metabolic fuel homeostasis and its impairment is a key element in the failure of ß-cells in type 2 diabetes. Trans-caryophyllene (TC), an important constituent of the essential oil of several species of plants, has been reported to activate the type 2 cannabinoid receptor (CB2R). The effects of TC on GSIS are still unknown. Our results demonstrate that administration of TC in MIN6 cells promotes GSIS in a dose dependent manner. However, inhibition of CB2R by a specific inhibitor or specific RNA interference abolished the effects of TC on GSIS, which suggests that the effects of TC on GSIS are dependent on activation of CB2R. Further study demonstrated that treatment with TC leads to the activation of small G protein Arf6 as well as Rac1 and Cdc42. Importantly, Arf6 silencing abolished the effects of TC on GSIS, which suggests that Arf6 participates in mediating the effects of TC on GSIS. We conclude from these data that TC has a novel role in regulating GSIS in pancreatic ß-cells.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Sesquiterpenos/farmacologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Sesquiterpenos Policíclicos
19.
J Fungi (Basel) ; 10(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39194912

RESUMO

Phyllachora (Phyllachoraceae, Phyllachorales) species are parasitic fungi with a wide global distribution, causing tar spots on plants. In this study, we describe three newly discovered species: Phyllachora chongzhouensis, Phyllachora neidongensis, and Phyllachora huiliensis from Poaceae in China. These species were characterized using morphological traits and multi-locus phylogeny based on the internal transcribed spacer region (ITS) with the intervening 5.8S rRNA gene, the large subunit of the rRNA gene (LSU), and the 18S ribosomal RNA gene (SSU). Three known species of P. chloridis, P. graminis, and P. miscanthi have also been redescribed, because, in reviewing the original references of P. chloridis, P. graminis, and P. miscanthi, these were found to be relatively old and in Chinese or abbreviated. In addition, the illustrations were simple. In molecular identification, the ITS sequence is short, while the ITS, LSU, and SSU are incomplete. Therefore, this study provides new important references for the redescription of three known species and provides further evidence for the identification of new taxa.

20.
Front Immunol ; 14: 1126117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223092

RESUMO

Background and aims: The pathogenesis of primary biliary cholangitis (PBC) is associated with alterations of gut microbiota. We compared the gut microbiota of PBC patients and healthy controls from Zhejiang Province and assessed the use of these data for the diagnosis of PBC. Methods: First, 16S rRNA gene sequencing was used to characterize the gut microbiota of treatment-naive PBC patients (n=25) and matched healthy controls (n=25). Then, the value of gut microbiota composition for the diagnosis of PBC and assessment of PBC severity was determined. Results: The gut microbiota of PBC patients had lower diversity based on three different metrics of alpha-diversity (ace, Chao1, and observed features) and fewer overall genera (all p<0.01). PBC patients had significant enrichment of four genera and significant depletion of eight genera. We identified six amplicon sequence variants (Serratia, Oscillospirales, Ruminococcaceae, Faecalibacterium, Sutterellaceae, and Coprococcus) as optimal biomarkers to distinguish PBC patients from controls based on receiver operating characteristic analysis (area under the curve [AUC] = 0.824). PBC patients who were anti-gp210-positive had lower levels of Oscillospiraceae than those who were anti-gp210-negative. KEGG functional annotation suggested the major changes in the gut microbiota of PBC patients were related to lipid metabolism and biosynthesis of secondary metabolites. Conclusion: We characterized the gut microbiota of treatment-naive PBC patients and healthy controls from Zhejiang Province. The PBC patients had significant alterations in their gut microbiota, suggesting that gut microbiota composition could be useful as a non-invasive tool for the diagnosis of PBC.


Assuntos
Microbioma Gastrointestinal , Lactobacillales , Cirrose Hepática Biliar , Humanos , Cirrose Hepática Biliar/diagnóstico , RNA Ribossômico 16S/genética , Área Sob a Curva , Benchmarking , Clostridiales
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa