Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Biol Chem ; 299(5): 104669, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37011860

RESUMO

Considerable evidence confirms the importance of Cyp26a1 to all-trans-retinoic acid (RA) homeostasis during embryogenesis. In contrast, despite its presence in postnatal liver as a potential major RA catabolizing enzyme and its acute sensitivity to induction by RA, some data suggested that Cyp26a1 contributes only marginally to endogenous RA homeostasis postnatally. We report reevaluation of a conditional Cyp26a1 knockdown in the postnatal mouse. The current results show that Cyp26a1 mRNA in WT mouse liver increases 16-fold upon refeeding after a fast, accompanied by an increased rate of RA elimination and a 41% decrease in the RA concentration. In contrast, Cyp26a1 mRNA in the refed homozygotic knockdown reached only 2% of its extent in WT during refeeding, accompanied by a slower rate of RA catabolism and no decrease in liver RA, relative to fasting. Refed homozygous knockdown mice also had decreased Akt1 and 2 phosphorylation and pyruvate dehydrogenase kinase 4 (Pdk4) mRNA and increased glucokinase (Gck) mRNA, glycogen phosphorylase (Pygl) phosphorylation, and serum glucose, relative to WT. Fasted homozygous knockdown mice had increased glucagon/insulin relative to WT. These data indicate that Cyp26a1 participates prominently in moderating the postnatal liver concentration of endogenous RA and contributes essentially to glucoregulatory control.


Assuntos
Glicemia , Homeostase , Ácido Retinoico 4 Hidroxilase , Tretinoína , Animais , Camundongos , Fígado/enzimologia , Fígado/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , RNA Mensageiro/genética , Tretinoína/metabolismo , Glucoquinase/metabolismo , Glicogênio Fosforilase/metabolismo , Insulina/metabolismo , Animais Recém-Nascidos , Fosforilação , Glicemia/metabolismo
2.
J Biol Chem ; 299(10): 105255, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37714463

RESUMO

9-cis-retinoic acid (9cRA) binds retinoic acid receptors (RAR) and retinoid X receptors (RXR) with nanomolar affinities, in contrast to all-trans-retinoic acid (atRA), which binds only RAR with nanomolar affinities. RXR heterodimerize with type II nuclear receptors, including RAR, to regulate a vast gene array. Despite much effort, 9cRA has not been identified as an endogenous retinoid, other than in pancreas. By revising tissue analysis methods, 9cRA quantification by liquid chromatography-tandem mass spectrometry becomes possible in all mouse tissues analyzed. 9cRA occurs in concentrations similar to or greater than atRA. Fasting increases 9cRA in white and brown adipose, brain and pancreas, while increasing atRA in white adipose, liver and pancreas. 9cRA supports FoxO1 actions in pancreas ß-cells and counteracts glucose actions that lead to glucotoxicity; in part by inducing Atg7 mRNA, which encodes the key enzyme essential for autophagy. Glucose suppresses 9cRA biosynthesis in the ß-cell lines 832/13 and MIN6. Glucose reduces 9cRA biosynthesis in 832/13 cells by inhibiting Rdh5 transcription, unconnected to insulin, through cAMP and Akt, and inhibiting FoxO1. Through adapting tissue specifically to fasting, 9cRA would act independent of atRA. Widespread occurrence of 9cRA in vivo, and its self-sufficient adaptation to energy status, provides new perspectives into regulation of energy balance, attenuation of insulin and glucose actions, regulation of type II nuclear receptors, and retinoid biology.


Assuntos
Alitretinoína , Metabolismo Energético , Glucose , Células Secretoras de Insulina , Animais , Camundongos , Alitretinoína/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Tretinoína/metabolismo , Camundongos Endogâmicos C57BL , Ratos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Jejum , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
J Biol Chem ; 297(3): 101101, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34419449

RESUMO

The retinol dehydrogenase Rdh10 catalyzes the rate-limiting reaction that converts retinol into retinoic acid (RA), an autacoid that regulates energy balance and reduces adiposity. Skeletal muscle contributes to preventing adiposity, by consuming nearly half the energy of a typical human. We report sexually dimorphic differences in energy metabolism and muscle function in Rdh10+/- mice. Relative to wild-type (WT) controls, Rdh10+/- males fed a high-fat diet decrease reliance on fatty-acid oxidation and experience glucose intolerance and insulin resistance. Running endurance decreases 40%. Rdh10+/- females fed this diet increase fatty acid oxidation and experience neither glucose intolerance nor insulin resistance. Running endurance increases 220%. We therefore assessed RA function in the mixed-fiber type gastrocnemius muscles (GM), which contribute to running, rather than standing, and are similar to human GM. RA levels in Rdh10+/- male GM decrease 38% relative to WT. Rdh10+/- male GM increase expression of Myog and reduce Eif6 mRNAs, which reduce and enhance running endurance, respectively. Cox5A, complex IV activity, and ATP decrease. Increased centralized nuclei reveal existence of muscle malady and/or repair in GM fibers. Comparatively, RA in Rdh10+/- female GM decreases by less than half the male decrease, from a more modest decrease in Rdh10 and an increase in the estrogen-induced retinol dehydrogenase Dhrs9. Myog mRNA decreases. Cox5A, complex IV activity, and ATP increase. Centralized GM nuclei do not increase. We conclude that Rdh10/RA affects whole body energy use and insulin resistance partially through sexual dimorphic effects on skeletal muscle gene expression, structure, and mitochondria activity.


Assuntos
Oxirredutases do Álcool/metabolismo , Músculo Esquelético/metabolismo , Adiposidade , Oxirredutases do Álcool/genética , Animais , Dieta Hiperlipídica , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Feminino , Intolerância à Glucose/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/fisiologia , Músculos/metabolismo , Oxirredução , Resistência Física/fisiologia , Corrida/fisiologia , Caracteres Sexuais , Fatores Sexuais , Tretinoína/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(8): 3126-3135, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718413

RESUMO

The balance of effector versus regulatory T cells (Tregs) controls inflammation in numerous settings, including multiple sclerosis (MS). Here we show that memory phenotype CD4+ T cells infiltrating the central nervous system during experimental autoimmune encephalomyelitis (EAE), a widely studied animal model of MS, expressed high levels of mRNA for Dgat1 encoding diacylglycerol-O-acyltransferase-1 (DGAT1), an enzyme that catalyzes triglyceride synthesis and retinyl ester formation. DGAT1 inhibition or deficiency attenuated EAE, with associated enhanced Treg frequency; and encephalitogenic, DGAT1-/- in vitro-polarized Th17 cells were poor inducers of EAE in adoptive recipients. DGAT1 acyltransferase activity sequesters retinol in ester form, preventing synthesis of retinoic acid, a cofactor for Treg generation. In cultures with T cell-depleted lymphoid tissues, retinol enhanced Treg induction from DGAT1-/- but not from WT T cells. The WT Treg induction defect was reversed by DGAT1 inhibition. These results demonstrate that DGAT1 suppresses retinol-dependent Treg formation and suggest its potential as a therapeutic target for autoimmune inflammation.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Encefalomielite/genética , Inflamação/genética , Esclerose Múltipla/genética , Linfócitos T Reguladores/imunologia , Animais , Sistema Nervoso Central , Técnicas de Inativação de Genes , Humanos , Inflamação/imunologia , Inflamação/patologia , Camundongos , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Células Th1/imunologia , Células Th17/imunologia , Tretinoína/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-30455235

RESUMO

Fluconazole-induced alopecia is a significant problem for patients receiving long-term therapy. We evaluated the hair cycle changes of fluconazole in a rat model and investigated potential molecular mechanisms. Plasma and tissue levels of retinoic acid were not found to be causal. Human patients with alopecia attributed to fluconazole also underwent detailed assessment and in both our murine model and human cohort fluconazole induced telogen effluvium. Future work further examining the mechanism of fluconazole-induced alopecia should be undertaken.


Assuntos
Alopecia em Áreas/induzido quimicamente , Antifúngicos/efeitos adversos , Fluconazol/efeitos adversos , Alopecia em Áreas/sangue , Alopecia em Áreas/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Ratos , Ratos Wistar , Tretinoína/sangue , Tretinoína/metabolismo
6.
Anal Chem ; 91(22): 14624-14630, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31644264

RESUMO

We report a high-performance, liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) assay to quantify without derivatizaton dehyroepiandrosterone (DHEA), 17ß-estradiol (E2), testosterone (T), and their sulfates in serum and tissues. This assay functions well with multiple adipose depots, a previously unattained analysis. To delipidate and facilitate recovery, tissues were homogenized in acetonitrile, and the homogenate was frozen. The supernatant was evaporated, resuspended in an aqueous acetate buffer, and extracted with hexane to separate free (unconjugated) from sulfated steroids. Sulfated steroids in the aqueous medium were then hydrolyzed with sulfatase and extracted with hexane. Each extract was analyzed separately. HPLC resolution combined with the sensitivity and specificity of MS/MS allowed quantification of DHEA, E2, and T with 10, 10, and 5 fmol lower limits of quantification and linear ranges to 1 pmol. Application of the method to mouse serum and tissues reveals ranges of DHEA, E2, and T and their sulfates, and tissue-specific differences in steroid profile, especially white versus brown adipose. In addition, marginal decreases of T in all tissues and considerable increases in DHEA in male iWAT and eWAT in response to a high-fat diet further strengthen the inference regarding the role of steroid metabolism in adipogenesis. This assay permits detailed studies of interactions between adiposity and sex steroids in serum and tissues, including adipose.


Assuntos
Desidroepiandrosterona/sangue , Estradiol/sangue , Ésteres do Ácido Sulfúrico/sangue , Testosterona/sangue , Animais , Cromatografia Líquida/métodos , Feminino , Limite de Detecção , Extração Líquido-Líquido , Masculino , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem/métodos
7.
Anal Biochem ; 484: 162-8, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26045160

RESUMO

We report an ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method to quantify all-trans-retinal in biological samples of limited size (15-35mg), which is especially advantageous for use with adipose. To facilitate recovery, retinal and the internal standard 3,4-didehydroretinal were derivatized in situ into their O-ethyloximes. UHPLC resolution combined with high sensitivity and specificity of MS/MS allowed quantification of retinal-O-ethyloximes with a 5-fmol lower limit of detection and a linear range from 5fmol to 1pmol. This assay revealed that extraocular concentrations of retinal range from approximately 2 to 40pmol/g in multiple tissues-the same range as all-trans-retinoic acid. All-trans-retinoic acid has high affinity (kd⩽0.4nM) for its nuclear receptors (RARα, -ß, and -γ), whereas retinal has low (if any) affinity for these receptors, making it unlikely that these retinal concentrations would activate RAR. We also show that the copious amount of vitamin A used in chow diets increases retinal in adipose depots 2- to 5-fold relative to levels in adipose of mice fed a vitamin A-sufficient diet, as recommended for laboratory rodents. This assay also is proficient for quantifying conversion of retinol into retinal in vitro and, therefore, provides an efficient method to study metabolism of retinol in vivo and in vitro.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Retinaldeído/análise , Espectrometria de Massas em Tandem/métodos , Métodos Analíticos de Preparação de Amostras , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oximas/química , Retinaldeído/sangue , Retinaldeído/química
8.
J Toxicol Environ Health A ; 78(1): 15-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25424544

RESUMO

Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of interindividual variability in TCE metabolism and toxicity, especially in the liver. A hypothesis was tested that amounts of oxidative metabolites of TCE in mouse liver are associated with hepatic-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various hepatic toxicity phenotypes. In subacute study, interstrain variability in TCE metabolite amounts was observed in serum and liver. No marked induction of Cyp2e1 protein levels in liver was detected. Serum and hepatic levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1 but not with degree of induction in hepatocellular proliferation. In subchronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Hepatic protein levels of CYP2E1, ADH, and ALDH2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE.


Assuntos
Fígado/efeitos dos fármacos , Tricloroetileno/farmacocinética , Tricloroetileno/toxicidade , Administração Oral , Animais , Carcinógenos/farmacocinética , Carcinógenos/toxicidade , Proliferação de Células , Cisteína/análogos & derivados , Cisteína/sangue , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Dicloroacético/sangue , Relação Dose-Resposta a Droga , Etilenocloroidrina/análogos & derivados , Etilenocloroidrina/metabolismo , Expressão Gênica , Glutationa/análogos & derivados , Glutationa/sangue , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Solventes/farmacocinética , Solventes/toxicidade , Ácido Tricloroacético/sangue
9.
J Toxicol Environ Health A ; 78(1): 32-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25424545

RESUMO

Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal-cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, interspecies and interindividual differences, and the mode of action for kidney carcinogenicity. It was postulated that TCE renal metabolite levels are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In subacute study, interstrain differences in renal TCE metabolite levels were observed. In addition, data showed that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In subchronic study, peroxisome proliferator-marker gene induction and renal toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ but not C57BL/6J mice. Overall, data demonstrated that renal TCE metabolite levels are associated with kidney-specific toxicity and that these effects are strain dependent.


Assuntos
Rim/efeitos dos fármacos , Tricloroetileno/farmacocinética , Tricloroetileno/toxicidade , Animais , Carcinógenos/farmacocinética , Carcinógenos/toxicidade , Proliferação de Células/efeitos dos fármacos , Cisteína/análogos & derivados , Cisteína/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Dicloroacético/metabolismo , Etilenocloroidrina/análogos & derivados , Etilenocloroidrina/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Receptor Celular 1 do Vírus da Hepatite A , Rim/citologia , Rim/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Oxirredução/efeitos dos fármacos , PPAR alfa/genética , PPAR alfa/metabolismo , Ácido Tricloroacético/metabolismo
10.
iScience ; 25(7): 104564, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789854

RESUMO

Retinoic acid (RA) counters insulin's metabolic actions. Insulin reduces liver RA biosynthesis by exporting FoxO1 from nuclei. RA induces its catabolism, catalyzed by CYP26A1. A CYP26A1 contribution to RA homeostasis with changes in energy status had not been investigated. We found that glucagon, cortisol, and dexamethasone decrease RA-induced CYP26A1 transcription, thereby reducing RA oxidation during fasting. Interaction between the glucocorticoid receptor and the RAR/RXR coactivation complex suppresses CYP26A1 expression, increasing RA's elimination half-life. Interaction between CCAAT-enhancer-binding protein beta (C/EBPß) and the major allele of SNP rs2068888 enhances CYP26A1 expression; the minor allele restricts the C/EBPß effect on CYP26A1. The major and minor alleles associate with impaired human health or reduction in blood triglycerides, respectively. Thus, regulating CYP26A1 transcription contributes to adapting RA to coordinate energy availability with metabolism. These results enhance insight into CYP26A1 effects on RA during changes in energy status and glucocorticoid receptor modification of RAR-regulated gene expression.

11.
Methods Enzymol ; 637: 55-75, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32359659

RESUMO

Cellular retinoid-binding proteins (BP) chaperone retinol through esterification, conversion of retinol into retinal, reduction of retinal, conversion of retinal into all-trans-retinoic acid (ATRA), and ATRA to catabolism. They also deliver ATRA to nuclear receptors and mediate non-genomic ATRA actions. These retinoid-specific binding-proteins include: cellular retinol binding-protein, type 1 (Crbp1), cellular retinol binding-protein type 2 (Crbp2), cellular retinol binding-protein type 3 (Crbp3), cellular retinoic acid binding-protein type 1 (Crabp1); cellular retinoic acid binding-protein type 2 (Crabp2). Retinoid BP bind their ligands specifically and with high-affinity. These BP seemingly evolved to solubilize the lipophilic retinoids in the aqueous cellular medium, and allow retinoid access only to enzymes that recognize both the BP and the retinoid. By chaperoning retinoids through cells, retinoid BP provide specificity to retinoids' metabolism and protect the scarce resource from dispersing into cell membranes and/or undergoing catabolism as xenobiotics. Other functions include non-genomic actions of Crabp1, delivery of ATRA to RAR by holo-Crabp2, and stabilization of HuR by apo-Crabp2. In addition to the retinoid-specific BP, Fabp5 also binds ATRA and delivers it to Pparδ. This article describes these BP and their functions, with a focus on experimental protocols to distinguish protein-protein interactions from diffusion-mediated transfer of ligand from BP to enzymes or receptors, and methods for quantifying retinoids.


Assuntos
Retinoides , Proteínas de Ligação ao Retinol , Retinoides/metabolismo , Proteínas Celulares de Ligação ao Retinol , Tretinoína/metabolismo , Vitamina A/metabolismo
12.
Toxicol Sci ; 164(2): 489-500, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897530

RESUMO

Trichloroethylene (TCE) and tetrachloroethylene (PCE) are structurally similar olefins that can cause liver and kidney toxicity. Adverse effects of these chemicals are associated with metabolism to oxidative and glutathione conjugation moieties. It is thought that CYP2E1 is crucial to the oxidative metabolism of TCE and PCE, and may also play a role in formation of nephrotoxic metabolites; however, inter-species and inter-individual differences in contribution of CYP2E1 to metabolism and toxicity are not well understood. Therefore, the role of CYP2E1 in metabolism and toxic effects of TCE and PCE was investigated using male and female wild-type [129S1/SvlmJ], Cyp2e1(-/-), and humanized Cyp2e1 [hCYP2E1] mice. To fill in existing gaps in our knowledge, we conducted a toxicokinetic study of TCE (600 mg/kg, single dose, i.g.) and a subacute study of PCE (500 mg/kg/day, 5 days, i.g.) in 3 strains. Liver and kidney tissues were subject to profiling of oxidative and glutathione conjugation metabolites of TCE and PCE, as well as toxicity endpoints. The amounts of trichloroacetic acid formed in the liver was hCYP2E1≈ 129S1/SvlmJ > Cyp2e1(-/-) for both TCE and PCE; levels in males were about 2-fold higher than in females. Interestingly, 2- to 3-fold higher levels of conjugation metabolites were observed in TCE-treated Cyp2e1(-/-) mice. PCE induced lipid accumulation only in liver of 129S1/SvlmJ mice. In the kidney, PCE exposure resulted in acute proximal tubule injury in both sexes in all strains (hCYP2E1 ≈ 129S1/SvlmJ > Cyp2e1(-/-)). In conclusion, our results demonstrate that CYP2E1 is an important, but not exclusive actor in the oxidative metabolism and toxicity of TCE and PCE.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Família 2 do Citocromo P450/metabolismo , Tetracloroetileno/metabolismo , Tetracloroetileno/toxicidade , Tricloroetileno/metabolismo , Tricloroetileno/toxicidade , Animais , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Família 2 do Citocromo P450/deficiência , Família 2 do Citocromo P450/genética , Feminino , Glutationa/metabolismo , Rim/efeitos dos fármacos , Rim/enzimologia , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ácido Tricloroacético/metabolismo
13.
Diabetes ; 67(4): 662-673, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29321172

RESUMO

Pharmacological dosing of all-trans-retinoic acid (atRA) controls adiposity in rodents by inhibiting adipogenesis and inducing fatty acid oxidation. Retinol dehydrogenases (Rdh) catalyze the first reaction that activates retinol into atRA. This study examined postnatal contributions of Rdh10 to atRA biosynthesis and physiological functions of endogenous atRA. Embryonic fibroblasts from Rdh10 heterozygote hypomorphs or with a total Rdh10 knockout exhibit decreased atRA biosynthesis and escalated adipogenesis. atRA or a retinoic acid receptor (RAR) pan-agonist reversed the phenotype. Eliminating one Rdh10 copy in vivo (Rdh10+/- ) yielded a modest decrease (≤25%) in the atRA concentration of liver and adipose but increased adiposity in male and female mice fed a high-fat diet (HFD); increased liver steatosis, glucose intolerance, and insulin resistance in males fed an HFD; and activated bone marrow adipocyte formation in females, regardless of dietary fat. Chronic dosing with low-dose atRA corrected the metabolic defects. These data resolve physiological actions of endogenous atRA, reveal sex-specific effects of atRA in vivo, and establish the importance of Rdh10 to metabolic control by atRA. The consequences of a modest decrease in tissue atRA suggest that impaired retinol activation may contribute to diabesity, and low-dose atRA therapy may ameliorate adiposity and its sequelae of glucose intolerance and insulin resistance.


Assuntos
Adipogenia/genética , Tecido Adiposo/metabolismo , Oxirredutases do Álcool/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Tretinoína/metabolismo , Adipogenia/efeitos dos fármacos , Adiposidade/genética , Animais , Dieta Hiperlipídica , Feminino , Fibroblastos/metabolismo , Intolerância à Glucose/metabolismo , Heterozigoto , Resistência à Insulina/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxirredução , Receptores do Ácido Retinoico/agonistas , Fatores Sexuais , Tretinoína/farmacologia , Vitamina A/metabolismo
14.
Toxicol Sci ; 160(1): 95-110, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973375

RESUMO

Trichloroethylene (TCE) and tetrachloroethylene (PCE) are ubiquitous environmental contaminants and occupational health hazards. Recent health assessments of these agents identified several critical data gaps, including lack of comparative analysis of their effects. This study examined liver and kidney effects of TCE and PCE in a dose-response study design. Equimolar doses of TCE (24, 80, 240, and 800 mg/kg) or PCE (30, 100, 300, and 1000 mg/kg) were administered by gavage in aqueous vehicle to male B6C3F1/J mice. Tissues were collected 24 h after exposure. Trichloroacetic acid (TCA), a major oxidative metabolite of both compounds, was measured and RNA sequencing was performed. PCE had a stronger effect on liver and kidney transcriptomes, as well as greater concentrations of TCA. Most dose-responsive pathways were common among chemicals/tissues, with the strongest effect on peroxisomal ß-oxidation. Effects on liver and kidney mitochondria-related pathways were notably unique to PCE. We performed dose-response modeling of the transcriptomic data and compared the resulting points of departure (PODs) to those for apical endpoints derived from long-term studies with these chemicals in rats, mice, and humans, converting to human equivalent doses using tissue-specific dosimetry models. Tissue-specific acute transcriptional effects of TCE and PCE occurred at human equivalent doses comparable to those for apical effects. These data are relevant for human health assessments of TCE and PCE as they provide data for dose-response analysis of the toxicity mechanisms. Additionally, they provide further evidence that transcriptomic data can be useful surrogates for in vivo PODs, especially when toxicokinetic differences are taken into account.


Assuntos
Poluentes Ambientais/toxicidade , Perfilação da Expressão Gênica/métodos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Tetracloroetileno/toxicidade , Transcriptoma , Tricloroetileno/toxicidade , Animais , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Medição de Risco , Análise de Sequência de RNA
15.
PLoS One ; 12(11): e0187669, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29095919

RESUMO

All-trans-retinoic acid (RA) inhibits adipogenesis in established preadipocyte cell lines. Dosing pharmacological amounts of RA reduces weight gain in mice fed a high-fat diet, i.e. counteracts diet-induced obesity (DIO). The aldehyde dehydrogenase Raldh1 (Aldh1a1) functions as one of three enzymes that converts the retinol metabolite retinal into RA, and one of many proteins that contribute to RA homeostasis. Female Raldh1-ablated mice resist DIO. This phenotype contrasts with ablations of other enzymes and binding-proteins that maintain RA homeostasis, which gain adiposity. The phenotype observed prompted the conclusion that loss of Raldh1 causes an increase in adipose tissue retinal, and therefore, retinal functions independently of RA to prevent DIO. A second deduction proposed that low nM concentrations of RA stimulate adipogenesis, in contrast to higher concentrations. Using peer-reviewed LC/MS/MS assays developed and validated for quantifying tissue RA and retinal, we show that endogenous retinal and RA concentrations in adipose tissues from Raldh1-null mice do not correlate with the phenotype. Moreover, male Raldh1-null mice resist weight gain regardless of dietary fat content. Resistance to weight gain occurs during adolescence in both sexes. We show that RA concentrations as low as 1 nM, i.e. in the sub-physiological range, impair adipogenesis of embryonic fibroblasts from wild-type mice. Embryonic fibroblasts from Raldh1-null mice resist differentiating into adipocytes, but retain ability to generate RA. These fibroblasts remain sensitive to an RA receptor pan-agonist, and are not affected by an RA receptor pan-antagonist. Thus, the data do not support the hypothesis that retinal itself represses weight gain and adipogenesis independently of RA. Instead, the data indicate that Raldh1 functions as a retinal and atRA-independent promoter of adiposity during adolescence, and enhances adiposity through pre-adipocyte cell autonomous actions.


Assuntos
Adiposidade , Isoenzimas/fisiologia , Retinal Desidrogenase/fisiologia , Retinaldeído/metabolismo , Transdução de Sinais , Família Aldeído Desidrogenase 1 , Animais , Camundongos
16.
Toxicol Sci ; 147(2): 339-49, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26136231

RESUMO

Exposure to the ubiquitous environmental contaminant trichloroethylene (TCE) is associated with cancer and non-cancer toxicity in both humans and rodents. Peroxisome proliferator-activated receptor-alpha (PPARα) is thought to be playing a role in liver toxicity in rodents through activation of the receptor by the TCE metabolite trichloroacetic acid (TCA). However, most studies using genetically altered mice have not assessed the potential for PPARα to alter TCE toxicokinetics, which may lead to differences in TCA internal doses and hence confound inferences as to the role of PPARα in TCE toxicity. To address this gap, male and female wild type (129S1/SvImJ), Pparα-null, and humanized PPARα (hPPARα) mice were exposed intragastrically to 400 mg/kg TCE in single-dose (2, 5 and 12 h) and repeat-dose (5 days/week, 4 weeks) studies. Interestingly, following either a single- or repeat-dose exposure to TCE, levels of TCA in liver and kidney were lower in Pparα-null and hPPARα mice as compared with those in wild type mice. Levels of trichloroethanol (TCOH) were similar in all strains. TCE-exposed male mice consistently had higher levels of TCA and TCOH in all tissues compared with females. Additionally, in both single- and repeat-dose studies, a similar degree of induction of PPARα-responsive genes was observed in liver and kidney of hPPARα and wild type mice, despite the difference in hepatic and renal TCA levels. Additional sex- and strain-dependent effects were observed in the liver, including hepatocyte proliferation and oxidative stress, which were not dependent on TCA or TCOH levels. These data demonstrate that PPARα status affects the levels of the putative PPARα agonist TCA following TCE exposure. Therefore, interpretations of studies using Pparα-null and hPPARα mice need to consider the potential contribution of genotype-dependent toxicokinetics to observed differences in toxicity, rather than attributing such differences only to receptor-mediated toxicodynamic effects.


Assuntos
PPAR alfa/metabolismo , Tricloroetileno/toxicidade , Animais , Esquema de Medicação , Feminino , Rim/química , Rim/efeitos dos fármacos , Fígado/química , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Toxicocinética , Ácido Tricloroacético/análise , Ácido Tricloroacético/metabolismo , Tricloroetileno/administração & dosagem , Tricloroetileno/farmacocinética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa