Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 601(17): 3825-3846, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470322

RESUMO

We investigated the effects of performing a period of resistance training (RT) on the performance and molecular adaptations to a subsequent period of endurance training (ET). Twenty-five young adults were divided into an RT+ET group (n = 13), which underwent 7 weeks of RT followed by 7 weeks of ET, and an ET-only group (n = 12), which performed 7 weeks of ET. Body composition, endurance performance and muscle biopsies were collected before RT (T1, baseline for RT+ET), before ET (T2, after RT for RT+ET and baseline for ET) and after ET (T3). Immunohistochemistry was performed to determine fibre cross-sectional area (fCSA), myonuclear content, myonuclear domain size, satellite cell number and mitochondrial content. Western blots were used to quantify markers of mitochondrial remodelling. Citrate synthase activity and markers of ribosome content were also investigated. RT improved body composition and strength, increased vastus lateralis thickness, mixed and type II fCSA, myonuclear number, markers of ribosome content, and satellite cell content (P < 0.050). In response to ET, both groups similarly decreased body fat percentage (P < 0.0001) and improved endurance performance (e.g. V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ , and speed at which the onset of blood lactate accumulation occurred, P < 0.0001). Levels of mitochondrial complexes I-IV in the ET-only group increased 32-66%, while those in the RT+ET group increased 1-11% (time, P < 0.050). Additionally, mixed fibre relative mitochondrial content increased 15% in the ET-only group but decreased 13% in the RT+ET group (interaction, P = 0.043). In conclusion, RT performed prior to ET had no additional benefits to ET adaptations. Moreover, prior RT seemed to impair mitochondrial adaptations to ET. KEY POINTS: Resistance training is largely underappreciated as a method to improve endurance performance, despite reports showing it may improve mitochondrial function. Although several concurrent training studies are available, in this study we investigated the effects of performing a period of resistance training on the performance and molecular adaptations to subsequent endurance training. Prior resistance training did not improve endurance performance and impaired most mitochondrial adaptations to subsequent endurance training, but this effect may have been a result of detraining from resistance training.


Assuntos
Treino Aeróbico , Treinamento Resistido , Masculino , Adulto Jovem , Humanos , Treinamento Resistido/métodos , Adaptação Fisiológica , Composição Corporal/fisiologia , Aclimatação , Músculo Esquelético/fisiologia
2.
FASEB J ; 35(9): e21864, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34423880

RESUMO

Resistance training (RT) dynamically alters the skeletal muscle nuclear DNA methylome. However, no study has examined if RT affects the mitochondrial DNA (mtDNA) methylome. Herein, ten older, Caucasian untrained males (65 ± 7 y.o.) performed six weeks of full-body RT (twice weekly). Body composition and knee extensor torque were assessed prior to and 72 h following the last RT session. Vastus lateralis (VL) biopsies were also obtained. VL DNA was subjected to reduced representation bisulfite sequencing providing excellent coverage across the ~16-kilobase mtDNA methylome (254 CpG sites). Biochemical assays were also performed, and older male data were compared to younger trained males (22 ± 2 y.o., n = 7, n = 6 Caucasian & n = 1 African American). RT increased whole-body lean tissue mass (p = .017), VL thickness (p = .012), and knee extensor torque (p = .029) in older males. RT also affected the mtDNA methylome, as 63% (159/254) of the CpG sites demonstrated reduced methylation (p < .05). Several mtDNA sites presented a more "youthful" signature in older males after RT in comparison to younger males. The 1.12 kilobase mtDNA D-loop/control region, which regulates replication and transcription, possessed enriched hypomethylation in older males following RT. Enhanced expression of mitochondrial H- and L-strand genes and complex III/IV protein levels were also observed (p < .05). While limited to a shorter-term intervention, this is the first evidence showing that RT alters the mtDNA methylome in skeletal muscle. Observed methylome alterations may enhance mitochondrial transcription, and RT evokes mitochondrial methylome profiles to mimic younger men. The significance of these findings relative to broader RT-induced epigenetic changes needs to be elucidated.


Assuntos
Envelhecimento , Metilação de DNA , DNA Mitocondrial/metabolismo , Epigenoma , Regulação da Expressão Gênica , Genes Mitocondriais/genética , Músculo Esquelético/metabolismo , Treinamento Resistido , Idoso , Envelhecimento/genética , Envelhecimento/metabolismo , DNA Mitocondrial/genética , Humanos , Masculino , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/citologia , RNA Mensageiro/análise , RNA Mensageiro/genética , Adulto Jovem
3.
FASEB J ; 35(5): e21587, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33891350

RESUMO

We examined the association between genotype and resistance training-induced changes (12 wk) in dual x-ray energy absorptiometry (DXA)-derived lean soft tissue mass (LSTM) as well as muscle fiber cross-sectional area (fCSA; vastus lateralis; n = 109; age = 22 ± 2 y, BMI = 24.7 ± 3.1 kg/m2 ). Over 315 000 genetic polymorphisms were interrogated from muscle using DNA microarrays. First, a targeted investigation was performed where single nucleotide polymorphisms (SNP) identified from a systematic literature review were related to changes in LSTM and fCSA. Next, genome-wide association (GWA) studies were performed to reveal associations between novel SNP targets with pre- to post-training change scores in mean fCSA and LSTM. Our targeted investigation revealed no genotype-by-time interactions for 12 common polymorphisms regarding the change in mean fCSA or change in LSTM. Our first GWA study indicated no SNP were associated with the change in LSTM. However, the second GWA study indicated two SNP exceeded the significance level with the change in mean fCSA (P = 6.9 × 10-7 for rs4675569, 1.7 × 10-6 for rs10263647). While the former target is not annotated (chr2:205936846 (GRCh38.p12)), the latter target (chr7:41971865 (GRCh38.p12)) is an intron variant of the GLI Family Zinc Finger 3 (GLI3) gene. Follow-up analyses indicated fCSA increases were greater in the T/C and C/C GLI3 genotypes than the T/T GLI3 genotype (P < .05). Data from the Auburn cohort also revealed participants with the T/C and C/C genotypes exhibited increases in satellite cell number with training (P < .05), whereas T/T participants did not. Additionally, those with the T/C and C/C genotypes achieved myonuclear addition in response to training (P < .05), whereas the T/T participants did not. In summary, this is the first GWA study to examine how polymorphisms associate with the change in hypertrophy measures following resistance training. Future studies are needed to determine if the GLI3 variant differentiates hypertrophic responses to resistance training given the potential link between this gene and satellite cell physiology.


Assuntos
Hipertrofia/patologia , Íntrons , Fibras Musculares Esqueléticas/patologia , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Treinamento Resistido/efeitos adversos , Proteína Gli3 com Dedos de Zinco/genética , Adulto , Estudo de Associação Genômica Ampla , Humanos , Hipertrofia/etiologia , Hipertrofia/metabolismo , Masculino , Fibras Musculares Esqueléticas/metabolismo , Adulto Jovem
4.
Exp Physiol ; 107(11): 1216-1224, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053170

RESUMO

NEW FINDINGS: What is the central question of this study? Do changes in myofibre cross-sectional area, pennation angle and fascicle length predict vastus lateralis whole-muscle cross-sectional area changes following resistance training? What is the main finding and its importance? Changes in vastus lateralis mean myofibre cross-sectional area, fascicle length and pennation angle following a period of resistance training did not collectively predict changes in whole-muscle cross-sectional area. Despite the limited sample size in this study, these data reiterate that it remains difficult to generalize the morphological adaptations that predominantly drive tissue-level vastus lateralis muscle hypertrophy. ABSTRACT: Myofibre hypertrophy during resistance training (RT) poorly associates with tissue-level surrogates of hypertrophy. However, it is underappreciated that, in pennate muscle, changes in myofibre cross-sectional area (fCSA), fascicle length (Lf ) and pennation angle (PA) likely coordinate changes in whole-muscle cross-sectional area (mCSA). Therefore, we determined if changes in fCSA, PA and Lf predicted vastus lateralis (VL) mCSA changes following RT. Thirteen untrained college-aged males (23 ± 4 years old, 25.4 ± 5.2 kg/m2 ) completed 7 weeks of full-body RT (twice weekly). Right leg VL ultrasound images and biopsies were obtained prior to (PRE) and 72 h following (POST) the last training bout. Regression was used to assess if training-induced changes in mean fCSA, PA and Lf predicted VL mCSA changes. Correlations were also performed between PRE-to-POST changes in obtained variables. Mean fCSA (+18%), PA (+8%) and mCSA (+22%) increased following RT (P < 0.05), but not Lf (0.1%, P = 0.772). Changes in fCSA, Lf and PA did not collectively predict changes in mCSA (R2 = 0.282, adjusted R2 = 0.013, F3,8  = 1.050, P = 0.422). Moderate negative correlations existed for percentage changes in PA and Lf (r = -0.548, P = 0.052) and changes in fCSA and Lf (r = -0.649, P = 0.022), and all other associations were weak (|r| < 0.500). Although increases in mean fCSA, PA and VL mCSA were observed, inter-individual responses for each variable and limitations for each technique make it difficult to generalize the morphological adaptations that predominantly drive tissue-level VL muscle hypertrophy. However, the small subject pool is a significant limitation, and more research in this area is needed.


Assuntos
Músculo Quadríceps , Treinamento Resistido , Masculino , Humanos , Adulto Jovem , Adulto , Músculo Quadríceps/fisiologia , Músculo Esquelético/fisiologia , Hipertrofia , Adaptação Fisiológica/fisiologia
5.
Exerc Sport Sci Rev ; 50(4): 185-193, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35749745

RESUMO

Retrotransposons are gene segments that proliferate in the genome, and the Long INterspersed Element 1 (LINE-1 or L1) retrotransposon is active in humans. Although older mammals show enhanced skeletal muscle L1 expression, exercise generally reverses this trend. We hypothesize skeletal muscle L1 expression influences muscle physiology, and additional innovative investigations are needed to confirm this hypothesis.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Músculo Esquelético , Animais , Exercício Físico , Humanos , Mamíferos/genética , Músculo Esquelético/metabolismo
6.
J Strength Cond Res ; 35(8): 2102-2113, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34138821

RESUMO

ABSTRACT: Vann, CG, Haun, CT, Osburn, SC, Romero, MA, Roberson, PA, Mumford, PW, Mobley, CB, Holmes, HM, Fox, CD, Young, KC, and Roberts, MD. Molecular differences in skeletal muscle after 1 week of active vs. passive recovery from high-volume resistance training. J Strength Cond Res 35(8): 2102-2113, 2021-Numerous studies have evaluated how deloading after resistance training (RT) affects strength and power outcomes. However, the molecular adaptations that occur after deload periods remain understudied. Trained, college-aged men (n = 30) performed 6 weeks of whole-body RT starting at 10 sets of 10 repetitions per exercise per week and finishing at 32 sets of 10 repetitions per exercise per week. After this period, subjects performed either active (AR; n = 16) or passive recovery (PR; n = 14) for 1 week where AR completed ∼15% of the week 6 training volume and PR ceased training. Variables related to body composition and recovery examined before RT (PRE), after 6 weeks of RT (POST), and after the 1-week recovery period (DL). Vastus lateralis (VL) muscle biopsies and blood samples were collected at each timepoint, and various biochemical and histological assays were performed. Group × time interactions (p < 0.05) existed for skeletal muscle myosin heavy chain (MHC)-IIa mRNA (AR > PR at POST and DL) and 20S proteasome activity (post-hoc tests revealed no significance in groups over time). Time effects (P < 0.05) existed for total mood disturbance and serum creatine kinase and mechano growth factor mRNA (POST > PRE &D L), VL pressure to pain threshold and MHC-IIx mRNA (PRE&DL > POST), Atrogin-1 and MuRF-1 mRNA (PRE < POST < DL), MHC-I mRNA (PRE < POST & DL), myostatin mRNA (PRE & POST < DL), and mechanistic target of rapamycin (PRE > POST & DL). No interactions or time effects were observed for barbell squat velocity, various hormones, histological metrics, polyubiquitinated proteins, or phosphorylated/pan protein levels of 4E-BP1, p70S6k, and AMPK. One week of AR after a high-volume training block instigates marginal molecular differences in skeletal muscle relative to PR. From a practical standpoint, however, both paradigms elicited largely similar responses.


Assuntos
Treinamento Resistido , Adaptação Fisiológica , Exercício Físico , Humanos , Masculino , Força Muscular , Músculo Esquelético , Músculo Quadríceps , Adulto Jovem
7.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R360-R368, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31850817

RESUMO

We examined molecular mechanisms that were altered during rapid soleus (type I fiber-dominant) and plantaris (type II fiber-dominant) hypertrophy in rats. Twelve Wistar rats (3.5 mo old; 6 female, 6 male) were subjected to surgical right-leg soleus and plantaris dual overload [synergist ablation (SA)], and sham surgeries were performed on left legs (CTL). At 14 days after surgery, the muscles were dissected. Plantaris mass was 27% greater in the SA than CTL leg (P < 0.001), soleus mass was 13% greater in the SA than CTL leg (P < 0.001), and plantaris mass was higher than soleus mass in the SA leg (P = 0.001). Plantaris total RNA concentrations and estimated total RNA levels (suggestive of ribosome density) were 19% and 47% greater in the SA than CTL leg (P < 0.05), protein synthesis levels were 64% greater in the SA than CTL leg (P = 0.038), and satellite cell number per fiber was 60% greater in the SA than CTL leg (P = 0.003); no differences in these metrics were observed between soleus SA and CTL legs. Plantaris, as well as soleus, 20S proteasome activity was lower in the SA than CTL leg (P < 0.05), although the degree of downregulation was greater in the plantaris than soleus muscle (-63% vs. -20%, P = 0.001). These data suggest that early-phase plantaris hypertrophy occurs more rapidly than soleus hypertrophy, which coincided with greater increases in ribosome biogenesis, protein synthesis, and satellite cell density, as well as greater decrements in 20S proteasome activity, in the plantaris muscle.


Assuntos
Técnicas de Ablação , Proliferação de Células , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Músculo Esquelético/patologia , Músculo Esquelético/cirurgia , Células Satélites de Músculo Esquelético/patologia , Animais , Feminino , Hipertrofia , Masculino , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA/metabolismo , Ratos Wistar , Ribossomos/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Fatores Sexuais , Fatores de Tempo
8.
BMC Public Health ; 20(1): 1242, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799849

RESUMO

BACKGROUND: Resistance-training (RT) provides significant health benefits. However, roughly 3/4 of adults in the United States do not meet current Physical Activity Guidelines in this regard. There has been a call for research examining the effectiveness of interventions to increase participation in physical activity and to better understand the dose response relationship upon health outcomes. Studies are needed that assess the effectiveness of RT programs that are time-efficient and simple to perform. This fully-powered, randomized controlled study will assess a habit-based RT program consisting of one set of push-ups, angled-rows, and bodyweight-squats performed every weekday for 12-24 weeks in untrained individuals. METHODS: Forty-60 untrained osteopathic medical students and college/university employees who work in an office setting will be recruited and randomized (1:1) to an intervention or waitlist control group. After 12-week follow-up assessment, the intervention group will continue the program and the control group will initiate the program for 12 weeks. In addition to the equipment and training needed to safely perform the exercises, all participants will receive training in the Tiny Habits® Method (THM) and digital coaching for the duration of the study. Participants will complete weekly assessments regarding the program during their initial 12-week intervention phase. The primary outcome is the change from baseline to 12 weeks in the intervention group versus the control group, in the combined number of repetitions performed in one set of each of the three exercises (composite repetitions) under a standardized protocol. Secondary outcomes include adherence to and satisfaction with the program, and change from baseline to 12- and 24-week follow-up in blood pressure, fasting lipid panel, hemoglobin A1c, body mass index, anthropometry, body composition, mid-thigh muscle thickness, and habit strength. DISCUSSION: This study will evaluate a simple, habit-based RT intervention in untrained individuals. The approach is unique in that it utilizes brief but frequent bodyweight exercises and, via the THM, focuses on consistency and habit formation first, with effort being increased as participants are motivated and able. If effective, the program can be easily scaled for wider adoption. TRIAL REGISTRATION: This study was prospectively registered at ClinicalTrials.gov, identifier NCT04207567 , on December 23rd, 2019.


Assuntos
Ginástica/psicologia , Hábitos , Treinamento Resistido/métodos , Adulto , Feminino , Humanos , Masculino , Avaliação de Programas e Projetos de Saúde , Projetos de Pesquisa
9.
Am J Physiol Regul Integr Comp Physiol ; 317(3): R397-R406, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188650

RESUMO

Long interspersed element-1 (LINE-1) is a retrotransposon capable of replicating and inserting LINE-1 copies into the genome. Others have reported skeletal muscle LINE-1 markers are higher in older versus younger mice, but data are lacking in other species. Herein, gastrocnemius muscle from male Fischer 344 rats that were 3, 12, and 24 mo old (n = 9 per group) were analyzed for LINE-1 mRNA, DNA, promoter methylation and DNA accessibility. qPCR primers were designed for active (L1.3) and inactive (L1.Tot) LINE-1 elements as well as part of the ORF1 sequence. L1.3, L1.Tot, and ORF1 mRNAs were higher (P < 0.05) in 12/24 versus 3-mo-old rats. L1.3 DNA was higher in the 24-mo-old rats versus other groups, and ORF1 DNA was greater in 12/24 versus 3-mo-old rats. ORF1 protein was higher in 12/24 versus 3-mo-old rats. RNA-sequencing indicated mRNAs related to DNA methylation (Tet1) and histone acetylation (Hdac2) were lower in 24 versus 3-mo-old rats. L1.3 DNA accessibility was higher in 24-mo-old versus 3-mo-old rats. No age-related differences in nuclear histone deacetylase (HDAC) activity existed, although nuclear DNA methyltransferase (DNMT) activity was lower in 12/24 versus 3-mo-old rats (P < 0.05). In summary, markers of skeletal muscle LINE-1 activity increase across the age spectrum of rats, and this may be related to deficits in DNMT activity and/or increased LINE-1 DNA accessibility.


Assuntos
Envelhecimento/fisiologia , Regulação da Expressão Gênica/fisiologia , Elementos Nucleotídeos Longos e Dispersos/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Biomarcadores , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Colágeno/genética , Colágeno/metabolismo , Masculino , Proteínas Musculares/genética , Músculo Esquelético/anatomia & histologia , Ratos , Ratos Endogâmicos F344 , Triglicerídeos/sangue , Regulação para Cima
10.
Am J Physiol Cell Physiol ; 314(3): C379-C388, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351416

RESUMO

Herein, we examined if acute or chronic resistance exercise affected markers of skeletal muscle long interspersed nuclear element-1 (LINE-1) retrotransposon activity. In study 1, 10 resistance-trained college-aged men performed three consecutive daily back squat sessions, and vastus lateralis biopsies were taken before (Pre), 2 h following session 1 (Post1), and 3 days following session 3 (Post2). In study 2, 13 untrained college-aged men performed a full-body resistance training program (3 days/wk), and vastus lateralis biopsies were taken before ( week 0) and ~72 h following training cessation ( week 12). In study 1, LINE-1 mRNA decreased 42-48% at Post1 and 2 ( P < 0.05), and reverse transcriptase (RT) activity trended downward at Post2 (-37%, P = 0.067). In study 2, LINE-1 mRNA trended downward at week 12 (-17%, P = 0.056) while LINE-1 promoter methylation increased (+142%, P = 0.041). Open reading frame (ORF)2p protein expression (-24%, P = 0.059) and RT activity (-26%, P = 0.063) also trended downward by week 12. Additionally, changes in RT activity versus satellite cell number were inversely associated ( r = -0.725, P = 0.008). Follow-up in vitro experiments demonstrated that 48-h treatments with lower doses (1 µM and 10 µM) of efavirenz and nevirapine (non-nucleoside RT inhibitors) increased myoblast proliferation ( P < 0.05). However, we observed a paradoxical decrease in myoblast proliferation with higher doses (50 µM) of efavirenz and delavirdine. This is the first report suggesting that resistance exercise downregulates markers of skeletal muscle LINE-1 activity. Given our discordant in vitro findings, future research is needed to thoroughly assess whether LINE-1-mediated RT activity enhances or blunts myoblast, or primary satellite cell, proliferative capacity.


Assuntos
Proliferação de Células , Elementos Nucleotídeos Longos e Dispersos , Contração Muscular , Músculo Quadríceps/metabolismo , RNA Mensageiro/metabolismo , Treinamento Resistido/métodos , Células Satélites de Músculo Esquelético/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Endonucleases/genética , Endonucleases/metabolismo , Humanos , Masculino , Camundongos , Músculo Quadríceps/efeitos dos fármacos , RNA Mensageiro/genética , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Fatores de Tempo , Adulto Jovem
11.
Amino Acids ; 50(10): 1495, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30099596

RESUMO

For the author R. Mac Thompson, the first name should be R. Mac and the last name should be Thompson. On SpringerLink the name is listed correctly, but on PubMed he is listed as Mac Thompson R.

12.
Eur J Appl Physiol ; 118(11): 2465-2476, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30155761

RESUMO

PURPOSE: Betalains are indole-derived pigments found in beet root, and recent studies suggest that they may exert ergogenic effects. Herein, we examined if supplementation for 7 days with betalain-rich beetroot concentrate (BLN) improved cycling performance or altered hemodynamic and serum analytes prior to, during and following a cycling time trial (TT). METHODS: Twenty-eight trained male cyclists (29 ± 10 years, 77.3 ± 13.3 kg, and 3.03 ± 0.62 W/kg) performed a counterbalanced crossover study whereby BLN (100 mg/day) or placebo (PLA) supplementation occurred over 7 days with a 1-week washout between conditions. On the morning of day seven of each supplementation condition, participants consumed one final serving of BLN or PLA and performed a 30-min cycling TT with concurrent assessment of several physiological variables and blood markers. RESULTS: BLN supplementation improved average absolute power compared to PLA (231.6 ± 36.2 vs. 225.3 ± 35.8 W, p = 0.050, d = 0.02). Average relative power, distance traveled, blood parameters (e.g., pH, lactate, glucose, NOx) and inflammatory markers (e.g., IL-6, IL-8, IL-10, TNFα) were not significantly different between conditions. BLN supplementation significantly improved exercise efficiency (W/ml/kg/min) in the last 5 min of the TT compared to PLA (p = 0.029, d = 0.45). Brachial artery blood flow in the BLN condition, immediately post-exercise, tended to be greater compared to PLA (p = 0.065, d = 0.32). CONCLUSIONS: We report that 7 days of BLN supplementation modestly improves 30-min TT power output, exercise efficiency as well as post-exercise blood flow without increasing plasma NOx levels or altering blood markers of inflammation, oxidative stress, and/or hematopoiesis.


Assuntos
Desempenho Atlético/fisiologia , Betalaínas/administração & dosagem , Ciclismo/fisiologia , Suplementos Nutricionais , Consumo de Oxigênio/efeitos dos fármacos , Substâncias para Melhoria do Desempenho/administração & dosagem , Adulto , Estudos Cross-Over , Método Duplo-Cego , Humanos , Masculino , Adulto Jovem
13.
J Dairy Sci ; 100(1): 48-64, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28341051

RESUMO

We sought to examine potential amino acid independent mechanisms whereby hydrolyzed whey protein (WP) affects muscle protein synthesis (MPS) and anabolism in vitro. Specifically, we tested (1) whether 3-h and 6-h treatments of WP, essential amino acids, or l-leucine (Leu) affected MPS, and whether 6-h treatments with low-, medium-, or high doses of WP versus Leu affected MPS; (2) whether knockdown of the primary Leu transporter affected WP- and Leu-mediated changes in MPS, mammalian target of rapamycin (mTOR) signaling responses, or both, following 6-h treatments; (3) whether exosomes isolated from WP (WP-EXO) affected MPS, mTOR signaling responses, or both, compared with untreated (control) myotubes, following 6-h, 12-h, and 24-h treatments, and whether they affected myotube diameter following 24-h and 48-h treatments. For all treatments, 7-d post-differentiated C2C12 myotubes were examined. In experiment 1, 6-h WP treatments increased MPS compared with control (+46%), Leu (+24%), and essential amino acids (+25%). Moreover, the 6-h low-, medium-, and high WP treatments increased MPS by approximately 40 to 50% more than corresponding Leu treatments. In experiment 2 (LAT short hairpin RNA-transfected myotubes), 6-h WP treatments increased MPS compared with control (+18%) and Leu (+19%). In experiment 3, WP-EXO treatments increased MPS over controls at 12h (+18%) and 24h (+45%), and myotube diameters increased with 24-h (+24%) and 48-h (+40%) WP-EXO treatments compared with controls. The WP-EXO treatments did not appear to operate through mTOR signaling; instead, they increased mRNA and protein levels o eukaryotic initiation factor 4A. Bovine-specific microRNA following 24-h WP-EXO treatments were enriched in myotubes (chiefly miR-149-3p, miR-2881), but were not related to hypertrophic gene targets. To summarize, hydrolyzed WP-EXO increased skeletal MPS and anabolism in vitro, and this may be related to an unknown mechanism that increases translation initiation factors rather than enhancing mTOR signaling or the involvement of bovine-specific microRNA.


Assuntos
Exossomos , Proteínas do Soro do Leite , Animais , Bovinos , Hipertrofia , Leucina/metabolismo , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Fosforilação , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
14.
Amino Acids ; 48(3): 733-750, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26507545

RESUMO

We compared immediate post-exercise whey protein (WP, 500 mg) versus L-leucine (LEU, 54 mg) feedings on skeletal muscle protein synthesis (MPS) mechanisms and ribosome biogenesis markers 3 h following unilateral plantarflexor resistance exercise in male, Wistar rats (~250 g). Additionally, in vitro experiments were performed on differentiated C2C12 myotubes to compare nutrient (i.e., WP, LEU) and 'exercise-like' treatments (i.e., caffeine, hydrogen peroxide, and AICAR) on ribosome biogenesis markers. LEU and WP significantly increased phosphorylated-rpS6 (Ser235/236) in the exercised (EX) leg 2.4-fold (P < 0.01) and 2.7-fold (P < 0.001) compared to the non-EX leg, respectively, whereas vehicle-fed control (CTL) did not (+65 %, P > 0.05). Compared to the non-EX leg, MPS levels increased 32 % and 52 % in the EX leg of CTL (P < 0.01) and WP rats (P < 0.001), respectively, but not in LEU rats (+15 %, P > 0.05). Several genes associated with ribosome biogenesis robustly increased in the EX versus non-EX legs of all treatments; specifically, c-Myc mRNA, Nop56 mRNA, Bop1 mRNA, Ncl mRNA, Npm1 mRNA, Fb1 mRNA, and Xpo-5 mRNA. However, only LEU significantly increased 45S pre-rRNA levels in the EX leg (63 %, P < 0.001). In vitro findings confirmed that 'exercise-like' treatments similarly altered markers of ribosome biogenesis, but only LEU increased 47S pre-rRNA levels (P < 0.01). Collectively, our data suggests that resistance exercise, as well as 'exercise-like' signals in vitro, acutely increase the expression of genes associated with ribosome biogenesis independent of nutrient provision. Moreover, while EX with or without WP appears superior for enhancing translational efficiency (i.e., increasing MPS per unit of RNA), LEU administration (or co-administration) may further enhance ribosome biogenesis over prolonged periods with resistance exercise.


Assuntos
Leucina/metabolismo , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Treinamento Resistido , Ribossomos/metabolismo , Proteínas do Soro do Leite/metabolismo , Animais , Humanos , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Ratos , Ratos Wistar , Proteína S6 Ribossômica/genética , Proteína S6 Ribossômica/metabolismo , Ribossomos/genética
15.
Amino Acids ; 48(3): 779-789, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26553453

RESUMO

We examined if supplementing trained cyclists (32 ± 2 year, 77.8 ± 2.6 kg, and 7.4 ± 1.2 year training) with 12 g/day (6 g/day L-Leucine, 2 g/day L-Isoleucine and 4 g/day L-Valine) of either branched-chain amino acids (BCAAs, n = 9) or a maltodextrin placebo (PLA, n = 9) over a 10-week training season affected select body composition, performance, and/or immune variables. Before and after the 10-week study, the following was assessed: (1) 4-h fasting blood draws; (2) dual X-ray absorptiometry body composition; (3) Wingate peak power tests; and (4) 4 km time-trials. No group × time interactions existed for total lean mass (P = 0.27) or dual-leg lean mass (P = 0.96). A significant interaction existed for body mass-normalized relative peak power (19 % increase in the BCAA group pre- to post-study, P = 0.01), and relative mean power (4 % increase in the BCAA group pre- to post-study, P = 0.01). 4 km time-trial time to completion approached a significant interaction (P = 0.08), as the BCAA group improved in this measure by 11 % pre- to post-study, though this was not significant (P = 0.15). There was a tendency for the BCAA group to present a greater post-study serum BCAA: L-Tryptophan ratio compared to the PLA group (P = 0.08). A significant interaction for neutrophil number existed (P = 0.04), as there was a significant 18 % increase within the PLA group from the pre- to post-study time point (P = 0.01). Chronic BCAA supplementation improves sprint performance variables in endurance cyclists. Additionally, given that BCAA supplementation blunted the neutrophil response to intense cycling training, BCAAs may benefit immune function during a prolonged cycling season.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Atletas , Suplementos Nutricionais/análise , Neutrófilos/imunologia , Resistência Física , Adulto , Composição Corporal , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Adulto Jovem
16.
Artigo em Inglês | MEDLINE | ID: mdl-38666415

RESUMO

Peripheral quantitative computed tomography (pQCT) has recently expanded to quantifying skeletal muscle, however its validity to determine muscle cross-sectional area (mCSA) compared to magnetic resonance imaging (MRI) is unknown. Eleven male participants (age: 22 ± 3 y) underwent pQCT and MRI dual-leg mid-thigh imaging before (PRE) and after (POST) 6 weeks of resistance training for quantification of mid-thigh mCSA and change in mCSA. mCSA agreement at both time points and absolute change in mCSA across time was assessed using Bland-Altman plots for mean bias and 95% limits of agreement (LOA), as well as Lin's concordance correlation coefficients (CCC). Both pQCT and MRI mCSA increased following 6 weeks of resistance training (∆mCSApQCT: 6.7 ± 5.4 cm2, p < 0.001; ∆mCSAMRI: 6.0 ± 6.4 cm2, p < 0.001). Importantly, the change in mCSA was not different between methods (p = 0.39). Bland-Altman analysis revealed a small mean bias (1.10 cm2, LOA: -6.09, 8.29 cm2) where pQCT tended to overestimate mCSA relative to MRI when comparing images at a single time point. Concordance between pQCT and MRI mCSA at PRE and POST was excellent yielding a CCC of 0.982. For detecting changes in mCSA, Bland-Altman analysis revealed excellent agreement between pQCT and MRI (mean bias: -0.73 cm2, LOA: -8.37, 6.91 cm2). Finally, there was excellent concordance between pQCT and MRI mCSA change scores (CCC = 0.779). Relative to MRI, pQCT imaging is a valid technique for measuring both mid-thigh mCSA at a single time point and mCSA changes following a resistance training intervention.

17.
J Clin Densitom ; 16(1): 104-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22902255

RESUMO

Whole-body vibration (WBV) augments the musculoskeletal effects of resistance exercise (RE). However, its acute effects on bone turnover markers (BTM) have not been determined. This study examined BTM responses to acute high-intensity RE and high-intensity RE with WBV (WBV+RE) in young women (n=10) taking oral contraceptives in a randomized, crossover repeated measures design. WBV+RE exposed subjects to 5 one-minute bouts of vibration (20 Hz, 3.38 peak-peak displacement, separated by 1 min of rest) before RE. Fasting blood samples were obtained before (Pre), immediately after WBV (PostVib), immediately after RE (IP), and 30-min after RE (P30). Bone alkaline phosphatase did not change at any time point. Tartrate-resistant acid phosphatase 5b significantly increased (p<0.05) from the Pre to PostVib, then decreased from IP to P30 for both conditions. C-terminal telopeptide of type I collagen (CTX) significantly decreased (p<0.05) from Pre to PostVib and from Pre to P30 only for WBV+RE. WBV+RE showed a greater decrease in CTX than RE (-12.6% ± 4.7% vs -1.13% ± 3.5%). In conclusion, WBV was associated with acute decreases in CTX levels not elicited with RE alone in young women.


Assuntos
Osso e Ossos/metabolismo , Força Muscular/fisiologia , Treinamento Resistido , Vibração , Adulto , Fosfatase Alcalina/metabolismo , Biomarcadores/metabolismo , Reabsorção Óssea/fisiopatologia , Colágeno Tipo I/metabolismo , Estudos Cross-Over , Feminino , Hematócrito , Humanos , Ácido Láctico/sangue , Peptídeos/metabolismo , Estimulação Física , Vibração/uso terapêutico , Adulto Jovem
18.
J Appl Physiol (1985) ; 134(3): 731-741, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36759158

RESUMO

We determined if skeletal muscle extracellular matrix (ECM) content and remodeling markers adapted with resistance training or were associated with hypertrophic outcomes. Thirty-eight untrained males (21 ± 3 yr) participated in whole body resistance training (10 wk, 2 × weekly). Participants completed testing [ultrasound, peripheral quantitative computed tomography (pQCT)] and donated a vastus lateralis (VL) biopsy 1 wk before training and 72 h following the last training bout. Higher responders (HR, n = 10) and lower responders (LR, n = 10) were stratified based on a composite score considering changes in pQCT-derived mid-thigh cross-sectional area (mCSA), ultrasound-derived VL thickness, and mean fiber cross-sectional area (fCSA). In all participants, training reduced matrix metalloprotease (MMP)-14 protein (P < 0.001) and increased satellite cell abundance (P < 0.001); however, VL fascial thickness, ECM protein content per myofiber, MMP-2/-9 protein content, tissue inhibitor of metalloproteinase (TIMP)-1/-2 protein content, collagen-1/-4 protein content, macrophage abundance, or fibroadipogenic progenitor cell abundance were not altered. Regarding responder analysis, MMP-14 exhibited an interaction (P = 0.007), and post hoc analysis revealed higher protein content in HR versus LR before training (P = 0.026) and a significant decrease from pre to posttraining in HR only (P = 0.002). In summary, basal skeletal muscle ECM markers are minimally affected with 10 wk of resistance training, and these findings could be related to not capturing more dynamic alterations in the assayed markers earlier in training. However, the downregulation in MMP-14 in college-aged men classified as HR is a novel finding and warrants continued investigation, and further research is needed to delineate muscle connective tissue strength attributes between HR and LR.NEW & NOTEWORTHY Although past studies have examined aspects of extracellular matrix remodeling in relation to mechanical overload or resistance training, this study serves to expand our knowledge on a multitude of extracellular matrix markers and whether these markers adapt to resistance training or are associated with differential hypertrophic responses.


Assuntos
Treinamento Resistido , Masculino , Humanos , Adulto Jovem , Treinamento Resistido/métodos , Metaloproteinase 14 da Matriz/metabolismo , Músculo Esquelético/fisiologia , Matriz Extracelular/metabolismo , Músculo Quadríceps/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Hipertrofia/metabolismo
19.
J Appl Physiol (1985) ; 134(3): 491-507, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36633866

RESUMO

We sought to determine if the myofibrillar protein synthetic (MyoPS) response to a naïve resistance exercise (RE) bout, or chronic changes in satellite cell number and muscle ribosome content, were associated with hypertrophic outcomes in females or differed in those who classified as higher (HR) or lower (LR) responders to resistance training (RT). Thirty-four untrained college-aged females (23.4 ± 3.4 kg/m2) completed a 10-wk RT protocol (twice weekly). Body composition and leg imaging assessments, a right leg vastus lateralis biopsy, and strength testing occurred before and following the intervention. A composite score, which included changes in whole body lean/soft tissue mass (LSTM), vastus lateralis (VL) muscle cross-sectional area (mCSA), midthigh mCSA, and deadlift strength, was used to delineate upper and lower HR (n = 8) and LR (n = 8) quartiles. In all participants, training significantly (P < 0.05) increased LSTM, VL mCSA, midthigh mCSA, deadlift strength, mean muscle fiber cross-sectional area, satellite cell abundance, and myonuclear number. Increases in LSTM (P < 0.001), VL mCSA (P < 0.001), midthigh mCSA (P < 0.001), and deadlift strength (P = 0.001) were greater in HR vs. LR. The first-bout 24-hour MyoPS response was similar between HR and LR (P = 0.367). While no significant responder × time interaction existed for muscle total RNA concentrations (i.e., ribosome content) (P = 0.888), satellite cell abundance increased in HR (P = 0.026) but not LR (P = 0.628). Pretraining LSTM (P = 0.010), VL mCSA (P = 0.028), and midthigh mCSA (P < 0.001) were also greater in HR vs. LR. Female participants with an enhanced satellite cell response to RT, and more muscle mass before RT, exhibited favorable resistance training adaptations.NEW & NOTEWORTHY This study continues to delineate muscle biology differences between lower and higher responders to resistance training and is unique in that a female population was interrogated. As has been reported in prior studies, increases in satellite cell numbers are related to positive responses to resistance training. Satellite cell responsivity, rather than changes in muscle ribosome content per milligrams of tissue, may be a more important factor in delineating resistance-training responses in women.


Assuntos
Doenças Musculares , Treinamento Resistido , Humanos , Adulto , Feminino , Adulto Jovem , Treinamento Resistido/métodos , Fibras Musculares Esqueléticas/fisiologia , Músculo Quadríceps , Exercício Físico , Músculo Esquelético/fisiologia , Força Muscular/fisiologia
20.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066356

RESUMO

We investigated the effects of performing a period of resistance training (RT) on the performance and molecular adaptations to a subsequent period of endurance training (ET). Twenty-five young adults were divided into RT+ET (n=13), which underwent seven weeks of RT followed by seven weeks of ET, and ET-only (n=12), which performed seven weeks of ET. Body composition, endurance performance, and muscle biopsies were collected before RT (T1, baseline for RT+ET), before ET (T2, post RT for RT+ET and baseline for ET), and after ET (T3). Immunohistochemistry was performed to determine fiber cross-sectional area (fCSA), myonuclear content, myonuclear domain size, satellite cell number, and mitochondrial content. Western blots were used to quantify markers of mitochondrial remodeling. Citrate synthase activity and markers of ribosome content were also investigated. Resistance training improved body composition and strength, increased vastus lateralis thickness, mixed and type II fCSA, myonuclear number, markers of ribosome content, and satellite cell content (p<0.050). In response to ET, both groups similarly decreased body fat percentage and improved endurance performance (e.g., VO 2 max, and speed at which the onset of blood lactate accumulation occurred during the VO 2 max test). Levels of mitochondrial complexes I-IV in the ET-only group increased 32-66%, while the RT+ET group increased 1-11%. Additionally, mixed fiber relative mitochondrial content increased 15% in the ET-only group but decreased 13% in the RT+ET group. In conclusion, RT performed prior to ET had no additional benefits to ET adaptations. Moreover, prior RT seemed to impair mitochondrial adaptations to ET. KEY POINTS SUMMARY: Resistance training is largely underappreciated as a method to improve endurance performance, despite reports showing it may improve mitochondrial function.Although several concurrent training studies are available, in this study we investigated the effects of performing a period resistance training on the performance and molecular adaptations to subsequent endurance training.Prior resistance training did not improve endurance performance and impaired most mitochondrial adaptations to subsequent endurance training, but that seemed to be a result of detraining from resistance training.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa