Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856974

RESUMO

In this study, we examined the nanostructured molecular packing and orientations of poly[[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)) films formed on water for the application of nanotechnology-based organic electronic devices. First, the nanoscale molecule-substrate interaction between the polymer and water was modulated by controlling the alkyl side chain length in NDI-based copolymers. Increasing alkyl side chain lengths induced a nanomorphological transition from face-on to edge-on orientation, confirmed by molecular dynamics simulations revealing nanostructural behavior. Second, the nanoscale intermolecular interactions of P(NDI2OD-T2) were controlled by varying the volume ratio of the high-boiling-point additive solvent in the binary solvent blends. As the additive solvent ratio increased, the nanostructured molecular orientation of the P(NDI2OD-T2) films on water changed remarkably from edge-on to bimodal with more face-on crystallites, thereby affecting charge transport. Our finding provides essential insights for precise nanoscale morphological control on water substrates, enabling the formation of high-performance polymer films for organic electronic devices.

2.
Opt Express ; 31(12): 20410-20423, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381436

RESUMO

Increasing the light extraction efficiency has been widely studied for highly efficient organic light-emitting diodes (OLEDs). Among many light-extraction approaches proposed so far, adding a corrugation layer has been considered a promising solution for its simplicity and high effectiveness. While the working principle of periodically corrugated OLEDs can be qualitatively explained by the diffraction theory, dipolar emission inside the OLED structure makes its quantitative analysis challenging, making one rely on finite-element electromagnetic simulations that could require huge computing resources. Here, we demonstrate a new simulation method, named the diffraction matrix method (DMM), that can accurately predict the optical characteristics of periodically corrugated OLEDs while achieving calculation speed that is a few orders of magnitude faster. Our method decomposes the light emitted by a dipolar emitter into plane waves with different wavevectors and tracks the diffraction behavior of waves using diffraction matrices. Calculated optical parameters show a quantitative agreement with those predicted by finite-difference time-domain (FDTD) method. Furthermore, the developed method possesses a unique advantage over the conventional approaches that it naturally evaluates the wavevector-dependent power dissipation of a dipole and is thus capable of identifying the loss channels inside OLEDs in a quantitative manner.

3.
Opt Express ; 29(15): 23131-23141, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614583

RESUMO

Optical properties of benzimidazole (BI)-doped layer-by-layer graphene differ significantly from those of intrinsic graphene. Our study based on transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling reveals that such a difference stems from its peculiar stratified geometry formed in situ during the doping process. This work presents an effective thickness and optical constants that can treat these multi-stacked BI-doped graphene electrodes as a single equivalent medium. For verification, the efficiency and angular emission spectra of organic light-emitting diodes with the BI-doped graphene electrode are modeled with the proposed method, and we demonstrate that the calculation matches experimental results in a much narrower margin than that based on the optical properties of undoped graphene.

4.
Opt Express ; 28(11): 16027-16029, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549434

RESUMO

This special feature issue of Optics Express highlights contributions from authors who presented their latest research in the Optical Devices and Materials for Solar Energy and Solid-state Lighting (PVLED) topical meeting of the OSA Advanced Photonics Congress, held in Burlingame, California, from 29 July - August 1, 2019. This feature issue is comprised of nine contributed papers, expanding upon their respective conference proceedings to cover timely research topics applying optics and photonics to solar energy and solid-state lighting.

5.
Opt Express ; 28(18): 26170-26179, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906893

RESUMO

Random Al2O3 nanoparticle-based polymer composite films are investigated as external scattering layers to enhance light extraction from flexible organic light-emitting diodes (OLEDs). We found that the size and concentration of the nanoparticles (NPs) in the polymer film play a crucial role in improving light extraction. It turned out that their increase has a favorable impact on the light output of the devices, as the high concentration of the NPs leads to the formation of large nanoparticle clusters, which, in turn, yield pore-containing films. As a result, light extraction efficiency of the flexible OLEDs on PEN substrates was enhanced by a factor of 1.65 by the incorporation of the scattering layer, with the highest Al2O3 NP concentration of 99 wt%. This outcome is attributed to the reduction of the waveguide mode and total internal reflection at the substrate/air interface induced by the randomly distributed NPs in the flexible scattering layer. Our work demonstrates an efficient, solution-processable, and low-cost light-outcoupling structure for large-area and flexible OLED applications.

6.
Inorg Chem ; 59(17): 12461-12470, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32852204

RESUMO

Rigid naphthalene benzimidazole (NBI) based ligands (L1 and L2) are synthesized and utilized to make deep red phosphorescent cyclometalated iridium(III) complexes ([Ir(NBI)2(PyPzCF3)] (1) and [Ir(DPANBI)2(PyPzCF3)] (2)). Complexes 1 and 2 are prepared from the reaction of L1/L2 with the aid of ancillary ligands (PyPzCF3, 2-(3-(trifluoromethyl)-1H-pyrazol-5-yl)pyridine) in a two step method. The complexes are characterized by analytical and spectroscopic methods, as well as X-ray diffraction for 1. These complexes show a strong emission in the range of 635-700 nm that extends up to the near-infrared region (800 nm). The introduction of the diphenylamino (DPA) donor group on the naphthalene unit leads to a further red-shift in the emission. The complexes exhibit radiative quantum efficiency (ΦPL) of 0.27-0.29 in poly(methylmethacrylate) film and relatively short phosphorescence decay lifetimes (τ = 1.1-3.5 µs). The structural, electronic, and optical properties are investigated with the support of density functional theory (DFT) and time-dependent-DFT calculations. The calculation results indicate that the lowest-lying triplet (T1) excited state of 1 has a mixed metal-to-ligand charge transfer (3MLCT) and ligand-centered (3LC) character, while 2 shows a dominant 3LC character. Deep red-emitting organic light-emitting diodes fabricated using 1 as a dopant display a maximum external quantum efficiency of 10.9% with the CIE color coordinates of (0.690, 0.294), with an emission centered at 644 and 700 nm. Similarly, the emitter 2 also shows a maximum external quantum efficiency of 6.9% with emissions at 657 and 722 nm.

7.
Opt Express ; 27(8): 11057-11068, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052956

RESUMO

The ratio of spontaneous emission inside a diode structure to that in free space is called the Purcell factor (F(λ)). The structure of organic light-emitting diodes (OLEDs) has a significant influence on the spontaneous emission rate of dipole emitters. Therefore, to describe the optical properties of OLEDs, it is essential to incorporate F(λ) in the description. However, many optical studies on OLEDs continue to be conducted without considering F(λ) for simplicity's sake. Hence, in this study, using carefully designed bottom- and top-emitting OLEDs, we show that the external quantum efficiency obtained without considering F(λ) can be over- or under-estimated, and in some cases, the margin of error may be significant. We also reveal that the subtle distribution of the electroluminescence spectrum can be explained properly only by including F(λ). Both these results stipulate the importance of including F(λ) to maintain a quantitative agreement between theoretical and experimental data. Hence, the inclusion of F(λ) is important for designing OLEDs with enhanced efficiency or desired spectral characteristics.

8.
Nano Lett ; 16(5): 2994-3000, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27014918

RESUMO

Many animal species employ highly conspicuous traits as courtship signals for successful mating. Fireflies utilize their bioluminescent light as visual courtship signals. In addition to efficient bioluminescent light emission, the structural components of the firefly lantern also contribute to the enhancement of conspicuous optical signaling. Recently, these firefly lantern ultrastructures have attracted much interest and inspired highly efficient light management approaches. Here we report on the unique optical function of the hierarchical ultrastructures found in a firefly (Pyrocoelia rufa) and their biological inspiration of highly efficient organic light-emitting diode (OLED) applications. The hierarchical structures are comprised of longitudinal nanostructures and asymmetric microstructures, which were successfully replicated using geometry-guided resist reflow, replica molding, and polydimethylsiloxane (PDMS) oxidation. The external quantum efficiency (EQE) of the bioinspired OLEDs was enhanced by up to 61%. The bioinspired OLEDs clearly showed side-enhanced super-Lambertian emission with a wide-viewing angle. The highly efficient light extraction and wide-angle illumination suggest how the hierarchical structures likely improve the recognition of firefly optical courtship signals over a wide-angle range. At the same time, the biologically inspired designs provide a new paradigm for designing functional optical surfaces for lighting or display applications.

9.
Nat Mater ; 14(6): 628-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25751074

RESUMO

Insulating layers based on oxides and nitrides provide high capacitance, low leakage, high breakdown field and resistance to electrical stresses when used in electronic devices based on rigid substrates. However, their typically high process temperatures and brittleness make it difficult to achieve similar performance in flexible or organic electronics. Here, we show that poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) prepared via a one-step, solvent-free technique called initiated chemical vapour deposition (iCVD) is a versatile polymeric insulating layer that meets a wide range of requirements for next-generation electronic devices. Highly uniform and pure ultrathin films of pV3D3 with excellent insulating properties, a large energy gap (>8 eV), tunnelling-limited leakage characteristics and resistance to a tensile strain of up to 4% are demonstrated. The low process temperature, surface-growth character, and solvent-free nature of the iCVD process enable pV3D3 to be grown conformally on plastic substrates to yield flexible field-effect transistors as well as on a variety of channel layers, including organics, oxides, and graphene.

10.
Opt Express ; 24(10): A981-4, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409971

RESUMO

The feature issue highlights contributions from authors who presented their research at the OSA Light, Energy and the Environment Congress, held in Suzhou, China from 2 to 5 November, 2015.

11.
Opt Express ; 24(5): 5356-5365, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092359

RESUMO

Area-selective external light extraction films based on wrinkle structured films were applied to large transparent organic light-emitting diodes (TOLEDs) with auxiliary metal buses. To be specific, on the external surface of the glass, we selectively formed a wrinkle structured film, which was aligned to the auxiliary metal electrodes. The wrinkle-structured film was patterned using a photo-mask and UV curing, which has the same shape of the auxiliary metal electrodes. With this area-selective film, it was possible to enhance the external quantum efficiencies of the bottom and top emissions TOLEDs by 15.7% and 15.1%, respectively, without significant loss in transmittance. Widened angular luminance distributions were also achieved in both emissions directions.

12.
Inorg Chem ; 55(2): 909-17, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26741792

RESUMO

Homoleptic tris-cyclometalated iridium complexes, fac-Ir[5-(2-RCB)ppy]3 (3a-3c; CB = o-carboran-1-yl; ppy = 2-phenylpyridinato-C(2),N; R = H (3a), Me (3b), (i)Bu (3c)) with 2-R-substituted o-carboranes at the 5-position of the ppy ligand, were prepared and characterized. X-ray diffraction analysis of 3a and 3c revealed that the three C^N ligands adopt a fac-arrangement around the Ir atom and that the carboranyl C-C bond distance increases with increasing steric effects of the 2-R substituent. The phosphorescence wavelengths of the complexes were apparently blue-shifted by ca. 20 nm (λem = 487-493 nm) compared to that of the parent fac-Ir(ppy)3 (4; λem = 508 nm). In particular, 3a-3c were highly emissive in toluene, and the phosphorescence quantum efficiencies of 3a and 3b (ΦPL = 0.95-0.98) were comparable to that of 4. Solution-processed electroluminescent devices incorporating 3a-3c as emitters displayed green light with high performance, and devices based on the 3c dopant showed the highest performance. In particular, the devices based on 3c exhibited performance more than double of that of the device based on 4 in terms of current efficiency (29.6 cd/A for 3c vs 15.8 cd/A for 4 at 4 wt % Ir and 1000 cd/m(2)), power efficiency (11.0 lm/W for 3c vs 6.3 lm/W for 4), and external quantum efficiency (10.2% for 3c vs 4.7% for 4) over a wide range of luminance. The higher PL quantum yields of doped host films with 3c than those with 4 at high dopant concentrations above 8 wt % suggested that along with high phosphorescence quantum efficiency, the steric bulkiness of the 2-(i)Bu-substituted o-carborane in 3c plays a crucial role in improving device performance.

13.
Nanotechnology ; 27(7): 075202, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26778539

RESUMO

An optical functional film applicable to various lighting devices is demonstrated in this study. The phase separation of two immiscible polymers in a common solvent was used to fabricate the film. In this paper, a self-organized lens-like structure is realized in this manner with optical OLED functional film. For an OLED, there are a few optical drawbacks, including light confinement or viewing angle distortion. By applying the optical film to an OLED, the angular spectra distortion resulting from the designed organic stack which produced the highest efficiency was successfully stabilized, simultaneously enhancing the efficiency of the OLED. We prove the effect of the film on the efficiency of OLEDs through an optical simulation. With the capability to overcome the main drawbacks of OLEDs, we contend that the proposed film can be applied to various lighting devices.

14.
Opt Express ; 23(11): A764-6, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072898

RESUMO

This feature issue highlights contributions from authors who presented their research at the OSA Light, Energy and the Environment Congress, held in Canberra, Australia from 2-5 December, 2014.

15.
Opt Express ; 23(8): 10259-65, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969067

RESUMO

Polarizer-free high contrast-ratio organic light-emitting diodes (OLEDs) are explored with a structure involving a semi-reflective Cr-based bottom electrode and a dielectric-capped thin Ag top electrode. Their efficiency is shown to be improved significantly with little sacrifice in luminous reflectance by adopting low-refractive-index injection layers that can increase the effective reflectance from the bottom electrode and simultaneously reduce the loss owing to surface plasmon polariton modes. OLEDs employing a low-refractive-index injection layer exhibit improved current efficiency by up to ca. 27.4% than those using index-matched injection layers, with luminous reflectance maintained at as low as 4%.

16.
Opt Express ; 23(21): 27306-14, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26480391

RESUMO

Strategies to achieve efficient transparent organic light-emitting diodes (TrOLEDs) are presented. The emission zone position is carefully adjusted by monitoring the optical phase change upon reflection from the top electrode, which is significant when the thickness of the capping layer changes. With the proposed design strategy, external quantum efficiency and transmittance values as high as 15% and 80% are demonstrated simultaneously. The effect of surface plasmon polariton (SPP) loss from thin metal electrodes is also taken into account to correctly describe the full scaling behavior of the efficiency of TrOLEDs over key optical design parameters.

17.
Inorg Chem ; 53(1): 128-38, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24328199

RESUMO

Heteroleptic (C(∧)N)2Ir(acac) (C(∧)N = 5-MeCBbtp (5a); 4-BuCBbtp (5b); 5-BuCBbtp (5c); 5-(R)CBbtp = 2-(2'-benzothienyl)-5-(2-R-ortho-carboran-1-yl)-pyridinato-C(2),N, R = Me and n-Bu; 4-BuCBbtp = 2-(2'-benzothienyl)-4-(2-n-Bu-ortho-carboran-1-yl)-pyridinato-C(2),N, acac = acetylacetonate) complexes supported by o-carborane substituted C(∧)N-chelating ligand were prepared, and the crystal structures of 5a and 5b were determined by X-ray diffraction. While 5a and 5c exhibit a deep red phosphorescence band centered at 644 nm, which is substantially red-shifted compared to that of unsubstituted (btp)2Ir(acac) (6) (λem = 612 nm), 5b is nonemissive in THF solution at room temperature. In contrast, all complexes are emissive at 77 K and in the solid state. Electrochemical and theoretical studies suggest that the carborane substitution leads to the lowering of both the HOMO and LUMO levels, but has higher impact on the LUMO stabilization than the HOMO, resulting in the reduction of the triplet excited state energy. In particular, the LUMO stabilization in the 4-substituted 5b is more contributed by carborane than that in the 5-substituted 5a. The solution-processed electroluminescent device incorporating 5a as an emitter displayed deep red phosphorescence (CIE coordinate: 0.693, 0.290) with moderate performance (max ηEQE = 3.8%) whereas the device incorporating 5b showed poor performance, as well as weak luminance.

18.
J Nanosci Nanotechnol ; 14(8): 6422-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25936129

RESUMO

We have synthesized an anthracene-based conjugated polymer, poly[(9,10-bis(oct-1-ynyl)anthracene)-alt-(5,6-bis(octyloxy)-4,7-bis(thiophen-2-yl)benzo-[c][1,2,5]-thiadiazole)] (PANTBT), for application in organic photovoltaic devices. It exhibited a number average molecular weight of 14,300 g/mol and was fairly soluble in chlorinated organic solvents due to flexible octynyl- and octyloxy side chains on the anthracene and benzothiadiazole moieties. PANTBT showed absorption covering 300-660 nm. Through the bond alternation between the electron-sufficient anthracene (and thiophene) and electron-deficient benzothiadiazole units, a band gap of PANTBT was decreased to 1.89 eV, showing a deep HOMO level of -5.31 eV. As a result, PANTBT exhibited promising photovoltaic properties with a PCE value of 1.90% (VOC = 0.77 V, JSC = -6.50 mA/cm2, FF = 0.38) upon blending with PC71, BM under AM 1.5G.


Assuntos
Antracenos/química , Polímeros/química , Espectroscopia de Ressonância Magnética , Fotoquímica , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
19.
Nat Commun ; 15(1): 2267, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480706

RESUMO

Despite significant progress made over the past decade in thermally activated delayed fluorescence (TADF) molecules as a material paradigm for enhancing the performance of organic light-emitting diodes, the underlying spin-flip mechanism in these charge-transfer (CT)-type molecular systems remains an enigma, even since its initial report in 2012. While the initial and final electronic states involved in spin-flip between the lowest singlet and lowest triplet excited states are well understood, the exact dynamic processes and the role of intermediate high-lying triplet (T) states are still not fully comprehended. In this context, we propose a comprehensive model to describe the spin-flip processes applicable for a typical CT-type molecule, revealing the origin of the high-lying T state in a partial molecular framework in CT-type molecules. This work provides experimental and theoretical insights into the understanding of intersystem crossing for CT-type molecules, facilitating more precise control over spin-flip rates and thus advancing toward developing the next-generation platform for purely organic luminescent candidates.

20.
Nat Nanotechnol ; 19(5): 624-631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38228805

RESUMO

Perovskite light-emitting diodes (PeLEDs) have emerged as a promising new light source for displays. The development roadmap for commercializing PeLEDs should include a tandem device structure, specifically by stacking a thin nanocrystal PeLED unit and an organic light-emitting diode unit, which can achieve a vivid and efficient tandem display; however, simply combining light-emitting diodes with different characteristics does not guarantee both narrowband emission and high efficiency, as it may cause a broadened electroluminescence spectra and a charge imbalance. Here, by conducting optical simulations of the hybrid tandem (h-tandem) PeLED, we have discovered a crucial optical microcavity structure known as the h-tandem valley, which enables the h-tandem PeLED to emit light with a narrow bandwidth. Specifically, the centre structure of the h-tandem valley (we call it valley-centre tandem) demonstrates near-perfect charge balance and optimal microcavity effects. As a result, the h-tandem PeLED achieves a high external quantum efficiency of 37.0% and high colour purity with a narrow full-width at half-maximum of 27.3 nm (versus 64.5 nm in organic light-emitting diodes) along with a fast on-off response. These findings offer a new strategy to overcome the limitations of nanocrystal-based PeLEDs, providing valuable optical and electrical guidelines for integrating different types of light-emitting device into practical display applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa