Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Biomacromolecules ; 23(5): 2031-2039, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35472265

RESUMO

Being nondegradable, vinyl polymers have limited biomedical applicability. Unfortunately, backbone esters incorporated through conventional radical ring-opening methods do not undergo appreciable abiotic hydrolysis under physiologically relevant conditions. Here, PEG acrylate and di(ethylene glycol) acrylamide-based copolymers containing backbone thioesters were prepared through the radical ring-opening copolymerization of the thionolactone dibenzo[c,e]oxepin-5(7H)-thione. The thioesters degraded fully in the presence of 10 mM cysteine at pH 7.4, with the mechanism presumed to involve an irreversible S-N switch. Degradations with N-acetylcysteine and glutathione were reversible through the thiol-thioester exchange polycondensation of R-SC(═O)-polymer-SH fragments with full degradation relying on an increased thiolate/thioester ratio. Treatment with 10 mM glutathione at pH 7.2 (mimicking intracellular conditions) triggered an insoluble-soluble switch of a temperature-responsive copolymer at 37 °C and the release of encapsulated Nile Red (as a drug model) from core-degradable diblock copolymer micelles. Copolymers and their cysteinolytic degradation products were found to be noncytotoxic, making thioester backbone-functional polymers promising for drug delivery applications.


Assuntos
Polietilenoglicóis , Polímeros , Portadores de Fármacos , Liberação Controlada de Fármacos , Glutationa , Micelas
2.
Nano Lett ; 21(9): 3989-3996, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33899489

RESUMO

We report a rapid solution-phase strategy to synthesize alloyed PtNi nanoparticles which demonstrate outstanding functionality for the oxygen reduction reaction (ORR). This one-pot coreduction colloidal synthesis results in a monodisperse population of single-crystal nanoparticles of rhombic dodecahedral morphology with Pt-enriched edges and compositions close to Pt1Ni2. We use nanoscale 3D compositional analysis to reveal for the first time that oleylamine (OAm)-aging of the rhombic dodecahedral Pt1Ni2 particles results in Ni leaching from surface facets, producing aged particles with concave faceting, an exceptionally high surface area, and a composition of Pt2Ni1. We show that the modified atomic nanostructures catalytically outperform the original PtNi rhombic dodecahedral particles by more than two-fold and also yield improved cycling durability. Their functionality for the ORR far exceeds commercially available Pt/C nanoparticle electrocatalysts, both in terms of mass-specific activities (up to a 25-fold increase) and intrinsic area-specific activities (up to a 27-fold increase).

3.
Nano Lett ; 19(2): 732-738, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30681878

RESUMO

The properties of nanoparticles are known to critically depend on their local chemistry but characterizing three-dimensional (3D) elemental segregation at the nanometer scale is highly challenging. Scanning transmission electron microscope (STEM) tomographic imaging is one of the few techniques able to measure local chemistry for inorganic nanoparticles but conventional methodologies often fail due to the high electron dose imparted. Here, we demonstrate realization of a new spectroscopic single particle reconstruction approach built on a method developed by structural biologists. We apply this technique to the imaging of PtNi nanocatalysts and find new evidence of a complex inhomogeneous alloying with a Pt-rich core, a Ni-rich hollow octahedral intermediate shell and a Pt-rich rhombic dodecahedral skeleton framework with less Pt at ⟨100⟩ vertices. The ability to gain evidence of local surface enrichment that varies with the crystallographic orientation of facets and vertices is expected to provide significant insight toward the development of nanoparticles for sensing, medical imaging, and catalysis.

4.
Phys Chem Chem Phys ; 21(36): 20415-20421, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31501845

RESUMO

Dendritic/mesoporous nanoparticle structures arise naturally and result from aggregation based growth mechanisms. The resulting porous particles exhibit high total surface areas (internal and external) but determining the magnitude of the interface remains challenging. Furthermore, assessing the chemical accessibility of the catalytic interface presents an additional difficulty. Taking three structurally related but different sized platinum nanoparticle samples (30-70 nm), we demonstrate how the catalytic rate of two archetypal surface limited reactions scale not with the square of the particle radius but with a power law of 2.6-2.9. This power law directly reflects the mesoporosity of the nanoparticles; the internal surface of the nanoparticles is both chemically accessible and contributes to the catalytic activity. For the 70 nm particles, up to 60% of the catalytic surface is contained in the internal structure of the particle.

5.
Phys Chem Chem Phys ; 21(8): 4444-4451, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30734819

RESUMO

We report the key role of the capping agent in the detection of metal cations using tannic acid (TA) capped gold nanoparticles at both ensembles (using cyclic voltammetry) and with individual particles (using oxidative and reductive nanoimpacts). The results show that the capping agent complexes with Zn2+ and Hg2+ in a reversible and Langmuirian manner in both cases. The sensitivity of detection is determined by the amount of capping agent present on the nanoparticles with similar values seen for both oxidation and reduction reactions. The optimisation of the capping agent loading is therefore key to metal ion detection.

6.
Analyst ; 143(9): 2035-2041, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29645056

RESUMO

We report the electrochemical sensing of Hg2+ based on tannic acid capped gold nanoparticle (AuNP@TA) complexes. At optimal conditions using square wave voltammetry, the presented analytical method exhibits a "measurable lower limit" of 100.0 fM. This limit is considerably below the permissible level of 30.0 nM for inorganic mercury in drinking water, specified by the World Health Organization (WHO). The effect of potentially interfering ions, such as Zn2+ and Al3+, was studied and results indicate an excellent selectivity for Hg2+. The transfer of the proposed strategy onto AuNP@TA modified screen-printed electrodes demonstrates its applicability to routine monitoring of Hg2+ in tap water.

7.
Phys Chem Chem Phys ; 20(37): 23847-23850, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30221286

RESUMO

The underpotential deposition of hydrogen and the hydrogen evolution reaction is studied at individual mesoporous nanoparticles. This work shows how the electroactive surface area and catalytic activity of these individual particles can be simultaneously measured.

8.
Phys Chem Chem Phys ; 20(19): 13537-13546, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29726865

RESUMO

Herein we provide a generic framework for use in the acquisition and analysis of the electrochemical responses of individual nanoparticles, summarising aspects that must be considered to avoid mis-interpretation of data. Specifically, we threefold highlight the importance of the nanoparticle shape, the effect of the nanoparticle diffusion coefficient on the probability of it being observed and the influence of the used measurement bandwidth. Using the oxidation of silver nanoparticles as a model system, it is evidenced that when all of the above have been accounted for, the experimental data is consistent with being associated with the complete oxidation of the nanoparticles (50 nm diameter). The duration of many single nanoparticle events are found to be ca. milliseconds in duration over a range of experiments. Consequently, the insight that the use of lower frequency filtered data yields a more accurate description of the charge passed during a nano-event is likely widely applicable to this class of experiment; thus we report a generic methodology. Conversely, information regarding the dynamics of the nano redox event is obscured when using such lower frequency measurements; hence, both data sets are complementary and are required to provide full insight into the behaviour of the reactions at the nanoscale.

9.
Phys Chem Chem Phys ; 20(44): 28300-28307, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30398484

RESUMO

The electrochemical dissolution of citrate-capped gold nanoparticles (AuNPs) was studied in cyanide (CN-) containing solutions. It was found that the gold nanoparticles exhibited different dissolution behaviours as ensembles compared to the single particles. At the single particle level, a nearly complete oxidation of 60 nm AuNPs was achieved at concentrations greater than or equal to 35.0 mM CN- and at a potential of 1.0 V. Mechanistic insights and rate data are reported.

10.
Anal Chem ; 89(13): 7166-7173, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28581287

RESUMO

Ultratrace levels of Hg2+ have been quantified by undertaking linear sweep voltammetry with a silver nanoparticle-modified glassy carbon electrode (AgNP-GCE) in aqueous solutions containing Hg2+. This is achieved by monitoring the change in the silver stripping peak with Hg2+ concentration resulting from the galvanic displacement of silver by mercury: Ag(np) + 1/2Hg2+(aq) → Ag+(aq) + 1/2Hg(l). This facile and reproducible detection method exhibits an excellent linear dynamic range of 100.0 pM to 10.0 nM Hg2+ concentration with R2 = 0.982. The limit of detection (LoD) based on 3σ is 28 pM Hg2+, while the lowest detectable level for quantification purposes is 100.0 pM. This method is appropriate for routine environmental monitoring and drinking water quality assessment since the guideline value set by the US Environmental Protection Agency (EPA) for inorganic mercury in drinking water is 0.002 mg L-1 (10 nM).

11.
Chemistry ; 23(63): 16085-16096, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-28922508

RESUMO

The oxidative dissolution of citrate-capped silver nanoparticles (AgNPs, ∼50 nm diameter) is investigated herein by two electrochemical techniques: nano-impacts and anodic stripping voltammetry. Nano-impacts or single nanoparticle-electrode collisions allow the detection of individual nanoparticles. The technique offers an advantage over surface-immobilized methods such as anodic stripping voltammetry as it eliminates the effects of particle agglomeration/aggregation. The electrochemical studies are performed in different electrolytes (KNO3 , KCl, KBr and KI) at varied concentrations (≤20 mm). In nano-impact measurements, the AgNP undergoes complete oxidation upon impact at a suitably potentiostated electrode. The frequency of the nanoparticle-electrode collisions observed as current-transient spikes depends on the electrolyte identity, its concentration and the potential applied at the working electrode. The frequencies of the spikes are significantly higher in the presence of halide ions and increase with increasing potentials. From the frequency, the rate of AgNP oxidation as compared with the timescale the AgNP is in electrical contact with the electrode can be inferred, and hence is indicative of the relative kinetics of the oxidation process. Primarily based on these results, we propose the initial formation of the silver (I) nucleus (Ag+ , AgCl, AgBr or AgI) as the rate-determining process of silver oxidation on the nanoparticle.

12.
Phys Chem Chem Phys ; 19(5): 3911-3921, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28106220

RESUMO

Cluster formation can profoundly influence the bioavailability and (bio)geochemical activity of nanoparticles in natural aquatic systems. While colloidal properties of nanoparticles are commonly investigated using light-scattering techniques, the requirement to dilute samples can affect the fundamental nature and extent of the cluster size. Hence, an alternative in situ approach that can cover a much higher and wider concentration range of particles is desirable. In this study, particle impact chronoamperometry is employed to probe the degree of cluster formation of Alizarin Red S modified rutile nanoparticles of diameter ca. 167 nm in conditions approximating those existing in the environment. Random collisions of individual clusters of the modified rutile particles with a stationary electrode result in transient current signals during a chronoamperometric measurement, indicative of the reduction of the adsorbed Alizarin Red S dye molecules. The results from the particle-impact analysis reveal that the nanoparticles are heavily clustered with an average 91 monomeric particles per cluster. As the spherical equivalent size of the clusters (ca. 754 nm in diameter) is considerably larger than that from nanoparticle tracking analysis (ca. 117 nm), the present work highlights the impact of the dilution on the fundamental nature of the colloidal suspension and introduces the electrochemical determination of the size distribution of inert mineral nanoparticles in highly concentrated media.

13.
Phys Chem Chem Phys ; 19(15): 9733-9738, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28367543

RESUMO

Silver nanoparticles capped with either DNA or citrate are investigated electrochemically using stripping voltammetry and nano-impacts. Whilst the citrate capped particles are readily oxidised to silver cations at 0.7 V, the DNA capped particles undergo electron transfer from the silver core to the electrode in two distinct potential ranges -0.8 to 1.1 V and 1.125 to 1.2 V, and only undergo complete oxidation at the higher potential range. These potentials reflect the oxidation of guanine and adenine respectively, with a potential sufficient to oxidise both base pairs being necessary to observe full silver oxidation. The DNA thus serves as a tunnelling barrier to electrically insulate the particle, and allows for selective oxidation to occur by controlling the potential applied.


Assuntos
DNA/química , Nanopartículas Metálicas/química , Prata/química , Ácido Cítrico/química , Difusão Dinâmica da Luz , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Microscopia Eletrônica de Transmissão , Oxirredução , Tamanho da Partícula , Espectrofotometria
14.
Phys Chem Chem Phys ; 19(21): 13547-13552, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28504288

RESUMO

The porosity of platinum nanoparticle aggregates (PtNPs) is investigated electrochemically via particle-electrode impacts and by XPS. The mean charge per oxidative transient is measured from nanoimpacts; XPS shows the formation of PtO and PtO2 in relative amounts defined by the electrode potential and an average oxidation state is deduced as a function of potential. The number of platinum atoms oxidised per PtNP is calculated and compared with two models: solid and porous spheres, within which there are two cases: full and surface oxidation. This allows insight into extent to which the internal surface of the aggregate is 'seen' by the solution and is electrochemically active.

15.
Angew Chem Int Ed Engl ; 56(41): 12751-12754, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28834588

RESUMO

Fluorescence microscopy and electrochemistry were employed to examine capping agent dynamics in silver nanoparticles capped with DNA intercalated with ethidium bromide, a fluorescent molecule. The capped NPs were studied first electrochemically, demonstrating that the intercalation of the capping agent promotes oxidation of the silver core, occurring at 0.50 V (vs. Ag, compared with 1.15 V for Ag NPs capped in DNA alone). Second, fluorescence electrochemical microscopy revealed that the electron transfer from the nanoparticles is gated by the capping agent, allowing dynamic insights unobservable using electrochemistry alone.


Assuntos
DNA/química , Etídio/química , Corantes Fluorescentes/química , Substâncias Intercalantes/química , Nanopartículas Metálicas/química , Prata/química , Técnicas Eletroquímicas , Nanopartículas Metálicas/ultraestrutura , Microscopia de Fluorescência , Oxirredução , Tamanho da Partícula
16.
Inorg Chem ; 55(19): 9937-9948, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27631169

RESUMO

The vacancy ordering behavior of an A-site deficient perovskite system, Ca1-xLa2x/3TiO3, was studied using atomic resolution scanning transmission electron microscopy (STEM) in conjunction with electron energy-loss spectroscopy (EELS), with the aim of determining the role of A-site composition changes. At low La content (x = 0.2), adopting Pbnm symmetry, there was no indication of long-range ordering. Domains, with clear boundaries, were observed in bright-field (BF) imaging, but were not immediately visible in the corresponding high-angle annular dark-field (HAADF) image. These boundaries, with the aid of displacement maps from A-site cations in the HAADF signal, are shown to be tilt boundaries. At the La-rich end of the composition (x = 0.9), adopting Cmmm symmetry, long-range ordering of vacancies and La3+ ions was observed, with alternating La-rich and La-poor layers on (001)p planes, creating a double perovskite lattice along the c axis. These highly ordered domains can be found isolated within a random distribution of vacancies/La3+, or within a large population, encompassing a large volume. In regions with a high number density of double perovskite domains, these highly ordered domains were separated by twin boundaries, with 90° or 180° lattice rotations across boundaries. The occurrence and characteristics of these ordered structures are discussed and compared with similar perovskite systems.

17.
Phys Chem Chem Phys ; 19(1): 64-68, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27959378

RESUMO

The porosity of platinum nanoparticles (PtNPs) is explored for the first time using tag-redox coulometry (TRC). This is achieved by monitoring the reduction of the 4-nitrobenzenethiol (NTP)-tagged PtNPs on carbon electrodes via both immobilisation and nanoimpacts. The average charge per impact is measured and attributed to the reduction of NTP adsorbed on individual PtNPs. The number of NTP molecules and thus the "active surface area" of the PtNPs is calculated and compared with two models: fully solid and porous nanoparticles, and the extent of the particle porosity is revealed. This allows a fuller understanding of the (electro-)catalytic behaviour of nanoparticles by providing insight into their porosity and "true/active surface areas".

18.
Angew Chem Int Ed Engl ; 55(33): 9768-71, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27355839

RESUMO

We demonstrate that the concentration of a red blood cell solution under physiological conditions can be determined by electrochemical voltammetry. The magnitude of the oxygen reduction currents produced at an edge-plane pyrolytic graphite electrode was diagnosed analytically at concentrations suitable for a point-of-care test device. The currents could be further enhanced when the solution of red blood cells was exposed to hydrogen peroxide. We show that the enhanced signal can be used to detect red blood cells at a single entity level. The method presented relies on the catalytic activity of red blood cells towards hydrogen peroxide and on surface-induced haemolysis. Each single cell activity is expressed as current spikes decaying within a few seconds back to the background current. The frequency of such current spikes is proportional to the concentration of cells in solution.


Assuntos
Técnicas Eletroquímicas , Eritrócitos/citologia , Contagem de Células , Eritrócitos/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Fatores de Tempo
19.
Angew Chem Int Ed Engl ; 55(24): 7002-5, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27106096

RESUMO

The in situ electrochemical sizing of individual gold nanorods is reported. Through the combination of electrochemical dissolution and the use of a surface-bound redox tag, the volume and surface area of the nanorods are measured, and provide the aspect ratio and the size of the nanorods. Excellent independent agreement is found with electron microscopy analysis of the nanorods, establishing the application of nano-impact experiments for the sizing of anisotropic nanomaterials.

20.
Angew Chem Int Ed Engl ; 55(1): 397-400, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26572689

RESUMO

We report the direct solution-phase characterization of individual gold-core silver-shell nanoparticles through an electrochemical means, with selectivity achieved between the core and shell components based on their different redox activities. The electrochemically determined core-shell sizes are in excellent agreement with electron microscopy-based results, successfully demonstrating the electrochemical characterization of individual core-shell nanoparticles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa