RESUMO
Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.
Assuntos
Proteínas Reguladoras de Apoptose , Quirópteros , Inflamassomos , Ribonucleoproteínas , Viroses , Animais , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Quirópteros/imunologia , COVID-19 , Inflamassomos/imunologia , Ribonucleoproteínas/metabolismo , SARS-CoV-2 , Viroses/imunologia , Fenômenos Fisiológicos ViraisRESUMO
Most of the single-nucleotide polymorphisms (SNPs) associated with insulin resistance (IR)-relevant phenotypes by genome-wide association studies (GWASs) are located in noncoding regions, complicating their functional interpretation. Here, we utilized an adapted STARR-seq to evaluate the regulatory activities of 5,987 noncoding SNPs associated with IR-relevant phenotypes. We identified 876 SNPs with biased allelic enhancer activity effects (baaSNPs) across 133 loci in three IR-relevant cell lines (HepG2, preadipocyte, and A673), which showed pervasive cell specificity and significant enrichment for cell-specific open chromatin regions or enhancer-indicative markers (H3K4me1, H3K27ac). Further functional characterization suggested several transcription factors (TFs) with preferential allelic binding to baaSNPs. We also incorporated multi-omics data to prioritize 102 candidate regulatory target genes for baaSNPs and revealed prevalent long-range regulatory effects and cell-specific IR-relevant biological functional enrichment on them. Specifically, we experimentally verified the distal regulatory mechanism at IRS1 locus, in which rs952227-A reinforces IRS1 expression by long-range chromatin interaction and preferential binding to the transcription factor HOXC6 to augment the enhancer activity. Finally, based on our STARR-seq screening data, we predicted the enhancer activity of 227,343 noncoding SNPs associated with IR-relevant phenotypes (fasting insulin adjusted for BMI, HDL cholesterol, and triglycerides) from the largest available GWAS summary statistics. We further provided an open resource (http://www.bigc.online/fnSNP-IR) for better understanding genetic regulatory mechanisms of IR-relevant phenotypes.
Assuntos
Resistência à Insulina , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Estudo de Associação Genômica Ampla , Resistência à Insulina/genética , Fatores de Transcrição/genética , Cromatina/genética , Fenótipo , Elementos Facilitadores Genéticos/genéticaRESUMO
Banana (Musa acuminata) fruits ripening at 30 °C or above fail to develop yellow peels; this phenomenon, called green ripening, greatly reduces their marketability. The regulatory mechanism underpinning high temperature-induced green ripening remains unknown. Here we decoded a transcriptional and post-translational regulatory module that causes green ripening in banana. Banana fruits ripening at 30 °C showed greatly reduced expression of 5 chlorophyll catabolic genes (CCGs), MaNYC1 (NONYELLOW COLORING 1), MaPPH (PHEOPHYTINASE), MaTIC55 (TRANSLOCON AT THE INNER ENVELOPE MEMBRANE OF CHLOROPLASTS 55), MaSGR1 (STAY-GREEN 1), and MaSGR2 (STAY-GREEN 2), compared to those ripening at 20 °C. We identified a MYB transcription factor, MaMYB60, that activated the expression of all 5 CCGs by directly binding to their promoters during banana ripening at 20 °C, while showing a weaker activation at 30 °C. At high temperatures, MaMYB60 was degraded. We discovered a RING-type E3 ligase MaBAH1 (benzoic acid hypersensitive 1) that ubiquitinated MaMYB60 during green ripening and targeted it for proteasomal degradation. MaBAH1 thus facilitated MaMYB60 degradation and attenuated MaMYB60-induced transactivation of CCGs and chlorophyll degradation. By contrast, MaMYB60 upregulation increased CCG expression, accelerated chlorophyll degradation, and mitigated green ripening. Collectively, our findings unravel a dynamic, temperature-responsive MaBAH1-MaMYB60-CCG module that regulates chlorophyll catabolism, and the molecular mechanism underpinning green ripening in banana. This study also advances our understanding of plant responses to high-temperature stress.
Assuntos
Musa , Temperatura , Musa/genética , Musa/química , Musa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismoRESUMO
Abscisic acid (ABA) is involved in salt and drought stress responses, but the underlying molecular mechanism remains unclear. Here, we demonstrated that the overexpression of MdMYB44-like, an R2R3-MYB transcription factor, significantly increases the salt and drought tolerance of transgenic apples and Arabidopsis. MdMYB44-like inhibits the transcription of MdPP2CA, which encodes a type 2C protein phosphatase that acts as a negative regulator in the ABA response, thereby enhancing ABA signaling-mediated salt and drought tolerance. Furthermore, we found that MdMYB44-like and MdPYL8, an ABA receptor, form a protein complex that further enhances the transcriptional inhibition of the MdPP2CA promoter by MdMYB44-like. Significantly, we discovered that MdPP2CA can interfere with the physical association between MdMYB44-like and MdPYL8 in the presence of ABA, partially blocking the inhibitory effect of the MdMYB44-like-MdPYL8 complex on the MdPP2CA promoter. Thus, MdMYB44-like, MdPYL8, and MdPP2CA form a regulatory loop that tightly modulates ABA signaling homeostasis under salt and drought stress. Our data reveal that MdMYB44-like precisely modulates ABA-mediated salt and drought tolerance in apples through the MdPYL8-MdPP2CA module.
Assuntos
Arabidopsis , Malus , Malus/genética , Malus/metabolismo , Resistência à Seca , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Cloreto de Sódio/farmacologia , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Estresse FisiológicoRESUMO
In selective autophagy, cargo selectivity is determined by autophagy receptors. However, it remains scarcely understood how autophagy receptors recognize specific protein cargos. In the fission yeast Schizosaccharomyces pombe, a selective autophagy pathway termed Nbr1-mediated vacuolar targeting (NVT) employs Nbr1, an autophagy receptor conserved across eukaryotes including humans, to target cytosolic hydrolases into the vacuole. Here, we identify two new NVT cargos, the mannosidase Ams1 and the aminopeptidase Ape4, that bind competitively to the first ZZ domain of Nbr1 (Nbr1-ZZ1). High-resolution cryo-EM analyses reveal how a single ZZ domain recognizes two distinct protein cargos. Nbr1-ZZ1 not only recognizes the N-termini of cargos via a conserved acidic pocket, similar to other characterized ZZ domains, but also engages additional parts of cargos in a cargo-specific manner. Our findings unveil a single-domain bispecific mechanism of autophagy cargo recognition, elucidate its underlying structural basis, and expand the understanding of ZZ domain-mediated protein-protein interactions.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Domínios Proteicos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genéticaRESUMO
Gene essentiality is defined as the extent to which a gene is required for the survival and reproductive success of a living system. It can vary between genetic backgrounds and environments. Essential protein coding genes have been well studied. However, the essentiality of non-coding regions is rarely reported. Most regions of human genome do not encode proteins. Determining essentialities of non-coding genes is demanded. We developed iEssLnc models, which can assign essentiality scores to lncRNA genes. As far as we know, this is the first direct quantitative estimation to the essentiality of lncRNA genes. By taking the advantage of graph neural network with meta-path-guided random walks on the lncRNA-protein interaction network, iEssLnc models can perform genome-wide screenings for essential lncRNA genes in a quantitative manner. We carried out validations and whole genome screening in the context of human cancer cell-lines and mouse genome. In comparisons to other methods, which are transferred from protein-coding genes, iEssLnc achieved better performances. Enrichment analysis indicated that iEssLnc essentiality scores clustered essential lncRNA genes with high ranks. With the screening results of iEssLnc models, we estimated the number of essential lncRNA genes in human and mouse. We performed functional analysis to find that essential lncRNA genes interact with microRNAs and cytoskeletal proteins significantly, which may be of interest in experimental life sciences. All datasets and codes of iEssLnc models have been deposited in GitHub (https://github.com/yyZhang14/iEssLnc).
Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Animais , Camundongos , Mapas de Interação de Proteínas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/metabolismo , Redes Neurais de ComputaçãoRESUMO
With the improvement of single-cell measurement techniques, there is a growing awareness that individual differences exist among cells, and protein expression distribution can vary across cells in the same tissue or cell line. Pinpointing the protein subcellular locations in single cells is crucial for mapping functional specificity of proteins and studying related diseases. Currently, research about single-cell protein location is still in its infancy, and most studies and databases do not annotate proteins at the cell level. For example, in the human protein atlas database, an immunofluorescence image stained for a particular protein shows multiple cells, but the subcellular location annotation is for the whole image, ignoring intercellular difference. In this study, we used large-scale immunofluorescence images and image-level subcellular locations to develop a deep-learning-based pipeline that could accurately recognize protein localizations in single cells. The pipeline consisted of two deep learning models, i.e. an image-based model and a cell-based model. The former used a multi-instance learning framework to comprehensively model protein distribution in multiple cells in each image, and could give both image-level and cell-level predictions. The latter firstly used clustering and heuristics algorithms to assign pseudo-labels of subcellular locations to the segmented cell images, and then used the pseudo-labels to train a classification model. Finally, the image-based model was fused with the cell-based model at the decision level to obtain the final ensemble model for single-cell prediction. Our experimental results showed that the ensemble model could achieve higher accuracy and robustness on independent test sets than state-of-the-art methods.
Assuntos
Aprendizado Profundo , Humanos , Proteínas/metabolismo , Algoritmos , Linhagem Celular , ImunofluorescênciaRESUMO
Gastric cancer (GC) is a major global health concern with poor outcomes. Heterogeneous nuclear ribonucleoprotein U (HNRNPU) is a multifunctional protein that participates in pre-mRNA packaging, alternative splicing regulation, and chromatin remodeling. Its potential role in GC remains unclear. In this study, the expression characteristics of HNRNPU were analyzed by The Cancer Genome Atlas data, Gene Expression Omnibus data, and then further identified by real-time quantitative PCR and immunohistochemistry using tissue specimens. From superficial gastritis, atrophic gastritis, and hyperplasia to GC, the in situ expression of HNRNPU protein gradually increased, and the areas under the curve for diagnosis of GC and its precancerous lesions were 0.911 and 0.847, respectively. A nomogram integrating HNRNPU expression, lymph node metastasis, and other prognostic indicators exhibited an area under the curve of 0.785 for predicting survival risk. Knockdown of HNRNPU significantly inhibited GC cell proliferation, migration, and invasion and promoted apoptosis in vitro. In addition, RNA-sequencing analysis showed that HNRNPU could affect alternative splicing events in GC cells, with functional enrichment analysis revealing that HNRNPU may exert malignant biological function in GC progression through alternative splicing regulation. In summary, the increased expression of HNRNPU was significantly associated with the development of GC, with a good performance in diagnosing and predicting the prognostic risk of GC. Functionally, HNRNPU may play an oncogenic role in GC by regulating alternative splicing.
Assuntos
Neoplasias Gástricas , Humanos , Processamento Alternativo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismoRESUMO
Early repolarization syndrome (ERS) is defined as occurring in patients with early repolarization pattern who have survived idiopathic ventricular fibrillation with clinical evaluation unrevealing for other explanations. The pathophysiologic basis of the ERS is currently uncertain. The objective of the present study was to examine the electrophysiological mechanism of ERS utilizing induced pluripotent stem cells (iPSCs) and CRISPR/Cas9 genome editing. Whole genome sequencing was used to identify the DPP6 (c.2561T > C/p.L854P) variant in four families with sudden cardiac arrest induced by ERS. Cardiomyocytes were generated from iPSCs from a 14-year-old boy in the four families with ERS and an unrelated healthy control subject. Patch clamp recordings revealed more significant prolongation of the action potential duration (APD) and increased transient outward potassium current (Ito) (103.97 ± 18.73 pA/pF vs 44.36 ± 16.54 pA/pF at +70 mV, P < 0.05) in ERS cardiomyocytes compared with control cardiomyocytes. Of note, the selective correction of the causal variant in iPSC-derived cardiomyocytes using CRISPR/Cas9 gene editing normalized the Ito, whereas prolongation of the APD remained unchanged. ERS cardiomyocytes carrying DPP6 mutation increased Ito and lengthen APD, which maybe lay the electrophysiological foundation of ERS.
RESUMO
Dysregulated epigenetic and transcriptional programming due to abnormalities of transcription factors (TFs) contributes to and sustains the oncogenicity of cancer cells. Here, we unveiled the role of zinc finger protein 280C (ZNF280C), a known DNA damage response protein, as a tumorigenic TF in colorectal cancer (CRC), required for colitis-associated carcinogenesis and Apc deficiencydriven intestinal tumorigenesis in mice. Consistently, ZNF280C silencing in human CRC cells inhibited proliferation, clonogenicity, migration, xenograft growth, and liver metastasis. As a C2H2 (Cys2-His2) zinc finger-containing TF, ZNF280C occupied genomic intervals with both transcriptionally active and repressive states and coincided with CCCTC-binding factor (CTCF) and cohesin binding. Notably, ZNF280C was crucial for the repression program of trimethylation of histone H3 at lysine 27 (H3K27me3)-marked genes and the maintenance of both focal and broad H3K27me3 levels. Mechanistically, ZNF280C counteracted CTCF/cohesin activities and condensed the chromatin environment at the cis elements of certain tumor suppressor genes marked by H3K27me3, at least partially through recruiting the epigenetic repressor structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1). In clinical relevance, ZNF280C was highly expressed in primary CRCs and distant metastases, and a higher ZNF280C level independently predicted worse prognosis of CRC patients. Thus, our study uncovered a contributor with good prognostic value to CRC pathogenesis and also elucidated the essence of DNA-binding TFs in orchestrating the epigenetic programming of gene regulation.
Assuntos
Cromatina , Neoplasias Colorretais , Repressão Epigenética , Fator de Ligação a CCCTC/metabolismo , Carcinogênese/genética , Cromatina/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA , Histonas/genética , Histonas/metabolismo , Humanos , Prognóstico , Fatores de Transcrição , Dedos de ZincoRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a variety of clinical manifestations, many of which originate from altered immune responses, either locally or systemically. Immune cell cross-talk occurs mainly in lymphoid organs. However, systemic cell interaction specific to coronavirus disease 2019 has not been well characterized. Here, by employing single-cell RNA sequencing and imaging flow cytometry analysis, we unraveled, in peripheral blood, a heterogeneous group of cell complexes formed by the adherence of CD14+ monocytes to different cytotoxic lymphocytes, including SARS-CoV-2-specific CD8+ T cells, γδ T cells, and natural killer T cells. These lymphocytes attached to CD14+ monocytes that showed enhanced inflammasome activation and pyroptosis-induced cell death in progression stage; in contrast, in the convalescent phase, CD14+ monocytes with elevated antigen presentation potential were targeted by cytotoxic lymphocytes, thereby restricting the excessive immune activation. Collectively, our study reports previously unrecognized cell-cell interplay in the SARS-CoV-2-specific immune response, providing new insight into the intricacy of dynamic immune cell interaction representing antiviral defense.
Assuntos
COVID-19 , Monócitos , SARS-CoV-2 , Linfócitos T Citotóxicos , Humanos , COVID-19/imunologia , COVID-19/virologia , Monócitos/imunologia , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Inflamassomos/imunologia , Piroptose/imunologia , Células T Matadoras Naturais/imunologia , Masculino , Comunicação Celular/imunologia , Análise de Célula ÚnicaRESUMO
OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy because it is often diagnosed at a late-stage. Signal transducer and activator of transcription 5 (STAT5) is a transcription factor implicated in the progression of various cancer types. However, its role in KRAS-driven pancreatic tumourigenesis remains unclear. DESIGN: We performed studies with LSL-Kras G12D; Ptf1a-Cre ERT (KCERT) mice or LSL-KrasG12D; LSL-Trp53R172H ; Pdx1-Cre (KPC) mice crossed with conditional disruption of STAT5 or completed deficiency interleukin (IL)-22. Pancreatitis was induced in mice by administration of cerulein. Pharmacological inhibition of STAT5 on PDAC prevention was studied in the orthotopic transplantation and patient-derived xenografts PDAC model, and KPC mice. RESULTS: The expression and phosphorylation of STAT5 were higher in human PDAC samples than control samples and high levels of STAT5 in tumour cells were associated with a poorer prognosis. The loss of STAT5 in pancreatic cells substantially reduces the KRAS mutation and pancreatitis-derived acinar-to-ductal metaplasia (ADM) and PDAC lesions. Mechanistically, we discovered that STAT5 binds directly to the promoters of ADM mediators, hepatocyte nuclear factor (HNF) 1ß and HNF4α. Furthermore, STAT5 plays a crucial role in maintaining energy metabolism in tumour cells during PDAC progression. IL-22 signalling induced by chronic inflammation enhances KRAS-mutant-mediated STAT5 phosphorylation. Deficiency of IL-22 signalling slowed the progression of PDAC and ablated STAT5 activation. CONCLUSION: Collectively, our findings identified pancreatic STAT5 activation as a key downstream effector of oncogenic KRAS signalling that is critical for ADM initiation and PDAC progression, highlighting its potential therapeutic vulnerability.
Assuntos
Carcinoma Ductal Pancreático , Metaplasia , Neoplasias Pancreáticas , Pancreatite , Proteínas Proto-Oncogênicas p21(ras) , Fator de Transcrição STAT5 , Animais , Fator de Transcrição STAT5/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Camundongos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Metaplasia/metabolismo , Metaplasia/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Humanos , Pancreatite/metabolismo , Pancreatite/patologia , Células Acinares/metabolismo , Células Acinares/patologia , Pâncreas/patologia , Pâncreas/metabolismoRESUMO
Hepatitis B virus (HBV) damages liver cells through abnormal immune responses. Mitochondrial metabolism is necessary for effector functions of white blood cells (WBCs). The aim was to investigate the altered counts and mitochondrial mass (MM) of WBCs by two novel indicators of mitochondrial mass, MM and percentage of low mitochondrial membrane potential, MMPlow%, due to chronic HBV infection. The counts of lymphocytes, neutrophils and monocytes in the HBV infection group were in decline, especially for lymphocyte (p = 0.034) and monocyte counts (p = 0.003). The degraded MM (p = 0.003) and MMPlow% (p = 0.002) of lymphocytes and MM (p = 0.005) of monocytes suggested mitochondrial dysfunction of WBCs. HBV DNA within WBCs showed an extensive effect on mitochondria metabolic potential of lymphocytes, neutrophils and monocytes indicated by MM; hepatitis B e antigen was associated with instant mitochondrial energy supply indicated by MMPlow% of neutrophils; hepatitis B surface antigen, antiviral therapy by nucleos(t)ide analogues and prolonged infection were also vital factors contributing to WBC alterations. Moreover, degraded neutrophils and monocytes could be used to monitor immune responses reflecting chronic liver fibrosis and inflammatory damage. In conclusion, MM combined with cell counts of WBCs could profoundly reflect WBC alterations for monitoring chronic HBV infection. Moreover, HBV DNA within WBCs may be a vital factor in injuring mitochondria metabolic potential.
Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Mitocôndrias , Humanos , Hepatite B Crônica/virologia , Hepatite B Crônica/patologia , Masculino , Feminino , Vírus da Hepatite B/patogenicidade , Adulto , Mitocôndrias/metabolismo , Pessoa de Meia-Idade , Contagem de Leucócitos , Leucócitos/metabolismo , DNA Viral/sangue , Potencial da Membrana Mitocondrial , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/virologia , Monócitos/patologia , Neutrófilos/metabolismo , Neutrófilos/imunologiaRESUMO
Recent studies have shown that nucleophagy can mitigate DNA damage by selectively degrading nuclear components protruding from the nucleus. However, little is known about the role of nucleophagy in neurons after spinal cord injury (SCI). Western blot analysis and immunofluorescence were performed to evaluate the nucleophagy after nuclear DNA damage and leakage in SCI neurons in vivo and NSC34 expression in primary neurons cultured with oxygen-glucose deprivation (OGD) in vitro, as well as the interaction and colocalization of autophagy protein LC3 with nuclear lamina protein Lamin B1. The effect of UBC9, a Small ubiquitin-related modifier (SUMO) E2 ligase, on Lamin B1 SUMOylation and nucleophagy was examined by siRNA transfection or 2-D08 (a small-molecule inhibitor of UBC9), immunoprecipitation, and immunofluorescence. In SCI and OGD injured NSC34 or primary cultured neurons, neuronal nuclear DNA damage induced the SUMOylation of Lamin B1, which was required by the nuclear Lamina accumulation of UBC9. Furthermore, LC3/Atg8, an autophagy-related protein, directly bound to SUMOylated Lamin B1, and delivered Lamin B1 to the lysosome. Knockdown or suppression of UBC9 with siRNA or 2-D08 inhibited SUMOylation of Lamin B1 and subsequent nucleophagy and protected against neuronal death. Upon neuronal DNA damage and leakage after SCI, SUMOylation of Lamin B1 is induced by nuclear Lamina accumulation of UBC9. Furthermore, it promotes LC3-Lamin B1 interaction to trigger nucleophagy that protects against neuronal DNA damage.
Assuntos
Autofagia , Dano ao DNA , Lamina Tipo B , Neurônios , Traumatismos da Medula Espinal , Sumoilação , Enzimas de Conjugação de Ubiquitina , Animais , Camundongos , Núcleo Celular/metabolismo , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Neurônios/metabolismo , Neurônios/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Camundongos Endogâmicos C57BL , Linhagem Celular TumoralRESUMO
BACKGROUND: Atrial fibrillation (AF) is a prevalent arrhythmic condition resulting in increased stroke risk and is associated with high mortality. Electrolyte imbalance can increase the risk of AF, where the relationship between AF and serum electrolytes remains unclear. METHODS: A total of 15,792 individuals were included in the observational study, with incident AF ascertainment in the Atherosclerosis Risk in Communities (ARIC) study. The Cox regression models were applied to calculate the hazard ratio (HR) and 95% confidence interval (CI) for AF based on different serum electrolyte levels. Mendelian randomization (MR) analyses were performed to examine the causal association. RESULTS: In observational study, after a median 19.7 years of follow-up, a total of 2551 developed AF. After full adjustment, participants with serum potassium below the 5th percentile had a higher risk of AF relative to participants in the middle quintile. Serum magnesium was also inversely associated with the risk of AF. An increased incidence of AF was identified in individuals with higher serum phosphate percentiles. Serum calcium levels were not related to AF risk. Moreover, MR analysis indicated that genetically predicted serum electrolyte levels were not causally associated with AF risk. The odds ratio for AF were 0.999 for potassium, 1.044 for magnesium, 0.728 for phosphate, and 0.979 for calcium, respectively. CONCLUSIONS: Serum electrolyte disorders such as hypokalemia, hypomagnesemia and hyperphosphatemia were associated with an increased risk of AF and may also serve to be prognostic factors. However, the present study did not support serum electrolytes as causal mediators for AF development.
Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/genética , Fatores de Risco , Magnésio , Análise da Randomização Mendeliana , Cálcio , Potássio , Fosfatos , Eletrólitos , Estudo de Associação Genômica Ampla/métodosRESUMO
Spin-crossover (SCO) materials exhibit remarkable potential as bistable switches in molecular devices. However, the spin transition temperatures (Tc) of known compounds are unable to cover the entire ambient temperature spectrum, largely limiting their practical utility. This study reports an exemplary two-dimensional SCO solid solution system, [FeIII(H0.5LCl)2-2x(H0.5LF)2x]·H2O (H0.5LX = 5-X-2-hydroxybenzylidene-hydrazinecarbothioamide, X = F or Cl, x = 0 to 1), in which the adjacent layers are adhered via hydrogen bonding. Notably, the Tc of this system can be fine-tuned across 90 K (227-316 K) in a linear manner by modulating the fraction x of the LF ligand. Elevating x results in strengthened hydrogen bonding between adjacent layers, which leads to enhanced intermolecular interactions between adjacent SCO molecules. Single-crystal diffraction analysis and periodic density functional theory calculations revealed that such a special kind of alteration in interlayer interactions strengthens the FeIIIN2O2S2 ligand field and corresponding SCO energy barrier, consequently resulting in increased Tc. This work provides a new pathway for tuning the Tc of SCO materials through delicate manipulation of molecular interactions, which could expand the application of bistable molecular solids to a much wider temperature regime.
RESUMO
BACKGROUND: Prostate cancer (PCa) is one of the most prevalent malignancies in males worldwide. Increasing research attention has focused on the PCa microenvironment, which plays a crucial role in tumor progression and therapy resistance. This review aims to provide a comprehensive overview of the key components of the PCa microenvironment, including immune cells, vascular systems, stromal cells, and microbiota, and explore their implications for diagnosis and treatment. METHODS: Keywords such as "prostate cancer", "tumor microenvironment", "immune cells", "vascular system", "stromal cells", and "microbiota" were used for literature retrieval through online databases including PubMed and Web of Science. Studies related to the PCa microenvironment were selected, with a particular focus on those discussing the roles of immune cells, vascular systems, stromal cells, and microbiota in the development, progression, and treatment of PCa. The selection criteria prioritized peer-reviewed articles published in the last five years, aiming to summarize and analyze the latest research advancements and clinical relevance regarding the PCa microenvironment. RESULTS: The PCa microenvironment is highly complex and dynamic, with immune cells contributing to immunosuppressive conditions, stromal cells promoting tumor growth, and microbiota potentially affecting androgen metabolism. Vascular systems support angiogenesis, which fosters tumor expansion. Understanding these components offers insight into the mechanisms driving PCa progression and opens avenues for novel therapeutic strategies targeting the tumor microenvironment. CONCLUSIONS: A deeper understanding of the PCa microenvironment is crucial for advancing diagnostic techniques and developing precision therapies. This review highlights the potential of targeting the microenvironment to improve patient outcomes, emphasizing its significance in the broader context of PCa research and treatment innovation.
Assuntos
Microbiota , Neoplasias da Próstata , Células Estromais , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Células Estromais/metabolismo , Microbiota/imunologia , Masculino , Animais , Neovascularização Patológica/imunologia , Suscetibilidade a DoençasRESUMO
A2AR-disrupted mice is characterized by severe systemic and visceral adipose tissue (VAT) inflammation. Increasing adenosine cyclase (AC), cAMP, and protein kinase A (PKA) formation through A2AR activation suppress systemic/VAT inflammation in obese mice. This study explores the effects of 4 wk A2AR agonist PSB0777 treatment on the VAT-driven pathogenic signals in hepatic and cardiac dysfunction of nonalcoholic steatohepatitis (NASH) obese mice. Among NASH mice with cardiac dysfunction, simultaneous decrease in the A2AR, AC, cAMP, and PKA levels were observed in VAT, liver, and heart. PSB0777 treatment significantly restores AC, cAMP, PKA, and hormone-sensitive lipase (HSL) levels, decreased SREBP-1/FASN, MCP-1, and CD68 levels, reduces infiltrated CD11b+ F4/80+ cells and adipogenesis in VAT of NASH + PSB0777 mice. The changes in VAT were accompanied by the suppression of hepatic and cardiac lipogenic/inflammatory/injury/apoptotic/fibrotic markers, the normalization of cardiac contractile [sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2)] marker, and cardiac dysfunction. The in vitro approach revealed that conditioned media (CM) of VAT of NASH mice (CMnash) trigger palmitic acid (PA)-like lipotoxic (lipogenic/inflammatory/apoptotic/fibrotic) effects in AML-12 and H9c2 cell systems. Significantly, A2AR agonist pretreatment-related normalization of A2AR-AC-cAMP-PKA levels was associated with the attenuation of CMnash-related upregulation of lipotoxic markers and the normalization of lipolytic (AML-12 cells) or contractile (H9C2 cells) marker/contraction. The in vivo and in vitro experiments revealed that A2AR agonists are potential agent to inhibit the effects of VAT inflammation-driven pathogenic signals on the hepatic and cardiac lipogenesis, inflammation, injury, apoptosis, fibrosis, hypocontractility, and subsequently improve hepatic and cardiac dysfunction in NASH mice.NEW & NOTEWORTHY Protective role of adenosine A2AR receptor (A2AR) and AC-cAMP-PKA signaling against nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) possibly via its actions on adipocytes is well known in the past decade. Thus, this study evaluates pharmacological activities of A2AR agonist PSB0777, which has already demonstrated to treat NASH. In this study, the inhibition of visceral adipose tissue-derived pathogenic signals by activation of adenosine A2AR with A2AR agonist PSB0777 improves the hepatic and cardiac dysfunction of high-fat diet (HFD)-induced NASH mice.
Assuntos
Cardiopatias , Leucemia Mieloide Aguda , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Gordura Intra-Abdominal/patologia , Adenosina/metabolismo , Camundongos Obesos , Fígado/metabolismo , Inflamação/metabolismo , Fibrose , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos C57BLRESUMO
N6-Methyladenine (6mdA) and N4-methylcytosine (4mdC) are the two most dominant DNA modifications in both prokaryotes and eukaryotes, but standard hybridization-based techniques cannot be applied for the 6mdA/4mdC assay. Herein, we demonstrate the silver-coordinated Watson-Crick pairing-driven three-dimensional (3D) DNA walker for locus-specific detection of genomic 6mdA/4mdC at the single-molecule level. 6mdA-DNA and 4mdC-DNA can selectively hybridize with the binding probes (BP1 and BP2) to form 6mdA-DNA-BP1 and 4mdC-DNA-BP2 duplexes. The 6mdA-C/4mdC-A mismatches cannot be stabilized by AgI, and thus, 18-nt BP1/BP2 cannot be extended by the catalysis of KF exonuclease. Through toehold-mediated strand displacement (TMSD), the signal probe (SP1/SP2) functionalized on the gold nanoparticles (AuNPs) can competitively bind to BP1/BP2 in 6mdA-DNA-BP1/4mdC-DNA-BP2 duplex to obtain SP1-18-nt BP1 and SP2-18-nt BP2 duplexes. The resulting DNA duplexes can act as the substrates of lambda exonuclease, leading to the cleavage of SP1/SP2 and the release of Cy3/Cy5 and 18-nt BP1/BP2. The released 18-nt BP1/BP2 can subsequently serve as the walker DNA, moving along the surface of the AuNP to activate dynamic 3D DNA walking and releasing abundant Cy3/Cy5. The released Cy3/Cy5 can be quantified by single-molecule imaging. This nanosensor exhibits high sensitivity with a limit of detection (LOD) of 9.80 × 10-15 M for 6mdA-DNA and 9.97 × 10-15 M for 4mdC-DNA. It can discriminate 6mdA-/4mdC-DNA from unmodified genomic DNAs, distinguish 0.01% 6mdA-/4mdC-DNA from excess unmethylated DNAs, and quantify 6mdA-/4mdC-DNA at specific sites in genomic DNAs of liver cancer cells and Escherichia coli plasmid cloning vector, providing a new platform for locus-specific analysis of 6mdA/4mdC in genomic DNAs.
Assuntos
Adenina/análogos & derivados , Carbocianinas , Citosina/análogos & derivados , Nanopartículas Metálicas , Prata , Ouro , Nanopartículas Metálicas/química , DNA , Genômica , ExonucleasesRESUMO
The role of peroxiredoxin 1 (PRDX1), a crucial enzyme that reduces reactive oxygen and nitrogen species levels in HepG2 human hepatocellular carcinoma (HCC) cells, in the regulation of HCC cell stemness under oxidative stress and the underlying mechanisms remain largely unexplored. Here, we investigated the therapeutic potential of non-thermal plasma in targeting cancer stem cells (CSCs) in HCC, focusing on the mechanisms of resistance to oxidative stress and the role of PRDX1. By simulating oxidative stress conditions using the plasma-activated medium, we found that a reduction in PRDX1 levels resulted in a considerable increase in HepG2 cell apoptosis, suggesting that PRDX1 plays a key role in oxidative stress defense mechanisms in CSCs. Furthermore, we found that HepG2 cells had higher spheroid formation capability and increased levels of stem cell markers (CD133, c-Myc, and OCT-4), indicating strong stemness. Interestingly, PRDX1 expression was notably higher in HepG2 cells than in other HCC cell types such as Hep3B and Huh7 cells, whereas the expression levels of other PRDX family proteins (PRDX 2-6) were relatively consistent. The inhibition of PRDX1 expression and peroxidase activity by conoidin A resulted in markedly reduced stemness traits and increased cell death rate. Furthermore, in a xenograft mouse model, PRDX1 downregulation considerably inhibited the formation of solid tumors after plasma-activated medium (PAM) treatment. These findings underscore the critical role of PRDX 1 in regulating stemness and apoptosis in HCC cells under oxidative stress, highlighting PRDX1 as a promising therapeutic target for NTP-based treatment in HCC.