Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biochem Biophys Res Commun ; 635: 203-209, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36279682

RESUMO

The secretions of osteocalcin and bone morphogenetic protein 2 (BMP2) from living osteoblastic cells were visualized for the first time using a method of video-rate bioluminescence imaging. The fusion proteins with Gaussia luciferase (GLase) for mouse osteocalcin and BMP2 (OC-GLase and BMP2-GLase, respectively) expressed in osteoblastic MC3T3-E1 cells were correctly processed and secreted. In the video images of exocytotic secretion, the luminescence spots of OC-GLase and BMP2-GLase disappeared rapidly and gradually, respectively, indicating different manners of these proteins in diffusion. Notably, a deletion mutant of BMP2 (Δ3BMP2-GLase) lacking three basic amino acid residues in the N-terminal region for binding to heparan sulfate showed rapidly disappearing luminescence spots. In our imaging conditions, the half-life of luminescence for the spots of Δ3BMP2-GLase (1.61 ± 0.20 s) was similar to that of OC-GLase (1.22 ± 0.14 s) but not to that of BMP2-GLase (4.31 ± 0.41 s). These results suggest that, in contrast to osteocalcin, the diffusion of BMP2 from cells occurred slowly after exocytosis. Thus, our bioluminescence imaging method is useful to study the diffusion properties of secreted proteins in exocytosis.


Assuntos
Proteína Morfogenética Óssea 2 , Comunicação Celular , Camundongos , Animais , Osteocalcina/genética , Osteocalcina/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Luciferases/genética , Luciferases/metabolismo , Linhagem Celular , Osteoblastos/metabolismo , Diferenciação Celular
2.
Biochem Biophys Res Commun ; 534: 714-719, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33218687

RESUMO

Aggregation of IgE bound to the high-affinity IgE receptor (FcεRI) by a multivalent antigen induces mast cell activation, while disaggregation of aggregated FcεRI by monomer hapten immediately terminates degranulation mediated by dephosphorylation of Syk and mediates a decrease in intracellular Ca2+ concentration ([Ca2+]i). The actin polymerization state is intimately involved in mast cell activation mediated by FcεRI aggregation. However, the relation between aggregation-disaggregation of FcεRI and actin rearrangement in mast cells is not well understood. The addition of a multivalent antigen rapidly depolymerized actin filaments, while the subsequent addition of monomer hapten rapidly recovered actin polymerization. Whereas cofilin, an actin-severing protein, was temporally dephosphorylated several minutes after a multivalent antigen stimulation and the addition of monomer hapten rapidly increased cofilin phosphorylation level within 30 s. The removal of extracellular Ca2+ instead of monomer hapten addition did not restore cofilin phosphorylation, suggesting that the significant decrease in [Ca2+]i by monovalent hapten was not a critical reason for the actin rearrangement. Additionally, monovalent hapten did not completely reduce [Ca2+]i in mast cells pretreated with jasplakinolide, an inhibitor of actin depolymerization. These results suggest that the multivalent antigen-induced actin depolymerization mediated by cofilin dephosphorylation, and the subsequent addition of monovalent hapten in the F-actin severing state efficiently elicited actin re-polymerization by cofilin phosphorylation.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Mastócitos/metabolismo , Receptores de IgE/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular , Citocalasina D/farmacologia , Mastócitos/efeitos dos fármacos , Ovalbumina/farmacologia , Faloidina/química , Faloidina/metabolismo , Fosforilação , Polimerização , Ratos , Rodaminas/química , Rodaminas/metabolismo
3.
Eur J Immunol ; 49(12): 2172-2183, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31339552

RESUMO

Aggregation of IgE bound to high affinity IgE receptor (FcεRI) by multivalent antigen induces mast cell activation. Reportedly, disaggregation of aggregated FcεRI immediately terminated degranulation, and formation of co-ligated FcεRI and low affinity IgG receptor FcγRIIB blocked degranulation by inhibitory signal via SH2-containing inositol 5'-phosphatase 1 (SHIP1) phosphorylation. However, their molecular mechanisms to inhibit mast cell activation have been unclear in detail. Herein, we found that addition of excess monomeric hapten (TNP-alanine) to multivalent antigen (TNP-OVA)-activated rat basophilic leukemia cells and mouse bone marrow-derived mast cells induced immediate and transient Syk dephosphorylation, which was previously phosphorylated by TNP-OVA addition. Syk dephosphorylation correlated to rapidly decreased intracellular Ca2+ concentrations ([Ca2+ ]i ), terminated degranulation, and suppressed cytokine production through inhibition of Akt and ERK phosphorylation. Addition of hapten-specific IgG monoclonal antibody (anti-TNP IgG1) to activated mast cells induced translocation of SHIP1 to the plasma membrane and its phosphorylation, indicating that co-ligation of FcεRI and FcγRIIB after FcεRI aggregation can lead to SHIP1 activation. SHIP1 phosphorylation led to gradually decreased [Ca2+ ]i , weak inhibition of degranulation, and strong inhibition of cytokine production. Our findings clearly show the inhibitory mechanism of cell function in activated mast cells by operating Fc receptor crosslinking.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Haptenos/imunologia , Imunoglobulina G/imunologia , Mastócitos/imunologia , Animais , Linhagem Celular Tumoral , Capeamento Imunológico/imunologia , Mastócitos/citologia , Camundongos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/imunologia , Ratos , Receptores de IgE/imunologia , Receptores de IgG/imunologia
4.
Cell Biol Int ; 44(4): 1068-1075, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31889352

RESUMO

Cationic liposomes are commonly used as vectors to effectively introduce foreign genes into target cells. In another function, we recently showed that cationic liposomes bound to the mast cell surface suppress the degranulation induced by the cross-linking of high-affinity immunoglobulin E receptor in a time- and dose-dependent manner. This suppression is mediated by the impairment of the sustained level of intracellular Ca2+ concentration ([Ca2+ ]i ) via the inhibition of store-operated Ca2+ entry. Further, we revealed that the mechanism underlying an impaired [Ca2+ ]i increase is the inhibition of the activation of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Yet, how cationic liposomes inhibit the PI3K-Akt pathway is still unclear. Here, we focused on caveolin-1, a major component of caveolae, which is reported to be involved in the activation of the PI3K-Akt pathway in various cell lines. In this study, we showed that caveolin-1 translocated from the cytoplasm to the plasma membrane after the activation of mast cells and colocalized with the p85 subunit of PI3K, which seemed to be essential for PI3K activity. Meanwhile, cationic liposomes suppressed the translocation of caveolin-1 to the plasma membrane and the colocalization of caveolin-1 with PI3K p85 also at the plasma membrane. This finding provides new information for the development of therapies using cationic liposomes against allergies.


Assuntos
Cálcio/metabolismo , Cavéolas/metabolismo , Caveolina 1/metabolismo , Lipossomos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Mastócitos/citologia , Mastócitos/metabolismo , Ratos
5.
Exp Cell Res ; 381(2): 248-255, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31112735

RESUMO

Mast cells (MCs) are important effectors of the immediate allergic response. MCs are distributed throughout various tissues and organs, and adhere to extracellular matrix (ECM) with broad stiffness in the body. Here we compared cellular responses following antigen stimulation in MCs on glass-base dishes with and without a hydrogel. We found that an antigen-induced increase in intracellular Ca2+ concentration was suppressed slightly in cells on hydrogel-coated dishes compared with those on non-coated dishes, whereas their subsequent degranulation was largely inhibited in cells adherent to the hydrogel. Focusing on focal adhesions (FAs), vinculin was distributed in a dot-like manner at the bottom of resting cells on non-coated dishes but not on hydrogel-coated dishes. According to antigen stimulation, phosphorylation of focal adhesion kinase and additive vinculin accumulation to FAs were promoted in cells on non-coated dishes, but were diminished on hydrogel-coated dishes. Moreover, microtubule reorganization and acetylation (which have important roles in MC degranulation) were also suppressed in activated MCs adherent to the hydrogel. These findings suggest that adhesion to a hydrogel led to failure of composition of functional FAs and microtubule tracts, which resulted in suppression of MC degranulation following antigen stimulation.


Assuntos
Degranulação Celular , Hidrogéis/farmacologia , Mastócitos/fisiologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/patologia , Alicerces Teciduais/química , Animais , Cálcio/metabolismo , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/fisiologia , Linhagem Celular , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Hidrogéis/química , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Microtúbulos/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Propriedades de Superfície
6.
Inflamm Res ; 68(3): 181-184, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30470856

RESUMO

OBJECTIVE: The aim of this study was to investigate whether microtubule acetylation is triggered by antigen stimulation and how it affects mast cell degranulation. METHODS: The RBL-2H3 cell line was used as a model for mast cells. Acetylation of α-tubulin was analyzed by Western blotting. Intracellular distribution of α-tubulin and acetylated α-tubulin was observed by immunostaining. Degranulation was monitored by measuring the activity of ß-hexosaminidase secreted into cell supernatants. Tukey-Kramer test was used to compare differences between groups. RESULTS: Microtubule acetylation proceeds globally in mast cell cytoplasm after antigen stimulation in addition to accelerated formation of microtubule-organizing centers. Pretreatment with 5Z-7-oxozeaenol (5 µmol/l), an inhibitor of TGF-ß-activated kinase 1, which is a key activator of α-tubulin acetyltransferase 1, did not affect the distribution and acetylation of microtubules in resting cells; however, it significantly suppressed antigen-evoked microtubule acetylation and their reorganization, and subsequent degranulation (95.0 ± 1.2% inhibition, n = 3, P < 0.01). CONCLUSIONS: These results provided new insight into the post-translational modifications of microtubule to regulate mast cell degranulation.


Assuntos
Antígenos/fisiologia , Mastócitos/fisiologia , Microtúbulos/fisiologia , Tubulina (Proteína)/fisiologia , Acetilação , Animais , Degranulação Celular , Linhagem Celular , Ratos , beta-N-Acetil-Hexosaminidases/metabolismo
7.
Mol Cell Biochem ; 446(1-2): 83-89, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29318457

RESUMO

Autonomic neurons innervate pancreatic islets of Langerhans and participate in the maintenance of blood glucose concentrations by controlling hormone levels through attachment with islet cells. We previously found that stimulated superior cervical ganglia (SCG) could induce Ca2+ oscillation in α cells via neuropeptide substance P using an in vitro co-culture model. In this study, we studied the effect of SCG neurite adhesion on intracellular secretory granule movement and glucagon secretion in α cells stimulated by low glucose concentration. Spinning disk microscopic analysis revealed that the mean velocity of intracellular granules was significantly lower in α cells attached to SCG neurites than that in those without neurites under low (2 mM), middle (10 mM), and high (20 mM) glucose concentrations. Stimulation by a low (2 mM) glucose concentration significantly increased glucagon secretion in α cells lacking neurites but not in those bound to neurites. These results suggest that adhesion to SCG neurites decreases low glucose-induced glucagon secretion in pancreatic α cells by attenuating intracellular granule movement activity.


Assuntos
Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Neuritos/metabolismo , Vesículas Secretórias/metabolismo , Gânglio Cervical Superior/metabolismo , Animais , Linhagem Celular , Técnicas de Cocultura , Células Secretoras de Glucagon/citologia , Camundongos , Camundongos Endogâmicos BALB C , Gânglio Cervical Superior/citologia
8.
Biochim Biophys Acta Biomembr ; 1859(12): 2461-2466, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28966111

RESUMO

Cationic liposomes are commonly used as vectors to effectively introduce foreign genes (antisense DNA, plasmid DNA, siRNA, etc.) into target cells. Cationic liposomes are also known to affect cellular immunocompetences such as the mast cell function in allergic reactions. In particular, we previously showed that the cationic liposomes bound to the mast cell surface suppress the degranulation induced by cross-linking of high affinity IgE receptors in a time- and dose-dependent manner. This suppression is mediated by impairment of the sustained level of intracellular Ca2+ concentration ([Ca2+]i) via inhibition of store-operated Ca2+ entry (SOCE). Here we study the mechanism underlying an impaired [Ca2+]i increase by cationic liposomes in mast cells. We show that cationic liposomes inhibit the phosphorylation of Akt and PI3 kinases but not Syk and LAT. As a consequence, SOCE is suppressed but Ca2+ release from endoplasmic reticulum (ER) is not. Cationic liposomes inhibit the formation of STIM1 puncta, which is essential to SOCE by interacting with Orai1 following the Ca2+ concentration decrease in the ER. These data suggest that cationic liposomes suppress SOCE by inhibiting the phosphorylation of PI3 and Akt kinases in mast cells.


Assuntos
Cálcio/metabolismo , Lipossomos/farmacologia , Mastócitos/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cátions , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/análogos & derivados , Colesterol/química , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Transporte de Íons/efeitos dos fármacos , Lipossomos/química , Mastócitos/citologia , Mastócitos/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Fosfatidiletanolaminas/química , Fosfatidilinositol 3-Quinase/genética , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
9.
Biochem Biophys Res Commun ; 485(4): 725-730, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28238783

RESUMO

We have firstly visualized glucagon secretion using a method of video-rate bioluminescence imaging. The fusion protein of proglucagon and Gaussia luciferase (PGCG-GLase) was used as a reporter to detect glucagon secretion and was efficiently expressed in mouse pancreatic α cells (αTC1.6) using a preferred human codon-optimized gene. In the culture medium of the cells expressing PGCG-GLase, luminescence activity determined with a luminometer was increased with low glucose stimulation and KCl-induced depolarization, as observed for glucagon secretion. From immunochemical analyses, PGCG-GLase stably expressed in clonal αTC1.6 cells was correctly processed and released by secretory granules. Luminescence signals of the secreted PGCG-GLase from the stable cells were visualized by video-rate bioluminescence microscopy. The video images showed an increase in glucagon secretion from clustered cells in response to stimulation by KCl. The secretory events were observed frequently at the intercellular contact regions. Thus, the localization and frequency of glucagon secretion might be regulated by cell-cell adhesion.


Assuntos
Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Medições Luminescentes/métodos , Microscopia de Vídeo/métodos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Linhagem Celular , Copépodes/enzimologia , Células Secretoras de Glucagon/efeitos dos fármacos , Glucose/farmacologia , Humanos , Luciferases/genética , Luciferases/metabolismo , Camundongos , Microscopia Confocal , Cloreto de Potássio/farmacologia , Proglucagon/genética , Proglucagon/metabolismo , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo
10.
J Biochem ; 171(5): 591-598, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35171273

RESUMO

Reelin is a secreted glycoprotein important for brain development and synaptic plasticity in the adult brain. Some reports suggest that Reelin is secreted from the nerve terminals and functions as a neurotransmitter. However, the mechanism of Reelin secretion is unknown. In this study, we visualized Reelin secretion by bioluminescence imaging using a fusion protein of Reelin and Gaussia luciferase (GLase-Reelin). GLase-Reelin expressed in HEK293T cells was correctly processed and secreted. Luminescence signals from the secreted GLase-Reelin of primary cultured neurons were visualized by bioluminescence microscopy. Reelin secretory events were observed at neurites and cell bodies. Bioluminescence imaging was also performed before and after KCl depolarization to compare the secretory events of Reelin and brain-derived neurotrophic factor (BDNF). The secretion of BDNF increased markedly shortly after depolarization. In contrast, the frequency of Reelin secretion did not change significantly by depolarization. Thus, Reelin secretion from neurites might not be regulated in a neuronal activity-dependent manner.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neurônios , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Neuritos/metabolismo , Neurônios/metabolismo
11.
Chem Phys Lipids ; 231: 104948, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32717231

RESUMO

We previously showed that cationic liposomes composed of cholesteryl-3ß-carboxyamidoethylene-N-hydroxyethylamine (OH-Chol) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) inhibited mast cell degranulation mediated by the cross-linking of high-affinity IgE receptors (FcεRI). In this study, we prepared three kinds of cationic liposomes composed of OH-Chol and DOPE in different ratios (0.28, 0.60, and 0.86 of OH-Chol in mol ratio, named as L-liposome, M-liposome, and H-liposome, respectively) and investigated their effects on mast cell activation. We found that mast cell degranulation evoked with antigen was inhibited by pretreatment with cationic liposomes in the composite ratio-dependent manner of OH-Chol and that the H-liposome showed the highest inhibitory effect on degranulation among three kinds of liposomes. Store-operated Ca2+ entry, phosphorylation of PI3K and Akt, and IL-4 secretion after antigen stimulation were reduced in dose-dependent manner of each liposome, but there were no differences between H-liposome and M-liposome. Meanwhile, microtubule acetylation, which is involved in the secretory granule transport, was significantly suppressed by H-liposome compared with M-liposome. These data suggested that the lipid composition in cationic liposomes themselves largely influenced the inhibition of mast cell activation as well as the efficiency of gene transfection.


Assuntos
Lipídeos/farmacologia , Mastócitos/efeitos dos fármacos , Animais , Cálcio/metabolismo , Cátions/química , Células Cultivadas , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Lipídeos/química , Lipossomos/química , Mastócitos/metabolismo , Ratos
12.
Cell Death Dis ; 10(2): 100, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718498

RESUMO

Thrombin aggravates ischemic stroke and activated protein C (APC) has a neuroprotective effect. Both proteases interact with protease-activated receptor 1, which exhibits functional selectivity and leads to G-protein- and ß-arrestin-mediated-biased signal transduction. We focused on the effect of ß-arrestin in PAR-1-biased signaling on endothelial function after stroke or high-fat diet (HFD). Thrombin had a rapid disruptive effect on endothelial function, but APC had a slow protective effect. Paralleled by prolonged MAPK 42/44 signaling activation by APC via ß-arrestin-2, a lower cleavage rate of PAR-1 for APC than thrombin was quantitatively visualized by bioluminescence video imaging. HFD-fed mice showed lower ß-arrestin-2 levels and more severe ischemic injury. The expression of ß-arrestin-2 in capillaries and PDGF-ß secretion in HFD-fed mice were reduced in penumbra lesions. These results suggested that ß-arrestin-2-MAPK-PDGF-ß signaling enhanced protection of endothelial function and barrier integrity after stroke.


Assuntos
Células Endoteliais/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptor PAR-1/metabolismo , Acidente Vascular Cerebral/metabolismo , beta-Arrestina 2/metabolismo , Animais , Bovinos , Células Cultivadas , Células Endoteliais/enzimologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Medições Luminescentes , MAP Quinase Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Fosforilação , Proteína C/metabolismo , Proteínas Proto-Oncogênicas c-sis/genética , Receptor PAR-1/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/patologia , Trombina/metabolismo , Fatores de Tempo , beta-Arrestina 2/genética
13.
Front Cell Dev Biol ; 6: 74, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042943

RESUMO

Degranulation refers to the secretion of inflammatory mediators, such as histamine, serotonin, and proteases, that are stored within the granules of mast cells and that trigger allergic reactions. The amount of these released mediators has been measured biochemically using cell mass. To investigate degranulation in living single cells, fluorescence microscopy has traditionally been used to observe the disappearance of granules and the appearance of these discharged granules within the plasma membrane by membrane fusion and the movement of granules inside the cells. Here, we developed a method of video-rate bioluminescence imaging to directly detect degranulation from a single mast cell by measuring luminescence activity derived from the enzymatic reaction between Gaussia luciferase (GLase) and its substrate coelenterazine. The neuropeptide Y (NPY), which was reported to colocalize with serotonin in the secretory granules, fused to GLase (NPY-GLase) was efficiently expressed in rat basophilic leukemia (RBL-2H3) cells, a mast-cell line, using a preferred human codon-optimized gene. Bioluminescence imaging analysis of RBL-2H3 cells expressing NPY-GLase and adhered on a glass-bottomed dish showed that the luminescence signals from the resting cells were negligible, while the luminescence signals of the secreted NPY-GLase were repeatedly detected after the addition of an antigen. In addition, this imaging method was applicable for observing degranulation in RBL-2H3 cells that adhered to the extracellular matrix (ECM). These results indicated that video-rate bioluminescence imaging using GLase will be a useful tool for detecting degranulation in single mast cells adhered to a variety of ECM proteins.

14.
Cell Biochem Biophys ; 74(3): 391-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27262873

RESUMO

Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 µm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 µm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Secretoras de Glucagon/metabolismo , Imunoglobulinas/metabolismo , Animais , Western Blotting , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Citoesqueleto/metabolismo , Exocitose/efeitos dos fármacos , Células Secretoras de Glucagon/efeitos dos fármacos , Imunoglobulinas/genética , Camundongos , Microscopia Confocal , Microscopia de Vídeo , Nocodazol/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa