Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(45): E10730-E10739, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348762

RESUMO

Impulsivity is closely associated with addictive disorders, and changes in the brain dopamine system have been proposed to affect impulse control in reward-related behaviors. However, the central neural pathways through which the dopamine system controls impulsive behavior are still unclear. We found that the absence of the D2 dopamine receptor (D2R) increased impulsive behavior in mice, whereas restoration of D2R expression specifically in the central amygdala (CeA) of D2R knockout mice (Drd2-/-) normalized their enhanced impulsivity. Inhibitory synaptic output from D2R-expressing neurons in the CeA underlies modulation of impulsive behavior because optogenetic activation of D2R-positive inhibitory neurons that project from the CeA to the bed nucleus of the stria terminalis (BNST) attenuate such behavior. Our identification of the key contribution of D2R-expressing neurons in the CeA → BNST circuit to the control of impulsive behavior reveals a pathway that could serve as a target for approaches to the management of neuropsychiatric disorders associated with impulsivity.


Assuntos
Núcleo Central da Amígdala/metabolismo , Comportamento Impulsivo , Vias Neurais/metabolismo , RNA Mensageiro/genética , Receptores de Dopamina D2/genética , Núcleos Septais/metabolismo , Animais , Núcleo Central da Amígdala/fisiopatologia , Comportamento de Escolha , Dopamina/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Vias Neurais/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Testes Neuropsicológicos , Optogenética , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Tempo de Reação , Receptores de Dopamina D2/deficiência , Núcleos Septais/fisiopatologia , Transdução de Sinais
2.
Curr Genet ; 60(4): 247-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24850134

RESUMO

Ydr374c (Pho92) contains a YTH domain in its C-terminal region and is a human YTHDF2 homologue. Previously, we reported that Pho92 regulates phosphate metabolism by regulating PHO4 mRNA stability. In this study, we found that growth of the ∆pho92 strain on SG media was slower than that of the wild type and that PHO92 expression was up-regulated by non-fermentable carbon sources, such as ethanol and glycerol, but not by fermentable carbon sources. Furthermore, two conserved Gcr1-binding regions were identified in the upstream, untranslated region of PHO92. Gcr1 is an important factor involved in the coordinated regulation of glycolytic gene expression. Mutation of two Gcr1-binding sites of the PHO92 upstream region resulted in a growth defect on SD media. Finally, mutagenesis of the Gcr1-binding sites of the PHO92 upstream region and deletion of GCR1 resulted in up-regulation of PHO92, and this resulted from inhibition of PHO4 mRNA degradation. Based on these results, we suggest that Gcr1 regulates the expression of PHO92, and Pho92 is involved in glucose metabolism.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Regiões 5' não Traduzidas , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Glicólise , Mutagênese Sítio-Dirigida , Mutação , Domínios Proteicos , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima
3.
Biotechnol Lett ; 36(7): 1439-46, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24652547

RESUMO

Allatostatins (ASTs) are insect neuropeptide hormones that regulate diverse physiological functions, including feeding, growth and development, and reproduction. Therefore, regulation of allatostatin receptor (AstR) activity can be an effective tool for controlling insect growth and proliferation. Here, we describe a novel screening system using a mammalian cell line in which AstR is ectopically expressed, combined with fluorescence-based measurements of the membrane potential. HEK293T cells that do not express cognate receptors for AST became responsive to AST upon transfection with AstR. The response of the membrane potential to AST could be reliably detected by measuring the fluorescence of DiBAC4(3), a voltage-sensitive dye. We also discovered that overexpressing GIRK1/2 in this cell line could augment the magnitude of hyperpolarization by AST. Our screening system produces a fast and reliable readout for the efficient screening of AstR agonists.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Hormônios Juvenis/isolamento & purificação , Receptores de Neuropeptídeos/agonistas , Animais , Linhagem Celular , Fluorescência , Humanos , Insetos , Hormônios Juvenis/farmacologia , Neuropeptídeos/farmacologia
4.
Nat Commun ; 15(1): 219, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191518

RESUMO

Compulsive behaviors are observed in a range of psychiatric disorders, however the neural substrates underlying the behaviors are not clearly defined. Here we show that the basolateral amygdala-dorsomedial striatum (BLA-DMS) circuit activation leads to the manifestation of compulsive-like behaviors. We revealed that the BLA neurons projecting to the DMS, mainly onto dopamine D1 receptor-expressing neurons, largely overlap with the neuronal population that responds to aversive predator stress, a widely used anxiogenic stressor. Specific optogenetic activation of the BLA-DMS circuit induced a strong anxiety response followed by compulsive grooming. Furthermore, we developed a mouse model for compulsivity displaying a wide spectrum of compulsive-like behaviors by chronically activating the BLA-DMS circuit. In these mice, persistent molecular changes at the BLA-DMS synapses observed were causally related to the compulsive-like phenotypes. Together, our study demonstrates the involvement of the BLA-DMS circuit in the emergence of enduring compulsive-like behaviors via its persistent synaptic changes.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Humanos , Animais , Camundongos , Corpo Estriado , Neostriado , Comportamento Compulsivo , Sinapses
5.
Nat Genet ; 34(2): 199-202, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12740578

RESUMO

In mammals, imprinted genes have parent-of-origin-specific patterns of DNA methylation that cause allele-specific expression. At Rasgrf1 (encoding RAS protein-specific guanine nucleotide-releasing factor 1), a repeated DNA element is needed to establish methylation and expression of the active paternal allele. At Igf2r (encoding insulin-like growth factor 2 receptor), a sequence called region 2 is needed for methylation of the active maternal allele. Here we show that replacing the Rasgrf1 repeats on the paternal allele with region 2 allows both methylation and expression of the paternal copy of Rasgrf1, indicating that sequences that control methylation can function ectopically. Paternal transmission of the mutated allele also induced methylation and expression in trans of the normally unmethylated and silent wild-type maternal allele. Once activated, the wild-type maternal Rasgrf1 allele maintained its activated state in the next generation independently of the paternal allele. These results recapitulate in mice several features in common with paramutation described in plants.


Assuntos
Metilação de DNA , Mutação , Alelos , Animais , Cruzamentos Genéticos , Proteínas de Ligação a DNA , Feminino , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase , Inativação Gênica , Impressão Genômica , Masculino , Camundongos , Camundongos Mutantes , Sequências Repetitivas de Ácido Nucleico , Proteínas Repressoras , ras-GRF1
6.
Nat Genet ; 30(1): 92-6, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11753386

RESUMO

In mammals, DNA is methylated at cytosines within CpG dinucleotides. Properly regulated methylation is crucial for normal development. Inappropriate methylation may contribute to tumorigenesis by silencing tumor-suppressor genes or by activating growth-stimulating genes. Although many genes have been identified that acquire methylation and whose expression is methylation-sensitive, little is known about how DNA methylation is controlled. We have identified a DNA sequence that regulates establishment of DNA methylation in the male germ line at Rasgrf1. In mice, the imprinted Rasgrf1 locus is methylated on the paternal allele within a differentially methylated domain (DMD) 30 kbp 5' of the promoter. Expression is exclusively from the paternal allele in neonatal brain. Methylation is regulated by a repeated sequence, consisting of a 41-mer repeated 40 times, found immediately 3' of the DMD. This sequence is present in organisms in which Rasgrf1 is imprinted. In addition, DMD methylation is required for imprinted Rasgrf1 expression. Together the DMD and repeat element constitute a binary switch that regulates imprinting at the locus.


Assuntos
Metilação de DNA , ras-GRF1/genética , Alelos , Animais , Ilhas de CpG , Cruzamentos Genéticos , Feminino , Regulação da Expressão Gênica , Marcação de Genes , Impressão Genômica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo de Fragmento de Restrição , Sequências Reguladoras de Ácido Nucleico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transgenes
7.
Front Mol Neurosci ; 16: 1140672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008783

RESUMO

Stress is a critical precipitating factor for major depression. However, individual responses to the same stressor vary widely, possibly owing to individual variations in stress resilience. Nevertheless, the factors that determine stress susceptibility and resilience remain poorly understood. Orexin neurons have been implicated in the control of stress-induced arousal. Therefore, we investigated whether orexin-expressing neurons are involved in the regulation of stress resilience in male mice. We found that the level of c-fos expression was significantly different in susceptible versus resilient mice in the learned helplessness test (LHT). Furthermore, activating orexinergic neurons induced resilience in the susceptible group, and this resilience was also consistently observed in other behavioral tests. However, activating orexinergic neurons during the induction period (during inescapable stress exposure) did not affect stress resilience in the escape test. In addition, analyses using pathway-specific optic stimulation revealed that activating orexinergic projections to the medial part of the nucleus accumbens (NAc) alone mediated a decrease in anxiety but was not sufficient to induce resilience in the LHT. Collectively, our data suggest that orexinergic projections to multiple targets control diverse and flexible stress-related behaviors in response to various stressors.

8.
Proc Natl Acad Sci U S A ; 106(24): 9860-5, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19470483

RESUMO

The classic example of experience-dependent cortical plasticity is the ocular dominance (OD) shift in visual cortex after monocular deprivation (MD). The experimental model of homosynaptic long-term depression (LTD) was originally introduced to study the mechanisms that could account for deprivation-induced loss of visual responsiveness. One established LTD mechanism is a loss of sensitivity to the neurotransmitter glutamate caused by internalization of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). Although it has been shown that MD similarly causes a loss of AMPARs from visual cortical synapses, the contribution of this change to the OD shift has not been established. Using an herpes simplex virus (HSV) vector, we expressed in visual cortical neurons a peptide (G2CT) designed to block AMPAR internalization by hindering the association of the C-terminal tail of the AMPAR GluR2 subunit with the AP2 clathrin adaptor complex. We found that G2CT expression interferes with NMDA receptor (NMDAR)-dependent AMPAR endocytosis and LTD, without affecting baseline synaptic transmission. When expressed in vivo, G2CT completely blocked the OD shift and depression of deprived-eye responses after MD without affecting baseline visual responsiveness or experience-dependent response potentiation in layer 4 of visual cortex. These data suggest that AMPAR internalization is essential for the loss of synaptic strength caused by sensory deprivation in visual cortex.


Assuntos
Dominância Ocular , Sinapses/fisiologia , Animais , Células Cultivadas , Potenciais Evocados Visuais , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Receptores de AMPA/metabolismo , Córtex Visual/citologia , Córtex Visual/fisiologia
9.
Prog Neurobiol ; 218: 102349, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36030931

RESUMO

Many psychiatric disorders accompany deficits in cognitive functions and synaptic plasticity, and abnormal lipid modifications of neuronal proteins are associated with their pathophysiology. Lipid modifications, including palmitoylation and myristoylation, play crucial roles in the subcellular localization and trafficking of proteins. Cyclin Y (CCNY), enriched in the postsynaptic compartment, acts as an inhibitory modulator of functional and structural long-term potentiation (LTP) in the hippocampal neurons. However, cellular and molecular mechanisms underlying CCNY-mediated inhibitory functions in the synapse remain largely unknown. Here, we report that myristoylation located CCNY to the trans-Golgi network (TGN), and subsequent palmitoylation directed the myristoylated CCNY from the TGN to the synaptic cell surface. This myristoylation-dependent palmitoylation of CCNY was required for the inhibitory role of CCNY in excitatory synaptic transmission, activity-induced dynamics of AMPA receptors and PSD-95, LTP, and spatial learning. Furthermore, spatial learning significantly reduced palmitoyl- and myristoyl-CCNY levels, indicating that spatial learning lowers the synaptic abundance of CCNY. Our findings provide mechanistic insight into how CCNY is clustered adjacent to postsynaptic sites where it could play its inhibitory roles in synaptic plasticity and spatial learning.


Assuntos
Potenciação de Longa Duração , Receptores de AMPA , Ciclinas/metabolismo , Hipocampo/fisiologia , Humanos , Lipídeos , Lipoilação/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Aprendizagem Espacial , Sinapses/metabolismo
10.
Mol Cells ; 43(4): 360-372, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31940718

RESUMO

The basal ganglia network has been implicated in the control of adaptive behavior, possibly by integrating motor learning and motivational processes. Both positive and negative reinforcement appear to shape our behavioral adaptation by modulating the function of the basal ganglia. Here, we examined a transgenic mouse line (G2CT) in which synaptic transmissions onto the medium spiny neurons (MSNs) of the basal ganglia are depressed. We found that the level of collaterals from direct pathway MSNs in the external segment of the globus pallidus (GPe) ('bridging collaterals') was decreased in these mice, and this was accompanied by behavioral inhibition under stress. Furthermore, additional manipulations that could further decrease or restore the level of the bridging collaterals resulted in an increase in behavioral inhibition or active behavior in the G2CT mice, respectively. Collectively, our data indicate that the striatum of the basal ganglia network integrates negative emotions and controls appropriate coping responses in which the bridging collateral connections in the GPe play a critical regulatory role.


Assuntos
Gânglios da Base/fisiopatologia , Encéfalo/fisiopatologia , Estresse Psicológico/fisiopatologia , Animais , Modelos Animais de Doenças , Camundongos
11.
Biochem Biophys Res Commun ; 379(1): 65-9, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19070590

RESUMO

Advances in understanding the neurobiology of addiction indicate that not only dopaminergic neurotransmissions but also glutamatergic neurotransmissions within the mesolimbic system play important roles. While the role for the nucleus accumbens (NAc) shell and core in addiction has been extensively studied, the function of the dorsal striatum is not clear. Here, we demonstrate that repeated cocaine injections cause increases in surface-expressed AMPA receptors in the dorsal striatum. The increased AMPAR expression is more robust in juvenile mice than in young adult mice. Furthermore, expression of the G1CT peptide, which prevents the delivery of AMPARs to the surface, attenuates the locomotor sensitization in juvenile mice. Our results strongly suggest that glutamatergic synaptic plasticity in the dorsal striatum may have an important role in behavioral sensitization to cocaine and that there may be different age-dependent control mechanisms.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/administração & dosagem , Corpo Estriado/metabolismo , Receptores de AMPA/biossíntese , Transmissão Sináptica/efeitos dos fármacos , Animais , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Receptores de AMPA/agonistas , Receptores de AMPA/genética
12.
Biochem Biophys Res Commun ; 378(3): 409-13, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19028455

RESUMO

Accumulating evidence suggests that orexin signaling is involved in reward and motivation circuit functions. However, the underlying mechanisms are not yet fully understood. Here, we show that orexin-A potentiates AMPAR-mediated synaptic transmission in the striatum, possibly by regulating the surface expression of AMPARs. Primary culture of striatal neurons revealed increased surface expression of AMPARs following orexin-A treatment. The increase in surface-expressed AMPARs induced by orexin-A treatment was dependent on both ERK activation and the presence of extracellular Ca(2+). In the corticostriatal synapses of rat brain slices, orexin-A bath-application caused a delayed increase in the AMPAR/NMDAR EPSC ratio, suggesting that orexin-A sets in motion a series of events that lead to functional alterations in the striatal circuits. Our findings provide a potential link between the activation of orexin signaling in the striatum in response to addictive substances and neural adaptations in the reward circuitry that may mediate the long-lasting addiction-related behaviors.


Assuntos
Membrana Celular/metabolismo , Corpo Estriado/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neuropeptídeos/fisiologia , Receptores de AMPA/biossíntese , Transmissão Sináptica , Animais , Cálcio/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/ultraestrutura , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neuropeptídeos/farmacologia , Orexinas , Ratos , Ratos Sprague-Dawley
13.
J Food Prot ; 72(4): 856-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19435238

RESUMO

Sprouted vegetable seeds used as food have been implicated as sources of outbreaks of Salmonella and Escherichia coli O157:H7 infections. We profiled the microbiological quality of sprouts and seeds sold at retail shops in Seoul, Korea. Ninety samples of radish sprouts and mixed sprouts purchased at department stores, supermarkets, and traditional markets and 96 samples of radish, alfalfa, and turnip seeds purchased from online stores were analyzed to determine the number of total aerobic bacteria (TAB) and molds or yeasts (MY) and the incidence of Salmonella, E. coli O157:H7, and Enterobacter sakazakii. Significantly higher numbers of TAB (7.52 log CFU/g) and MY (7.36 log CFU/g) were present on mixed sprouts than on radish sprouts (6.97 and 6.50 CFU/g, respectively). Populations of TAB and MY on the sprouts were not significantly affected by location of purchase. Radish seeds contained TAB and MY populations of 4.08 and 2.42 log CFU/g, respectively, whereas populations of TAB were only 2.54 to 2.84 log CFU/g and populations of MY were 0.82 to 1.69 log CFU/g on alfalfa and turnip seeds, respectively. Salmonella and E. coli O157:H7 were not detected on any of the sprout and seed samples tested. E. sakazakii was not found on seeds, but 13.3% of the mixed sprout samples contained this potentially pathogenic bacterium.


Assuntos
Brassica rapa/microbiologia , Microbiologia de Alimentos , Medicago sativa/microbiologia , Raphanus/microbiologia , Sementes/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Coreia (Geográfico)
14.
J Affect Disord ; 245: 1079-1088, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30699850

RESUMO

BACKGROUND: Genetic and physiological studies have implicated the striatum in bipolar disorder (BD). Although Glycogen synthase kinase 3 beta (GSK3ß) has been suggested to play a role in the pathophysiology of BD since it is inhibited by lithium, it remains unknown how GSK3ß activity might be involved. Therefore we examined the functional roles of GSK3ß and one of its substrates, CRMP2, within the striatum. METHODS: Using CRISPR-Cas9 system, we specifically ablated GSK3ß in the striatal neurons in vivo and in vitro. Sholl analysis was performed for the structural studies of medium spiny neurons (MSNs) and amphetamine-induced hyperlocomotion was measured to investigate the effects of gene ablations on the mania-like symptom of BD. RESULTS: GSK3ß deficiency in cultured neurons and in neurons of adult mouse brain caused opposite patterns of neurite changes. Furthermore, specific knockout of GSK3ß in the MSNs of the indirect pathway significantly suppressed amphetamine-induced hyperlocomotion. We demonstrated that these phenotypes of GSK3ß ablation were mediated by CRMP2, a major substrate of GSK3ß. LIMITATIONS: Amphetamine-induced hyperlocomotion only partially recapitulate the symptoms of BD. It requires further study to examine whether abnormality in GSK3ß or CRMP2 is also involved in depression phase of BD. Additionally, we could not confirm whether the behavioral changes observed in GSK3ß-ablated mice were indeed caused by the cellular structural changes observed in the striatal neurons. CONCLUSION: Our results demonstrate that GSK3ß and its substrate CRMP2 critically regulate the neurite structure of MSNs and their functions specifically within the indirect pathway of the basal ganglia network play a critical role in manifesting mania-like behavior of BD. Moreover, our data also suggest lithium may exert its effect on BD through a GSK3ß-independent mechanism, in addition to the GSK3ß inhibition-mediated mechanism.


Assuntos
Transtorno Bipolar/patologia , Corpo Estriado/patologia , Dendritos/ultraestrutura , Glicogênio Sintase Quinase 3 beta/deficiência , Locomoção/genética , Anfetamina/farmacologia , Animais , Transtorno Bipolar/tratamento farmacológico , Células Cultivadas , Corpo Estriado/metabolismo , Depressão , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/fisiologia , Humanos , Lítio/farmacologia , Locomoção/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neostriado/patologia , Neurônios/citologia
15.
Biochem Biophys Res Commun ; 377(3): 930-4, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18952054

RESUMO

Different NR2 subunits (NR2A-D) of NMDA receptors confer distinct properties on the receptors and the subunit composition of heteromeric NMDA receptor complex is tightly regulated. Here, we demonstrate that suppression of neuronal activity causes mRNA expression of the NR2B subunit to increase significantly, both in vitro and in vivo, and that this modulation of transcription is mediated by epigenetic mechanisms. Treating cortical neurons with TTX substantially increases the level of mRNAs for NMDA receptor subunits. Particularly, the NR2B expression increases over 2-fold, similar to the effects of dark-rearing. The increase of NR2B induced by TTX is occluded by inhibiting DNMTs. Furthermore, MeCP2 binds to NR2B and the association of MeCP2 with NR2B is reduced by TTX treatment. Together, these data indicate that DNA methylation as well as subsequent MeCP2 association mediates neuronal activity-dependent regulation of NR2B expressions.


Assuntos
Epigênese Genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Córtex Visual/fisiologia , Animais , Metilação de DNA , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Endogâmicos LEC , Córtex Visual/citologia , Córtex Visual/metabolismo
16.
Prog Neuropsychopharmacol Biol Psychiatry ; 32(3): 778-85, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18207298

RESUMO

Mood abnormalities related to major depressive disorder (MDD) seem to result from disturbances in pathways connecting the fronto-limbic and subcortical, both regions known to be involved in the processing of emotional information. Using functional magnetic resonance imaging (fMRI), we measured neural responses to viewing images of sad, angry and neutral faces in 21 patients with MDD and 15 healthy controls. When shown pictures of sad faces, patients with MDD relative controls showed decreased activations bilaterally in the dorsolateral prefrontal cortex, inferior orbitofrontal cortex (OFC), medial OFC, caudate, and hippocampus. We also found significant group differences under the angry face condition, bilaterally, in the inferior OFC and medial OFC areas. Our findings indicate that decreased activations in the fronto-limbic and subcortical regions in response to affectively negative stimuli may be associated with pathophysiology of MDD.


Assuntos
Afeto/fisiologia , Ira/fisiologia , Mapeamento Encefálico , Transtorno Depressivo Maior/fisiopatologia , Expressão Facial , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Estimulação Luminosa/métodos
17.
Nat Neurosci ; 6(8): 854-62, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12886226

RESUMO

A dramatic form of experience-dependent synaptic plasticity is revealed in visual cortex when one eye is temporarily deprived of vision during early postnatal life. Monocular deprivation (MD) alters synaptic transmission such that cortical neurons cease to respond to stimulation of the deprived eye, but how this occurs is poorly understood. Here we show in rat visual cortex that brief MD sets in motion the same molecular and functional changes as the experimental model of homosynaptic long-term depression (LTD), and that prior synaptic depression by MD occludes subsequent induction of LTD. The mechanisms of LTD, about which there is now a detailed understanding, therefore contribute to visual cortical plasticity.


Assuntos
Privação Sensorial/fisiologia , Visão Monocular/fisiologia , Córtex Visual/fisiologia , Animais , Membrana Celular/metabolismo , Potenciais Evocados Visuais , Lateralidade Funcional , Depressão Sináptica de Longo Prazo , Neurônios/metabolismo , Fosforilação , Ratos , Ratos Long-Evans , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Fatores de Tempo , Visão Ocular , Córtex Visual/metabolismo
18.
Exp Neurobiol ; 26(5): 241-251, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29093633

RESUMO

Saturation mutagenesis was performed on a single position in the voltage-sensing domain (VSD) of a genetically encoded voltage indicator (GEVI). The VSD consists of four transmembrane helixes designated S1-S4. The V220 position located near the plasma membrane/extracellular interface had previously been shown to affect the voltage range of the optical signal. Introduction of polar amino acids at this position reduced the voltage-dependent optical signal of the GEVI. Negatively charged amino acids slightly reduced the optical signal by 33 percent while positively charge amino acids at this position reduced the optical signal by 80%. Surprisingly, the range of V220D was similar to that of V220K with shifted optical responses towards negative potentials. In contrast, the V220E mutant mirrored the responses of the V220R mutation suggesting that the length of the side chain plays in role in determining the voltage range of the GEVI. Charged mutations at the 219 position all behaved similarly slightly shifting the optical response to more negative potentials. Charged mutations to the 221 position behaved erratically suggesting interactions with the plasma membrane and/or other amino acids in the VSD. Introduction of bulky amino acids at the V220 position increased the range of the optical response to include hyperpolarizing signals. Combining The V220W mutant with the R217Q mutation resulted in a probe that reduced the depolarizing signal and enhanced the hyperpolarizing signal which may lead to GEVIs that only report neuronal inhibition.

19.
Artigo em Inglês | MEDLINE | ID: mdl-27547183

RESUMO

The age of genetically encoded voltage indicators (GEVIs) has matured to the point that changes in membrane potential can now be observed optically in vivo. Improving the signal size and speed of these voltage sensors has been the primary driving forces during this maturation process. As a result, there is a wide range of probes using different voltage detecting mechanisms and fluorescent reporters. As the use of these probes transitions from optically reporting membrane potential in single, cultured cells to imaging populations of cells in slice and/or in vivo, a new challenge emerges-optically resolving the different types of neuronal activity. While improvements in speed and signal size are still needed, optimizing the voltage range and the subcellular expression (i.e., soma only) of the probe are becoming more important. In this review, we will examine the ability of recently developed probes to report synaptic activity in slice and in vivo. The voltage-sensing fluorescent protein (VSFP) family of voltage sensors, ArcLight, ASAP-1, and the rhodopsin family of probes are all good at reporting changes in membrane potential, but all have difficulty distinguishing subthreshold depolarizations from action potentials and detecting neuronal inhibition when imaging populations of cells. Finally, we will offer a few possible ways to improve the optical resolution of the various types of neuronal activities.

20.
Neuropharmacology ; 105: 388-397, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26877199

RESUMO

Early life stress (ELS) exerts long-lasting epigenetic influences on the brain and makes an individual susceptible to later depression. It is poorly understood whether ELS and subsequent adult chronic stress modulate epigenetic mechanisms. We examined the epigenetic mechanisms of the BDNF gene in the hippocampus, which may underlie stress vulnerability to postnatal maternal separation (MS) and adult restraint stress (RS). Rat pups were separated from their dams (3 h/day from P1-P21). When the pups reached adulthood (8 weeks old), we introduced RS (2 h/day for 3 weeks) followed by escitalopram treatment. We showed that both the MS and RS groups expressed reduced levels of total and exon IV BDNF mRNA. Furthermore, RS potentiated MS-induced decreases in these expression levels. Similarly, both the MS and RS groups showed decreased levels of acetylated histone H3 and H4 at BDNF promoter IV, and RS exacerbated MS-induced decreases of H3 and H4 acetylation. Both the MS and RS groups had increased MeCP2 levels at BDNF promoter IV, as well as increased HDAC5 mRNA, and the combination of MS and RS exerted a greater effect on these parameters than did RS alone. In the forced swimming test, the immobility time of the MS + RS group was significantly higher than that of the RS group. Additionally, chronic escitalopram treatment recovered these alterations. Our results suggest that postnatal MS and subsequent adult RS modulate epigenetic changes in the BDNF gene, and that these changes may be related to behavioral phenotype. These epigenetic mechanisms are involved in escitalopram action.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Epigênese Genética/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Estresse Psicológico/psicologia , Adulto , Animais , Antidepressivos de Segunda Geração/uso terapêutico , Ansiedade de Separação , Citalopram/uso terapêutico , Feminino , Hipocampo/metabolismo , Histona Desacetilases/biossíntese , Histona Desacetilases/genética , Histonas/metabolismo , Humanos , Masculino , Gravidez , Ratos Sprague-Dawley , Restrição Física , Natação/psicologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa