Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Amino Acids ; 56(1): 22, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483649

RESUMO

Heart failure (HF) has been recognized as a global epidemic with high rates of morbidity, hospitalization, and mortality. The role of amino acids, which provide the body with energy, in the development of HF is still unclear. The aim of this study was to explore changes in serum amino acids in patients with HF and identify potential biomarkers. First, the serum amino acid metabolism profiles of 44 patients with HF and 30 healthy controls (Con) were quantitatively measured. Then, candidate markers were identified through the utilization of T test, multivariate statistical analysis, and receiver operating characteristic (ROC) curve analysis. The results found that there were 11 amino acid levels that were significantly different between patients with HF and Con. Based on ROC curve analysis, the biomarkers of eight amino acids (Glutamic acid, Taurine, L-aspartic acid, L-ornithine, Ethanolamine, L-Serine, L-Sarcosine, and Cysteine) showed high sensitivity and specificity (AUC > 0.90), and binary logistic regression analysis was used in MetaboAnalyst 5.0. Among the amino acids examined, six exhibited notable alterations in accordance with the severity of HF. In conclusion, this study cannot only provide clinicians with an objective diagnostic approach for the early identification of HF, but also enhances comprehension of the underlying mechanisms involved in the pathogenesis of HF.


Assuntos
Insuficiência Cardíaca , Metabolômica , Humanos , Metabolômica/métodos , Aminoácidos/metabolismo , Curva ROC , Biomarcadores , Aminas
2.
J Sep Sci ; 45(15): 2804-2818, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35662416

RESUMO

Xiaoer Huanglong Granule is the only Chinese Patent Medicine widely used for treating attention deficit hyperactivity disorder. However, not much is known about the bioactive components and pharmacokinetics of Xiaoer Huanglong Granule even after it was successfully introduced into clinical use. This study analyzed the components in the medication and rat plasma after oral administration with the help of the UNIFI platform and Masslynx. A total of 119 and 37 components were detected in the medication and plasma, respectively, using an ultra-performance liquid chromatography-tandem mass spectrometer. We established a rapid and sensitive simultaneous determination of one triterpene saponin, three monoterpene glycosides, and three lignans in rat plasma by solid-phase extraction. The determination was accomplished within 7.50 min via gradient elution. The values of the lower limit of quantitation were validated at 0.08 ng/ml for tenuifolin, 0.8 ng/ml for lactiflorin, 1.828 ng/ml for albiflorin, 2 ng/ml for paeoniflorin, gomisin B, and gomisin D, 10 ng/ml for schisandrin. The results from validations of other methods were all acceptable (relative standard deviation ≤ 14.94%). This is the first report on the identification and pharmacokinetics studies of components in Xiaoer Huanglong Granule. Moreover, the pharmacokinetic behavior of lactiflorin was studied for the first time.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Compostos Fitoquímicos , Ratos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
3.
Phytother Res ; 34(2): 270-281, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31680350

RESUMO

Aloe-emodin is a naturally anthraquinone derivative and an active ingredient of Chinese herbs, such as Cassia occidentalis, Rheum palmatum L., Aloe vera, and Polygonum multiflorum Thunb. Emerging evidence suggests that aloe-emodin exhibits many pharmacological effects, including anticancer, antivirus, anti-inflammatory, antibacterial, antiparasitic, neuroprotective, and hepatoprotective activities. These pharmacological properties lay the foundation for the treatment of various diseases, including influenza virus, inflammation, sepsis, Alzheimer's disease, glaucoma, malaria, liver fibrosis, psoriasis, Type 2 diabetes, growth disorders, and several types of cancers. However, an increasing number of published studies have reported adverse effects of aloe-emodin. The primary toxicity among these reports is hepatotoxicity and nephrotoxicity, which are of wide concern worldwide. Pharmacokinetic studies have demonstrated that aloe-emodin has a poor intestinal absorption, short elimination half-life, and low bioavailability. This review aims to provide a comprehensive summary of the pharmacology, toxicity, and pharmacokinetics of aloe-emodin reported to date with an emphasis on its biological properties and mechanisms of action.


Assuntos
Antraquinonas/farmacologia , Antraquinonas/farmacocinética , Antraquinonas/toxicidade , Aloe/química , Animais , Cassia/química , Fallopia multiflora/química , Humanos , Rheum/química
4.
Toxicol Mech Methods ; 30(6): 397-406, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32208876

RESUMO

Aims: Polyphyllin I, a steroidal saponin in Rhizoma paridis, which possess broad application prospects in cancer prevention and treatment. The purpose of this study was to determine the potential cytotoxicity and mechanism of Polyphyllin I in HepG2 cells.Main methods: In this study, we used MTT to evaluate cell survival. Cell apoptosis rate, cell cycle distribution, mitochondrial membrane potential and ros levels were measured by flow cytometry, and the expression of apoptosis-related proteins was determined by Western blot analysis.Key findings: Polyphyllin I significantly reduced cell viability and induced HepG2 cell apoptosis in a dose and time-dependent manner. Compared with the control group, it could induce reactive oxygen species (ROS) generation and depolarization of matrix metalloproteinases in liver cells. Polyphyllin I dose-dependent increased the release of mitochondrial cytochrome c, and levels of Fas, p53, p21, and Bax/Bcl-2 ratios, as well as the activation of cleaved caspase-3, -8, -9, and subsequent cleavage of the poly (ADP-ribose) polymerase (PARP). The G2/M phase cell cycle arrest was induced by increasing the expression of p21 and cyclin E1, and significantly reducing the expression of cyclin A2 and CDK2.Significance: Our results suggested that Polyphylin I inhibited cell proliferation and growth by triggering G2/M cell cycle arrest, and induced apoptosis through intracellular and extracellular apoptosis pathways to cause cell death by generating reactive oxygen species.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Diosgenina/análogos & derivados , Neoplasias Hepáticas/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Receptor fas/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células/efeitos dos fármacos , Diosgenina/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
5.
Pharm Biol ; 58(1): 950-958, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32956595

RESUMO

CONTEXT: Acetylshikonin, a naphthoquinone derivative, is mainly extracted from some species of the family Boraginaceae, such as Lithospermum erythrorhizon Sieb. et Zucc., Arnebia euchroma (Royle) Johnst., and Arnebia guttata Bunge. As a bioactive compound, acetylshikonin has attracted much attention because of its broad pharmacological properties. OBJECTIVE: This review provides a comprehensive summary of the pharmacology, toxicity, and pharmacokinetics of acetylshikonin focussing on its mechanisms on the basis of currently available literature. METHODS: The information of acetylshikonin from 1977 to 2020 was collected using major databases including Elsevier, Scholar, PubMed, Springer, Web of Science, and CNKI. Acetylshikonin, pharmacology, toxicity, pharmacokinetics, and naphthoquinone derivative were used as key words. RESULTS: According to emerging evidence, acetylshikonin exerts a wide spectrum of pharmacological effects such as anticancer, anti-inflammatory, lipid-regulatory, antidiabetic, antibacterial, antifungal, antioxidative, neuroprotective, and antiviral properties. However, only a few studies have reported the adverse effects of acetylshikonin, with respect to reproductive toxicity and genotoxicity. Pharmacokinetic studies demonstrate that acetylshikonin is associated with a wide distribution and poor absorption. CONCLUSIONS: Although experimental data supports the beneficial effects of this compound, acetylshikonin cannot be considered as a therapy drug without further investigations, especially, on the toxicity and pharmacokinetics.


Assuntos
Antraquinonas/farmacologia , Antraquinonas/farmacocinética , Antraquinonas/toxicidade , Animais , Antraquinonas/química , Boraginaceae/química , Medicamentos de Ervas Chinesas , Humanos , Camundongos , Naftoquinonas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos
6.
J Cell Physiol ; 234(5): 7078-7089, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30362578

RESUMO

Rhizoma Paridis, a traditional Chinese medicine, has shown promise in cancer prevention and therapy. Polyphyllin II is one of the most significant saponins in Rhizoma Paridis and it has toxic effects on kinds of cancer cells. However, our results in this study proved that the polyphyllin II has hepatotoxicity in vitro through caspases activation and cell-cycle arrest. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide results indicated polyphyllin II inhibited proliferation, induced apoptosis in HepaRG cells and HL-7702 cells and showed a concentration and time-dependent. Then, we selected the innovative cell model-HepaRG cells to explore the mechanism of hepatotoxicity. Our data showed the reactive oxygen species (ROS) increased and the mitochondrial membrane potential decreased in HepaRG cells after administration of polyphyllin II. Besides, with the increase of concentration, the release of lactate dehydrogenase increased and the S phase of the cell cycle was arrested. Nevertheless, when pretreatment with antioxidant N-acetylcysteine, apoptotic cells decreased significantly, inhibited the production of ROS and improved the decrease of membrane potential in HepaRG cells. Moreover, polyphyllin II treatment increased levels of Fas, Bax, cytochrome c, activated caspase-3, -8, -9, cleaved poly(ADP-ribose) polymerase and decreased Bcl-2 expression levels. Finally, we identified two signal pathways of apoptosis induced by polyphyllin II including the death receptor pathway and the mitochondria pathway. This study confirmed the hepatotoxicity of the polyphyllin II in vitro, which has never been discovered and gave a wake-up call for the clinical application of Rhizoma Paridis.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Saponinas/toxicidade , Esteroides/toxicidade , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ativação Enzimática , Hepatócitos/enzimologia , Hepatócitos/patologia , Fígado/enzimologia , Fígado/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Transdução de Sinais
7.
Molecules ; 24(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925694

RESUMO

A MIL series metal‒organic framework (MOF), MIL-100(Fe), was successfully synthesized at the nanoscale and fully characterized by TEM, TGA, XRD, FTIR, DLS, and BET. A toxicological assessment was performed using two different cell lines: human normal liver cells (HL-7702) and hepatocellular carcinoma (HepG2). In vitro cytotoxicity of MIL-100(Fe) was evaluated by the MTT assay, LDH releasing rate assay, DAPI staining, and annexin V/PI double staining assay. The safe dose of MIL-100(Fe) was 80 µg/mL. It exhibited good biocompatibility, low cytotoxicity, and high cell survival rate (HL-7702 cells' viability >85.97%, HepG2 cells' viability >91.20%). Therefore, MIL-100(Fe) has a potential application as a drug carrier.


Assuntos
Ferro/toxicidade , Estruturas Metalorgânicas/toxicidade , Testes de Toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ferro/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/ultraestrutura , Modelos Moleculares , Tamanho da Partícula , Porosidade
8.
Molecules ; 25(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878332

RESUMO

Curcumin (Cur) is a naturally hydrophobic polyphenol with potential pharmacological properties. However, the poor aqueous solubility and low bioavailability of curcumin limits its ocular administration. Thus, the aim of this study was to prepare a mixed micelle in situ gelling system of curcumin (Cur-MM-ISG) for ophthalmic drug delivery. The curcumin mixed micelles (Cur-MMs) were prepared via the solvent evaporation method, after which they were incorporated into gellan gum gels. Characterization tests showed that Cur-MMs were small in size and spherical in shape, with a low critical micelle concentration. Compared with free curcumin, Cur-MMs improved the solubility and stability of curcumin significantly. The ex vivo penetration study revealed that Cur-MMs could penetrate the rabbit cornea more efficiently than the free curcumin. After dispersing the micelles in the gellan gum solution at a ratio of 1:1 (v/v), a transparent Cur-MM-ISG with the characteristics of a pseudoplastic fluid was formed. No obvious irritations were observed in the rabbit eyes after ocular instillation of Cur-MM-ISG. Moreover, Cur-MM-ISG showed a longer retention time on the corneal surface when compared to Cur-MMs using the fluorescein sodium labeling method. These findings indicate that biocompatible Cur-MM-ISG has great potential in ophthalmic drug therapy.


Assuntos
Curcumina/administração & dosagem , Sistemas de Liberação de Medicamentos , Géis/química , Micelas , Soluções Oftálmicas/administração & dosagem , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Polissacarídeos Bacterianos/química , Ácidos Esteáricos/química , Animais , Varredura Diferencial de Calorimetria , Túnica Conjuntiva/efeitos dos fármacos , Córnea/efeitos dos fármacos , Cristalização , Curcumina/farmacologia , Liberação Controlada de Fármacos , Endocitose , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Soluções Oftálmicas/farmacologia , Pressão Osmótica , Tamanho da Partícula , Permeabilidade , Coelhos , Reologia , Soluções , Eletricidade Estática
9.
Biomed Chromatogr ; 32(3)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29110318

RESUMO

A simple sensitive LC-MS/MS method has been developed for the simultaneous determination of giraldoid A and giraldoid B in rat plasma. The method was applied to pharmacokinetics studies of the two compounds from Daphne giraldii Nitsche. Chromatographic separation was accomplished on an Acquity UPLC™ BEH C18 column (100 × 2.1 mm, 1.7 mm) by gradient elution with a flow rate of 0.2 mL min-1. The method was linear over the concentration range of 1.0-1000 ng mL-1 , and the lower limits of quantification were 1.04 ± 0.10 and 1.04 ± 0.09 ng mL-1 , respectively. The intra- and inter-day precisions (RSD) were <10.14 and 9.96%. The extraction recovery of the analytes was acceptable. Stability studies demonstrated that the two compounds were stable in the preparation and analytical process. The maximum plasma concentration was 687.78 ± 243.62 ng mL-1 for giraldoid A and 952.38 ± 131.99 ng mL-1 for giraldoid B. The time to reach the maximum plasma concentration was 0.50 ± 0.37 h for giraldoid A and 0.50 ± 0.66 h for giraldoid B. The validated method was successfully applied to investigate the concentration-time profiles of giraldoid A and giraldoid B.


Assuntos
Cromatografia Líquida/métodos , Daphne/química , Flavonoides/sangue , Extratos Vegetais , Espectrometria de Massas em Tandem/métodos , Administração Oral , Animais , Flavonoides/química , Flavonoides/farmacocinética , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley
10.
Int J Mol Sci ; 19(4)2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29614833

RESUMO

Rhein, a naturally occurring active anthraquinone found abundantly in various medicinal and nutritional herbs, possesses a wide spectrum of pharmacological effects. Furthermore, previous studies have reported that rhein could induce hepatotoxicity in rats. However, its cytotoxicity and potential molecular mechanisms remain unclear. Therefore, the present study aimed to investigate the cytotoxicity of rhein on HepaRG cells and the underlying mechanisms of its cytotoxicity. Our results demonstrate, by 3-(4,5-dimethyl thiazol-2-yl-)-2,5-diphenyl tetrazolium bromide (MTT) and Annexin V-fluoresce isothiocyanate (FITC)/propidium iodide (PI) double-staining assays, that rhein significantly inhibited cell viability and induced apoptosis in HepaRG cells. Moreover, rhein treatment resulted in the generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential (MMP), and S phase cell cycle arrest. The results of Western blotting showed that rhein treatment resulted in a significant increase in the protein levels of Fas, p53, p21, Bax, cleaved caspases-3, -8, -9, and poly(ADP-ribose)polymerase (PARP). The protein expression of Bcl-2, cyclin A, and cyclin-dependent kinase 2 (CDK 2) was decreased. In conclusion, these results suggest that rhein treatment could inhibit cell viability of HepaRG cells and induce cell death through cell cycle arrest in the S phase and activation of Fas- and mitochondrial-mediated pathways of apoptosis. These findings emphasize the need to assess the risk of exposure for humans to rhein.


Assuntos
Antraquinonas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
11.
Molecules ; 23(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274195

RESUMO

Sustained-release preparation is a hot spot in antitumor drug research, where the first task is to select suitable drug carriers. Research has revealed that carboxylic acid iron metal⁻organic frameworks (MOFs), constructed from iron (Fe) ions and terephthalic acid, are nontoxic and biocompatible. Due to the breathing effect, the skeleton of this mesoporous material is flexible and can reversibly adapt its pore size through drug adsorption. Therefore, we chose one kind of Fe-MOF, MIL-53(Fe), as a carrier for the anticancer drug oridonin (Ori). In this work, we report the design and synthesis of MIL-53(Fe) and explore its ability as a transport vehicle to deliver Ori. MIL-53(Fe) is characterized by scanning electron microscopy and X-ray powder diffraction. A loading capacity of 56.25 wt % was measured by high performance liquid chromatography. This carrier was safe and nontoxic (cell viability > 95.27%), depending on the results of 3-(4,5-dimethylthiazol-2-yl)--2,5-diphenyltetrazolium bromide assays, lactate dehydrogenase assays, and Annexin V-fluoresce isothiocyanate/propidium iodide double-staining assays. After loading the drug, the structure of the MIL-53(Fe) was not destroyed, and Ori was amorphous in MIL-53(Fe). Based on an analysis of the Ori release profile, results suggest that it lasts for more than seven days in vitro. The cumulative release rate of Ori at the seventh day was about 82.23% and 91.75% in phosphate buffer saline solution at 37 °C under pH 7.2 and pH 5.5, respectively. HepG2 cells were chosen to study the cytotoxicity of Ori@MIL-53(Fe), and the results show that the anticancer ratio of Ori@MIL-53(Fe) system reaches 90.62%. Thus, MIL-53 can be used as a carrier for anticancer drugs and Ori@MIL-53(Fe) is a promising sustained-release drug delivery system for the cancer therapy.


Assuntos
Antineoplásicos/química , Diterpenos do Tipo Caurano/química , Portadores de Fármacos/química , Ferro/química , Estruturas Metalorgânicas/química , Antineoplásicos/administração & dosagem , Materiais Biocompatíveis , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Diterpenos do Tipo Caurano/administração & dosagem , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Cinética , Tamanho da Partícula , Ácidos Ftálicos/química , Porosidade
12.
Molecules ; 23(4)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561811

RESUMO

Heterophyllin B (HB), an active cyclic peptide, is a compound existing in the ethyl acetate extract of Pseudostellaria heterophylla (Miq.) Pax and exhibited the activity of inhibiting the production of NO and cytokines, such as IL-1ß and IL-6, in LPS-stimulated RAW 264.7 macrophages. In addition, HB suppressed the production of ROS and the apoptosis induced by LPS in RAW 264.7 macrophages. The underlying mechanism was investigated in the LPS-induced RAW 264.7 cells. The results showed that HB decreased the level of IL-1ß and IL-6 expression by qRT-PCR analysis. HB up-regulated the relative ratio of p-AKT/AKT and p-PI3K/PI3K as indicated by western blot analysis. In summary, HB inhibited the LPS-induced inflammation and apoptosis through the PI3K/Akt signaling pathways and represented a potential therapeutic target for treatment of inflammatory diseases.


Assuntos
Inflamação/tratamento farmacológico , Inflamação/patologia , Macrófagos/patologia , Estresse Oxidativo , Peptídeos Cíclicos/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
J Pharm Pharmacol ; 76(7): 776-787, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38507775

RESUMO

BACKGROUND: Phillyrin, the major lignin compound of Forsythia suspense (Thunb.) Vahl, has been shown the effects of anti-inflammatory and antioxidant. Our study was aimed to explore the protective effect of phillyrin on glomerular mesangial cells (HBZY-1) and the potential mechanism. METHODS: Cell viability, cytokine production, levels of reactive oxygen radicals (ROS), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD), as well as autophagy and apoptosis levels were determined to verify the mechanism of phillyrin on HBZY-1 cells. RESULTS: Our result indicated that phillyrin significantly inhibited HG-induced HBZY-1 proliferation by inhibiting Bcl-2 expression and upregulating Bad, cleaved caspase-3, and -9 expression. Also, phillyrin suppressed HG-induced mesangial extracellular matrix accumulation by inhibiting the expression of fibronectin and transforming growth factor-ß1. Further, phillyrin inhibited oxidative stress and inflammation by decreasing ROS, MDA, TNF-α, IL-1ß, and IL-6 contents and increasing SOD and GSH expression. Phillyrin also promoted autophagy by increasing LC3-II/LC3-I ratio and down-regulating p62 expression. Furthermore, WB assay showed that phillyrin inhibited oxidative stress caused by HG via activating Nrf2 signaling pathway, while attenuated proliferation and inflammation in HBZY-1 cells through inactivating PI3K/Akt/mTOR and NF-κB pathways. CONCLUSION: All results showed that phillyrin might be a promising therapeutic agent for the treatment of DN.


Assuntos
Autofagia , Glucose , Inflamação , Estresse Oxidativo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glucose/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Linhagem Celular , Autofagia/efeitos dos fármacos , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glucosídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Humanos , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo
14.
Heliyon ; 10(11): e31909, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845878

RESUMO

Psoriasis is an inflammation-based skin illness marked by aggravated proliferation of epidermal cells. Shikonin is a natural naphthoquinone obtained from Arnebiae radix. It exerts anti-inflammatory and immunosuppressive effects. However, the poor water solubility and low bioavailability of shikonin limit its application. In this study, shikosin-loaded PLGA nanoparticle hydrogel was prepared and used to deliver the drug to the epidermis of psoriasis mice through local administration. The results demonstrated that shikosin-loaded PLGA nanoparticles inhibited HaCaT cell multiplication, increased drug uptake, and induced apoptosis of HaCaT cells. Results from Western blotting assays indicated that shikosin down-regulated the protein expressions of p65 and p-p65. Furthermore, shikonin mitigated psoriasis and decreased the concentrations of inflammation-inducing cytokines, i.e., IL17A, IL-17F, IL-22, IL-1ß, and TNF-α. Taken together, these results suggest that shikonin-PLGA nanoparticles loaded in hydrogel system possess promising therapeutic potential for psoriasis.

16.
Pharmaceutics ; 14(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35745853

RESUMO

The incidence of ocular surface disease (OSD) is increasing, with a trend towards younger ages. However, it is difficult for drugs to reach the deep layers of the cornea due to ocular surface barriers, and bioavailability is less than 5%. In this study, DSPE-PEG2000 was modified with L-valine (L-Val), and an HS15/DSPE-PEG2000-L-Val nanomicelle delivery system containing baicalin (BC) (BC@HS15/DSPE-PEG2000-L-Val) was constructed using thin-film hydration, with a high encapsulation rate, small particle size and no irritation to the ocular surface. Retention experiments on the ocular surface of rabbits and an in vivo corneal permeation test showed that, compared with the control, nanomicelles not only prolonged retention time but also enhanced the ability to deliver drugs to the deep layers of the cornea. The results of a protein inhibition and protein expression assay showed that nanomicelles could increase uptake in human corneal epithelial cells (HCEC) through energy-dependent endocytosis mediated by clathrin, caveolin and the carrier pathway mediated by PepT1 by inhibiting the overexpression of claudin-1 and ZO-1 and suppressing the expression of PepT1-induced by drug stimulation. These results indicate that BC@HS15/DSPE-PEG2000-L-Val is suitable for drug delivery to the deep layers of the ocular surface, providing a potential approach for the development of ocular drug delivery systems.

17.
Artigo em Inglês | MEDLINE | ID: mdl-36051493

RESUMO

At present, several experiments have been carried out to study the changes in total arsenic content of realgar and its prescription, but few researches on its form and valence. We evaluated the change in arsenic species concentration in realgar from the perspective of absorption by using an in vitro dissolution study, an in vivo unidirectional intestinal perfusion study, transmembrane transport in Caco-2 cells, and a pharmacokinetic study in rats. In the gastrointestinal tract, arsenic species are mainly present inorganic forms of AsIII and AsV. The cumulative dissolution rates of soluble arsenic in 4 h artificial gastric fluid and 8 h artificial intestinal fluid were 21.99% and 59.20%, respectively. The P app values of soluble arsenic in realgar in the duodenum, jejunum, and ileum of rats were 5.4 × 10-3, 6.1 × 10-3 and 5.8 × 10-3 cm/min, respectively. In the process of small intestine perfusion, the AsIII of realgar was partially converted into AsV in the duodenum and jejunum. As the transport time increased, the transmembrane transport rate and P app value of soluble arsenic in realgar were increased in Caco-2 cells, and it also suggested that arsenic species may be passively transported across the Caco-2 cell monolayer. The C max and AUC (0-24) of AsIII, AsV, and DMA in plasma of realgar were 41.26 ng L-1/343.977 ng h mL-1, 21.626 ng L-1/47.310 ng h mL-1, and 2.372 ng L-1/30.429 ng h mL-1, respectively. T max and MRT (0-∞) of AsIII, AsV, and DMA were 2.571 h/9.649 h, 0.393 h/2.790 h, and 3.143 h/23.145 h, respectively. It is hoped to provide a basis for clarifying the arsenic species in realgar.

18.
Cells ; 10(10)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34685615

RESUMO

Oxidative damage to retinal pigment epithelial (RPE) has been identified as one of the major regulatory factors in the pathogenesis of age-related macular degeneration (AMD). Catalpol is an iridoid glucoside compound that has been found to possess potential antioxidant activity. In the present study, we aimed to investigate the protective effect of catalpol on RPE cells under oxidative stress and to elucidate the potential molecular mechanism involved. We found that catalpol significantly attenuated hydrogen peroxide (H2O2)-induced cytotoxicity, G0/G1 phase cell cycle arrest, and apoptosis in RPE cells. The overproduction of reactive oxygen species (ROS) and malondialdehyde (MDA) stimulated by oxidative stress and the corresponding reductions in antioxidant glutathione (GSH) and superoxide dismutase (SOD) levels were largely reversed by catalpol pretreatment. Moreover, catalpol pretreatment markedly activated the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its downstream antioxidant enzymes, catalase (CAT), heme oxygenase-1 (HO-1), and NADPH dehydrogenase (NQO1). It also increased the expression levels of cyclin E, Bcl-2, cyclin A, and cyclin-dependent kinase 2 (CDK2) and decreased the expression levels of Bax, Fas, cleaved PARP, p-p53, and p21 cleaved caspase-3, 8, and 9. The oxidative stress-induced formation of the Keap1/Nrf2 complex in the cytoplasm was significantly blocked by catalpol pretreatment. These results indicate that catalpol protected RPE cells from oxidative stress through a mechanism involving the activation of the Keap1/Nrf2/ARE pathways and the inactivation of oxidative stress-mediated pathways of apoptosis.


Assuntos
Elementos de Resposta Antioxidante/genética , Glucosídeos Iridoides/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neuroproteção , Estresse Oxidativo , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Peróxido de Hidrogênio/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética
19.
Pharmaceutics ; 13(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834359

RESUMO

The antitumor activity of triptolide (TP) has received widespread attention, although its toxicity severely limits its clinical application. Therefore, the design of a targeted drug delivery system (TDDS) has important application prospects in tumor treatment. Metal-organic frameworks (MOFs), with high drug-carrying capacity and good biocompatibility, have aroused widespread interest for drug delivery systems. Herein, folic acid (FA) and 5-carboxylic acid fluorescein (5-FAM) were used to modify Fe-MIL-101 to construct a functionalized nano-platform (5-FAM/FA/TP@Fe-MIL-101) for the targeted delivery of the anti-tumor drug triptolide and realize in vivo fluorescence imaging. Compared with Fe-MIL-101, functionalized nanoparticles not only showed better targeted therapy efficiency, but also reduced the systemic toxicity of triptolide. In addition, the modification of 5-FAM facilitated fluorescence imaging of the tumor site and realized the construction of an integrated nano-platform for fluorescence imaging and treatment. Both in vitro and in vivo studies of functionalized nanoparticles have demonstrated excellent fluorescence imaging and synergistic targeting anticancer activity with negligible systemic toxicity. The development of functional nano-platform provides new ideas for the design of MOF-based multifunctional nano-drug delivery system, which can be used for precise treatment of tumor.

20.
Front Pharmacol ; 12: 723784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046796

RESUMO

Triptolide (TP) is the major bioactive compound extracted from Tripterygium wilfordii Hook F. It exerts anti-inflammatory, antirheumatic, antineoplastic, and neuroprotective effects. However, the severe hepatotoxicity induced by TP limits its clinical application. Ginsenoside Rb1 has been reported to possess potential hepatoprotective effects, but its mechanism has not been fully investigated. This study was aimed at investigating the effect of ginsenoside Rb1 against TP-induced cytotoxicity in HL-7702 cells, as well as the underlying mechanism. The results revealed that ginsenoside Rb1 effectively reversed TP-induced cytotoxicity in HL-7702 cells. Apoptosis induced by TP was suppressed by ginsenoside Rb1 via inhibition of death receptor-mediated apoptotic pathway and mitochondrial-dependent apoptotic pathway. Pretreatment with ginsenoside Rb1 significantly reduced Bax/Bcl-2 ratio and down-regulated the expression of Fas, cleaved poly ADP-ribose polymerase (PARP), cleaved caspase-3, and -9. Furthermore, ginsenoside Rb1 reversed TP-induced cell cycle arrest in HL-7702 cells at S and G2/M phase, via upregulation of the expressions of cyclin-dependent kinase 2 (CDK2), cyclin E, cyclin A, and downregulation of the expressions of p53, p21, and p-p53. Ginsenoside Rb1 increased glutathione (GSH) and superoxide dismutase (SOD) levels, but decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) levels. Pretreatment with ginsenoside Rb1 enhanced the expression levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), total Nrf2, NAD(P)H: quinone oxidoreductases-1 (NQO-1), heme oxygenase-1 (HO-1), and Kelch-like ECH-associated protein 1 (Keap1)/Nrf2 complex. Therefore, ginsenoside Rb1 effectively alleviates TP-induced cytotoxicity in HL-7702 cells through activation of the Keap1/Nrf2/ARE antioxidant pathway.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa