Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(36): 15340-15348, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786750

RESUMO

The low n-doping efficiency of conjugated polymers with the molecular dopants limits their availability in electrical conductivity, thermoelectrics, and other electric applications. Recently, considerable efforts have focused on improving the ionization of dopants by modifying the structures of host polymers or n-dopants; however, the effect of ionized dopants on the electrical conductivity and thermoelectric performance of the polymers is still a puzzle. Herein, we try to reveal the role of molecular dopant cations on carrier transport through the systematic comparison of two n-dopants, TAM and N-DMBI-H. These two n-dopants exhibit various doping features with the polymer due to their different chemical structure characteristics. For instance, while doping, TAM negligibly perturbs the polymer backbone conformation and microstructural ordering; then after ionization, TAM cations possess weak π-backbone affinity but strong intrinsic affinity with side chains, which enables the doped system to screen the Coulomb potential spatially. Such doping features lead to high carrierization capabilities for TAM-doped polymers and further result in an excellent conductivity of up to 22 ± 2.5 S cm-1 and a power factor of over 80 µW m-1 K-2, which are significantly higher than the state of the art values of the common n-dopant N-DMBI-H. More importantly, this strategy has also proven to be widely applicable in other doped polymers. Our investigations indicate the vital role of dopant counterions in high electrical and thermoelectric performance polymers and also suggest that, without sacrificing Seebeck coefficients, high conductivities can be realized with precise regulation of the interaction between the cations and the host.

2.
Angew Chem Int Ed Engl ; 58(33): 11390-11394, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31187584

RESUMO

Low n-doping efficiency and inferior stability restrict the thermoelectric performance of n-type conjugated polymers, making their performance lag far behind of their p-type counterparts. Reported here are two rigid coplanar poly(p-phenylene vinylene) (PPV) derivatives, LPPV-1 and LPPV-2, which show nearly torsion-free backbones. The fused electron-deficient rigid structures endow the derivatives with less conformational disorder and low-lying lowest unoccupied molecular orbital (LUMO) levels, down to -4.49 eV. After doping, two polymers exhibited high n-doping efficiency and significantly improved air stability. LPPV-1 exhibited a high conductivity of up to 1.1 S cm-1 and a power factor as high as 1.96 µW m-1 K-2 . Importantly, the power factor of the doped LPPV-1 thick film degraded only 2 % after 7 day exposure to air. This work demonstrates a new strategy for designing conjugated polymers, with planar backbones and low LUMO levels, towards high-performance and potentially air-stable n-type polymer thermoelectrics.

3.
Sci Adv ; 9(8): eadf3495, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827372

RESUMO

The charge transport properties of conjugated polymers are commonly limited by the energetic disorder. Recently, several amorphous conjugated polymers with planar backbone conformations and low energetic disorder have been investigated for applications in field-effect transistors and thermoelectrics. However, there is a lack of strategy to finely tune the interchain π-π contacts of these polymers that severely restricts the energetic disorder of interchain charge transport. Here, we demonstrate that it is feasible to achieve excellent conductivity and thermoelectric performance in polymers based on thiophene-fused benzodifurandione oligo(p-phenylenevinylene) through reducing the crystallization rate of side chains and, in this way, carefully controlling the degree of interchain π-π contacts. N-type (p-type) conductivities of more than 100 S cm-1 (400 S cm-1) and power factors of more than 200 µW m-1 K-2 (100 µW m-1 K-2) were achieved within a single polymer doped by different dopants. It further demonstrated the state-of-the-art power output of the first flexible single-polymer thermoelectric generator.

4.
IEEE Open J Power Electron ; 2: 225-235, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34046640

RESUMO

Medium-voltage (e.g., 10 kV rated) silicon carbide (SiC) devices have great potentials in medium-voltage variable speed drives. But their high switching dv/dt can increase the voltage stress on motor windings and cause partial discharges. This paper presents a partial discharge study of a medium-voltage form-wound winding under two-level square-wave voltage pulses. A 10 kV SiC device-based test platform is built to generate voltage pulses with high dv/dt. A three-step test approach is proposed and employed to systematically investigate the effects of various voltage parameters on partial discharges. These include voltage rise/fall time, voltage pulse width, pulse repetitive rate, duty ratio, voltage polarity, fundamental frequency, and modulation index. Partial discharge inception voltages (PDIVs) and repetitive partial discharge inception voltages (RPDIVs) of the sample are measured with varied voltage parameters. Test results show that voltage rise/fall time is a major affecting factor which reduces PDIVs of the winding sample by 6.5% when it decreases from 800 ns to 100 ns. Based on test results, a hypothetical partial discharge mechanism is presented to explain the effects of fast voltage rise/fall edges. An empirical equation is also derived to estimate PDIVs of a winding sample under various voltage rise/fall time and pulse width conditions.

5.
Adv Mater ; 33(2): e2005946, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33251668

RESUMO

Solution-processable highly conductive polymers are of great interest in emerging electronic applications. For p-doped polymers, conductivities as high a nearly 105 S cm-1 have been reported. In the case of n-doped polymers, they often fall well short of the high values noted above, which might be achievable, if much higher charge-carrier mobilities determined could be realized in combination with high charge-carrier densities. This is in part due to inefficient doping and dopant ions disturbing the ordering of polymers, limiting efficient charge transport and ultimately the achievable conductivities. Here, n-doped polymers that achieve a high conductivity of more than 90 S cm-1 by a simple solution-based co-deposition method are reported. Two conjugated polymers with rigid planar backbones, but with disordered crystalline structures, exhibit surprising structural tolerance to, and excellent miscibility with, commonly used n-dopants. These properties allow both high concentrations and high mobility of the charge carriers to be realized simultaneously in n-doped polymers, resulting in excellent electrical conductivity and thermoelectric performance.

6.
Rev Sci Instrum ; 87(3): 035103, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27036815

RESUMO

At present, conducting standard lightning impulse (LI) tests in the field for gas-insulated switchgear (GIS) equipment is difficult because of the high capacitance of the test equipment and large circuit inductance of traditional impulse devices, which leads to a wavefront time T(f) ≥ 2.5 µs. A novel fully enclosed, compact standard LI generator for testing ultra-high-voltage-class GIS equipment with high capacitance is presented to solve the problem of T(f) exceeding the standard during LI voltage tests for actual large-sized equipment. The impulse generator is installed in a metal vessel filled with SF6 or SF6/N2 gas mixture at a pressure of 0.3-0.5 MPa, providing a more compact structure and a lower series inductance. A newly developed conical voltage sensor is used to accurately measure the output voltage waveform. Two test modes (via bushing docking and direct docking) for the GIS test based on the impulse generator are introduced. Calculation results show that the impulse generator can generate an LI test waveform following the present IEC standard for the test of equipment with capacitance >10,000 pF.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa