Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 247: 55-63, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30654254

RESUMO

A field study was conducted to clarify sources of atmospheric black carbon and related carbonaceous components at Rishiri Island, Japan. We quantified equivalent black carbon (eBC) particle mass and the absorption Ångström exponent (AAE), atmospheric CO and CH4, in addition to levoglucosan in total suspended particles, a typical tracer of biomass burning. Sixteen high eBC events were identified attributable to either anthropogenic sources or biomass burning in Siberia/China. These events were often accompanied by increases of co-emitted gases such as CH4 and CO. Specifically, we observed pollution events with elevated eBC, AAE, levoglucosan, and CH4CO slope in late July 2014, which were attributed to forest fires in Siberia by reference to the FLEXPART model footprint and fire hotspots. In autumn, drastic increases of eBC, AAE, and levoglucosan were observed, accompanied by an eBC-CO slope of >15 ng m-3/ppb, resulting from long-range transport of emissions from extensive burning of crop residue on the Northeast China Plain. Other than the sources of fossil fuel combustion in China and forest fires in Siberia, we report for the first time that pollution events in northern Japan are caused by crop residue burning in China. This study elucidated valuable information that will improve understanding of the effects of biomass burning in East Asia on atmospheric carbonaceous components.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Fuligem/análise , Aerossóis/análise , Biomassa , Carbono/análise , China , Ásia Oriental , Incêndios , Combustíveis Fósseis , Gases , Ilhas , Japão , Estações do Ano , Sibéria , Incêndios Florestais
2.
Sci Total Environ ; 524-525: 331-7, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25911544

RESUMO

Surface atmospheric CO2 mixing ratio reflects both natural fluctuation of the carbon cycle and the effect of anthropogenic activities. Long-term observation of atmospheric CO2 forms the basis for model simulations of the carbon cycle both in the straightforward and the inversion ways. Atmospheric CO2 has been measured on Rishiri Island (45.1°N, 141.2°E) in the western North Pacific since May 2006. We report the first 7-year temporal CO2 variations from diurnal to inter-annual scales and the implications on the vegetation phenology. Diurnally, an obvious cycle appeared as a minimum in the afternoon and maximum at midnight in the summer months, caused by local vegetation. Seasonally, the maximum CO2 concentration appeared around the beginning of April, while the minimum appeared around the middle of August. This seasonal variation implied the natural cycle of terrestrial biological activities of the boreal forest, mostly in the east Eurasia. A mean growing season length of ~126 days was estimated. In the period from 2007 to 2012, the peak-to-peak amplitude increased until 2009 and decreased thereafter, with a mean value of 19.7 ppm. Inter-annually, atmospheric CO2 is increasing by a mean growth rate of 2.1 ppm year(-1). The study provides invaluable dataset and useful information to better understand the carbon cycle and its interaction with climate change.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa