Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
EMBO J ; 40(23): e103718, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698396

RESUMO

Mixed lineage kinase domain-like (MLKL) is the executioner in the caspase-independent form of programmed cell death called necroptosis. Receptor-interacting serine/threonine protein kinase 3 (RIPK3) phosphorylates MLKL, triggering MLKL oligomerization, membrane translocation and membrane disruption. MLKL also undergoes ubiquitylation during necroptosis, yet neither the mechanism nor the significance of this event has been demonstrated. Here, we show that necroptosis-specific multi-mono-ubiquitylation of MLKL occurs following its activation and oligomerization. Ubiquitylated MLKL accumulates in a digitonin-insoluble cell fraction comprising organellar and plasma membranes and protein aggregates. Appearance of this ubiquitylated MLKL form can be reduced by expression of a plasma membrane-located deubiquitylating enzyme. Oligomerization-induced MLKL ubiquitylation occurs on at least four separate lysine residues and correlates with its proteasome- and lysosome-dependent turnover. Using a MLKL-DUB fusion strategy, we show that constitutive removal of ubiquitin from MLKL licences MLKL auto-activation independent of necroptosis signalling in mouse and human cells. Therefore, in addition to the role of ubiquitylation in the kinetic regulation of MLKL-induced death following an exogenous necroptotic stimulus, it also contributes to restraining basal levels of activated MLKL to avoid unwanted cell death.


Assuntos
Membrana Celular/metabolismo , Necroptose , Proteínas Quinases/metabolismo , Proteínas Quinases/fisiologia , Multimerização Proteica , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Complexo de Endopeptidases do Proteassoma , Proteínas Quinases/química , Proteínas Quinases/genética , Ubiquitina Tiolesterase/genética
2.
Biochem J ; 480(9): 665-684, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37115711

RESUMO

Necroptosis is a mode of programmed, lytic cell death that is executed by the mixed lineage kinase domain-like (MLKL) pseudokinase following activation by the upstream kinases, receptor-interacting serine/threonine protein kinase (RIPK)-1 and RIPK3. Dysregulated necroptosis has been implicated in the pathophysiology of many human diseases, including inflammatory and degenerative conditions, infectious diseases and cancers, provoking interest in pharmacological targeting of the pathway. To identify small molecules impacting on the necroptotic machinery, we performed a phenotypic screen using a mouse cell line expressing an MLKL mutant that kills cells in the absence of upstream death or pathogen detector receptor activation. This screen identified the vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR) tyrosine kinase inhibitor, ABT-869 (Linifanib), as a small molecule inhibitor of necroptosis. We applied a suite of cellular, biochemical and biophysical analyses to pinpoint the apical necroptotic kinase, RIPK1, as the target of ABT-869 inhibition. Our study adds to the repertoire of established protein kinase inhibitors that additionally target RIPK1 and raises the prospect that serendipitous targeting of necroptosis signalling may contribute to their clinical efficacy in some settings.


Assuntos
Proteínas Quinases , Humanos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Necroptose , Fator A de Crescimento do Endotélio Vascular/metabolismo , Apoptose , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(15): 8468-8475, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32234780

RESUMO

The necroptosis cell death pathway has been implicated in host defense and in the pathology of inflammatory diseases. While phosphorylation of the necroptotic effector pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) by the upstream protein kinase RIPK3 is a hallmark of pathway activation, the precise checkpoints in necroptosis signaling are still unclear. Here we have developed monobodies, synthetic binding proteins, that bind the N-terminal four-helix bundle (4HB) "killer" domain and neighboring first brace helix of human MLKL with nanomolar affinity. When expressed as genetically encoded reagents in cells, these monobodies potently block necroptotic cell death. However, they did not prevent MLKL recruitment to the "necrosome" and phosphorylation by RIPK3, nor the assembly of MLKL into oligomers, but did block MLKL translocation to membranes where activated MLKL normally disrupts membranes to kill cells. An X-ray crystal structure revealed a monobody-binding site centered on the α4 helix of the MLKL 4HB domain, which mutational analyses showed was crucial for reconstitution of necroptosis signaling. These data implicate the α4 helix of its 4HB domain as a crucial site for recruitment of adaptor proteins that mediate membrane translocation, distinct from known phospholipid binding sites.


Assuntos
Materiais Biomiméticos/farmacologia , Membrana Celular/metabolismo , Domínio de Fibronectina Tipo III , Necrose , Oligopeptídeos/farmacologia , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Cristalografia por Raios X , Humanos , Fosforilação , Conformação Proteica , Proteínas Quinases/química , Multimerização Proteica , Transporte Proteico
4.
Immunity ; 39(3): 443-53, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24012422

RESUMO

Mixed lineage kinase domain-like (MLKL) is a component of the "necrosome," the multiprotein complex that triggers tumor necrosis factor (TNF)-induced cell death by necroptosis. To define the specific role and molecular mechanism of MLKL action, we generated MLKL-deficient mice and solved the crystal structure of MLKL. Although MLKL-deficient mice were viable and displayed no hematopoietic anomalies or other obvious pathology, cells derived from these animals were resistant to TNF-induced necroptosis unless MLKL expression was restored. Structurally, MLKL comprises a four-helical bundle tethered to the pseudokinase domain, which contains an unusual pseudoactive site. Although the pseudokinase domain binds ATP, it is catalytically inactive and its essential nonenzymatic role in necroptotic signaling is induced by receptor-interacting serine-threonine kinase 3 (RIPK3)-mediated phosphorylation. Structure-guided mutation of the MLKL pseudoactive site resulted in constitutive, RIPK3-independent necroptosis, demonstrating that modification of MLKL is essential for propagation of the necroptosis pathway downstream of RIPK3.


Assuntos
Apoptose , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fatores de Necrose Tumoral/metabolismo , Animais , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose , Fosfoproteínas Fosfatases , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/genética , Transdução de Sinais
5.
Biochem J ; 478(13): 2555-2569, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34109974

RESUMO

Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is an epigenetic regulator that mediates gene expression silencing at targeted sites across the genome. Our current understanding of SMCHD1's molecular mechanism, and how substitutions within SMCHD1 lead to the diseases, facioscapulohumeral muscular dystrophy (FSHD) and Bosma arhinia microphthalmia syndrome (BAMS), are only emerging. Recent structural studies of its two component domains - the N-terminal ATPase and C-terminal SMC hinge - suggest that dimerization of each domain plays a central role in SMCHD1 function. Here, using biophysical techniques, we demonstrate that the SMCHD1 ATPase undergoes dimerization in a process that is dependent on both the N-terminal UBL (Ubiquitin-like) domain and ATP binding. We show that neither the dimerization event, nor the presence of a C-terminal extension past the transducer domain, affect SMCHD1's in vitro catalytic activity as the rate of ATP turnover remains comparable to the monomeric protein. We further examined the functional importance of the N-terminal UBL domain in cells, revealing that its targeted deletion disrupts the localization of full-length SMCHD1 to chromatin. These findings implicate UBL-mediated SMCHD1 dimerization as a crucial step for chromatin interaction, and thereby for promoting SMCHD1-mediated gene silencing.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Multimerização Proteica , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Células HEK293 , Humanos , Immunoblotting , Microscopia de Fluorescência , Mutação , Ligação Proteica , Domínios Proteicos , Espalhamento a Baixo Ângulo , Especificidade por Substrato , Ubiquitina/química , Ubiquitina/metabolismo , Difração de Raios X
6.
Biochem J ; 478(17): 3351-3371, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34431498

RESUMO

EphB6 and EphA10 are two poorly characterised pseudokinase members of the Eph receptor family, which collectively serves as mediators of contact-dependent cell-cell communication to transmit extracellular cues into intracellular signals. As per their active counterparts, EphB6 and EphA10 deregulation is strongly linked to proliferative diseases. However, unlike active Eph receptors, whose catalytic activities are thought to initiate an intracellular signalling cascade, EphB6 and EphA10 are classified as catalytically dead, raising the question of how non-catalytic functions contribute to Eph receptor signalling homeostasis. In this study, we have characterised the biochemical properties and topology of the EphB6 and EphA10 intracellular regions comprising the juxtamembrane (JM) region, pseudokinase and SAM domains. Using small-angle X-ray scattering and cross-linking-mass spectrometry, we observed high flexibility within their intracellular regions in solution and a propensity for interaction between the component domains. We identified tyrosine residues in the JM region of EphB6 as EphB4 substrates, which can bind the SH2 domains of signalling effectors, including Abl, Src and Vav3, consistent with cellular roles in recruiting these proteins for downstream signalling. Furthermore, our finding that EphB6 and EphA10 can bind ATP and ATP-competitive small molecules raises the prospect that these pseudokinase domains could be pharmacologically targeted to counter oncogenic signalling.


Assuntos
Receptores da Família Eph/química , Receptores da Família Eph/metabolismo , Transdução de Sinais/genética , Motivo Estéril alfa/genética , Domínios de Homologia de src/genética , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Inibidores de Proteínas Quinases/metabolismo , Receptores da Família Eph/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera/citologia , Tirosina/metabolismo
7.
Immunity ; 36(2): 239-50, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22342841

RESUMO

Janus kinases (JAKs) are key effectors in controlling immune responses and maintaining hematopoiesis. SOCS3 (suppressor of cytokine signaling-3) is a major regulator of JAK signaling and here we investigate the molecular basis of its mechanism of action. We found that SOCS3 bound and directly inhibited the catalytic domains of JAK1, JAK2, and TYK2 but not JAK3 via an evolutionarily conserved motif unique to JAKs. Mutation of this motif led to the formation of an active kinase that could not be inhibited by SOCS3. Surprisingly, we found that SOCS3 simultaneously bound JAK and the cytokine receptor to which it is attached, revealing how specificity is generated in SOCS action and explaining why SOCS3 inhibits only a subset of cytokines. Importantly, SOCS3 inhibited JAKs via a noncompetitive mechanism, making it a template for the development of specific and effective inhibitors to treat JAK-based immune and proliferative diseases.


Assuntos
Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Sequência Conservada , Humanos , Interleucina-6/metabolismo , Janus Quinases/antagonistas & inibidores , Janus Quinases/química , Janus Quinases/genética , Janus Quinases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/química , Proteínas Supressoras da Sinalização de Citocina/genética
8.
Biochem J ; 473(12): 1733-44, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27059856

RESUMO

Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic regulator that plays critical roles in gene regulation during development. Mutations in SMCHD1 were recently implicated in the pathogenesis of facioscapulohumeral muscular dystrophy (FSHD), although the mechanistic basis remains of outstanding interest. We have previously shown that Smchd1 associates with chromatin via its homodimeric C-terminal hinge domain, yet little is known about the function of the putative GHKL (gyrase, Hsp90, histidine kinase, MutL)-type ATPase domain at its N-terminus. To formally assess the structure and function of Smchd1's ATPase domain, we have generated recombinant proteins encompassing the predicted ATPase domain and the adjacent region. Here, we show that the Smchd1 N-terminal region exists as a monomer and adopts a conformation resembling that of monomeric full-length heat shock protein 90 (Hsp90) protein in solution, even though the two proteins share only ∼8% overall sequence identity. Despite being monomeric, the N-terminal region of Smchd1 exhibits ATPase activity, which can be antagonized by the reaction product, ADP, or the Hsp90 inhibitor, radicicol, at a nanomolar concentration. Interestingly, introduction of an analogous mutation to that identified in SMCHD1 of an FSHD patient compromised protein stability, suggesting a possible molecular basis for loss of protein function and pathogenesis. Together, these results reveal important structure-function characteristics of Smchd1 that may underpin its mechanistic action at the chromatin level.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Macrolídeos/farmacologia , Camundongos , Dados de Sequência Molecular , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Alinhamento de Sequência
9.
Proc Natl Acad Sci U S A ; 111(42): 15072-7, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288762

RESUMO

Necroptosis is considered to be complementary to the classical caspase-dependent programmed cell death pathway, apoptosis. The pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) is an essential effector protein in the necroptotic cell death pathway downstream of the protein kinase Receptor Interacting Protein Kinase-3 (RIPK3). How MLKL causes cell death is unclear, however RIPK3-mediated phosphorylation of the activation loop in MLKL trips a molecular switch to induce necroptotic cell death. Here, we show that the MLKL pseudokinase domain acts as a latch to restrain the N-terminal four-helix bundle (4HB) domain and that unleashing this domain results in formation of a high-molecular-weight, membrane-localized complex and cell death. Using alanine-scanning mutagenesis, we identified two clusters of residues on opposing faces of the 4HB domain that were required for the 4HB domain to kill cells. The integrity of one cluster was essential for membrane localization, whereas MLKL mutations in the other cluster did not prevent membrane translocation but prevented killing; this demonstrates that membrane localization is necessary, but insufficient, to induce cell death. Finally, we identified a small molecule that binds the nucleotide binding site within the MLKL pseudokinase domain and retards MLKL translocation to membranes, thereby preventing necroptosis. This inhibitor provides a novel tool to investigate necroptosis and demonstrates the feasibility of using small molecules to target the nucleotide binding site of pseudokinases to modulate signal transduction.


Assuntos
Apoptose , Necrose , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Ativação Enzimática , Concentração Inibidora 50 , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Fosforilação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
10.
Biochem J ; 471(2): 255-65, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26283547

RESUMO

The pseudokinase MLKL (mixed lineage kinase domain-like), has recently emerged as a critical component of the necroptosis cell death pathway. Although it is clear that phosphorylation of the activation loop in the MLKL pseudokinase domain by the upstream protein kinase RIPK3 (receptor-interacting protein kinase-3), is crucial to trigger MLKL activation, it has remained unclear whether other phosphorylation events modulate MLKL function. By reconstituting Mlkl(-/-), Ripk3(-/-) and Mlkl(-/-)Ripk3(-/-) cells with MLKL phospho-site mutants, we compared the function of known MLKL phosphorylation sites in regulating necroptosis with three phospho-sites that we identified by MS, Ser(158), Ser(228) and Ser(248). Expression of a phosphomimetic S345D MLKL activation loop mutant-induced stimulus-independent cell death in all knockout cells, demonstrating that RIPK3 phosphorylation of the activation loop of MLKL is sufficient to induce cell death. Cell death was also induced by S228A, S228E and S158A MLKL mutants in the absence of death stimuli, but was most profound in Mlkl(-/-)Ripk3(-/-) double knockout fibroblasts. These data reveal a potential role for RIPK3 as a suppressor of MLKL activation and indicate that phosphorylation can fine-tune the ability of MLKL to induce necroptosis.


Assuntos
Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Substituição de Aminoácidos , Animais , Ativação Enzimática/fisiologia , Técnicas de Inativação de Genes , Humanos , Camundongos , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Proteínas Quinases/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Células U937
11.
Biochem J ; 457(3): 369-77, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24219132

RESUMO

The pseudokinase MLKL (mixed lineage kinase domain-like) was identified recently as an essential checkpoint in the programmed necrosis or 'necroptosis' cell death pathway. In the present study, we report the crystal structure of the human MLKL pseudokinase domain at 1.7 Å (1 Å=0.1 nm) resolution and probe its nucleotide-binding mechanism by performing structure-based mutagenesis. By comparing the structures and nucleotide-binding determinants of human and mouse MLKL orthologues, the present study provides insights into the evolution of nucleotide-binding mechanisms among pseudokinases and their mechanistic divergence from conventional catalytically active protein kinases.


Assuntos
Trifosfato de Adenosina/metabolismo , Evolução Molecular , Modelos Moleculares , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Bases de Dados de Proteínas , Humanos , Lisina/química , Camundongos , Conformação Molecular , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Engenharia de Proteínas , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/isolamento & purificação , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Alinhamento de Sequência
12.
Biochem J ; 458(2): 395-405, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24354892

RESUMO

JAK2 (Janus kinase 2) initiates the intracellular signalling cascade downstream of cell surface receptor activation by cognate haemopoietic cytokines, including erythropoietin and thrombopoietin. The pseudokinase domain (JH2) of JAK2 negatively regulates the catalytic activity of the adjacent tyrosine kinase domain (JH1) and mutations within the pseudokinase domain underlie human myeloproliferative neoplasms, including polycythaemia vera and essential thrombocytosis. To date, the mechanism of JH2-mediated inhibition of JH1 kinase activation as well as the susceptibility of pathological mutant JAK2 to inhibition by the physiological negative regulator SOCS3 (suppressor of cytokine signalling 3) have remained unclear. In the present study, using recombinant purified JAK2JH1-JH2 proteins, we demonstrate that, when activated, wild-type and myeloproliferative neoplasm-associated mutants of JAK2 exhibit comparable enzymatic activity and inhibition by SOCS3 in in vitro kinase assays. SAXS (small-angle X-ray scattering) showed that JAK2JH1-JH2 exists in an elongated configuration in solution with no evidence for interaction between JH1 and JH2 domains in cis. Collectively, these data are consistent with a model in which JAK2's pseudokinase domain does not influence the activity of JAK2 once it has been activated. Our data indicate that, in the absence of the N-terminal FERM domain and thus cytokine receptor association, the wild-type and pathological mutants of JAK2 are enzymatically equivalent and equally susceptible to inhibition by SOCS3.


Assuntos
Neoplasias Hematológicas/prevenção & controle , Janus Quinase 2/antagonistas & inibidores , Mutação de Sentido Incorreto/genética , Transtornos Mieloproliferativos/prevenção & controle , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Domínio Catalítico/genética , Predisposição Genética para Doença , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Janus Quinase 2/química , Janus Quinase 2/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Estrutura Secundária de Proteína/genética , Proteínas Recombinantes/genética , Espalhamento a Baixo Ângulo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Difração de Raios X
13.
Biochem J ; 457(2): 323-34, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24107129

RESUMO

Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains.


Assuntos
Janus Quinase 2/química , Janus Quinase 2/classificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Receptor ErbB-3/química , Receptor ErbB-3/classificação , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Insetos , Janus Quinase 2/genética , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Receptor ErbB-3/genética
14.
Growth Factors ; 32(1): 18-26, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24438083

RESUMO

Activation of the cell surface receptor, c-Mpl, by the cytokine, thrombopoietin (TPO), underpins megakaryocyte and platelet production in mammals. In humans, mutations in c-Mpl have been identified as the molecular basis of Congenital Amegakaryocytic Thrombocytopenia (CAMT). Here, we show that CAMT-associated mutations in c-Mpl principally lead to defective receptor presentation on the cell surface. In contrast, one CAMT mutant c-Mpl, F104S, was expressed on the cell surface, but showed defective TPO binding and receptor activation. Using mutational analyses, we examined which residues adjacent to F104 within the membrane-distal cytokine receptor homology module (CRM) of c-Mpl comprise the TPO-binding epitope, revealing residues within the predicted Domain 1 E-F and A-B loops and Domain 2 F'-G' loop as key TPO-binding determinants. These studies underscore the importance of the c-Mpl membrane-distal CRM to TPO-binding and suggest that mutations within this CRM that perturb TPO binding could give rise to CAMT.


Assuntos
Mutação/genética , Receptores de Trombopoetina/genética , Trombocitopenia/genética , Trombopoetina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Plaquetas/metabolismo , Células COS , Linhagem Celular , Proliferação de Células , Chlorocebus aethiops , Síndrome Congênita de Insuficiência da Medula Óssea , Megacariócitos/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Oncogênicas/genética , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Receptores da Prolactina/genética , Alinhamento de Sequência , Transdução de Sinais/genética
15.
Commun Biol ; 7(1): 461, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627519

RESUMO

EphB6 is an understudied ephrin receptor tyrosine pseudokinase that is downregulated in multiple types of metastatic cancers. Unlike its kinase-active counterparts which autophosphorylate and transmit signals upon intercellular interaction, little is known about how EphB6 functions in the absence of intrinsic kinase activity. Here, we unveil a molecular mechanism of cell-cell interaction driven by EphB6. We identify ephrinB1 as a cognate ligand of EphB6 and show that in trans interaction of EphB6 with ephrinB1 on neighboring cells leads to the formation of large co-clusters at the plasma membrane. These co-clusters exhibit a decreased propensity towards endocytosis, suggesting a unique characteristic for this type of cell-cell interaction. Using lattice light-sheet microscopy, 3D structured illumination microscopy and cryo-electron tomography techniques, we show that co-clustering of EphB6 and ephrinB1 promotes the formation of double-membrane tubular structures between cells. Importantly, we also demonstrate that these intercellular structures stabilize cell-cell adhesion, leading to a reduction in the invasive behavior of cancer cells. Our findings rationalize a role for EphB6 pseudokinase as a tumor suppressor when interacting with its ligands in trans.


Assuntos
Fosforilação , Invasividade Neoplásica
16.
EMBO Mol Med ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750308

RESUMO

Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues. We observed surprising heterogeneity in protein expression within tissues, whereby short-lived immune barrier cells were replete with necroptotic effectors, whereas long-lived cells lacked RIPK3 or MLKL expression. Local changes in the expression of necroptotic effectors occurred in response to insults such as inflammation, dysbiosis or immune challenge, consistent with necroptosis being dysregulated in disease contexts. These methods will facilitate the precise localisation and evaluation of necroptotic signaling in vivo.

17.
Nat Commun ; 14(1): 6804, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884510

RESUMO

The necroptosis pathway is a lytic, pro-inflammatory mode of cell death that is widely implicated in human disease, including renal, pulmonary, gut and skin inflammatory pathologies. The precise mechanism of the terminal steps in the pathway, where the RIPK3 kinase phosphorylates and triggers a conformation change and oligomerization of the terminal pathway effector, MLKL, are only emerging. Here, we structurally identify RIPK3-mediated phosphorylation of the human MLKL activation loop as a cue for MLKL pseudokinase domain dimerization. MLKL pseudokinase domain dimerization subsequently drives formation of elongated homotetramers. Negative stain electron microscopy and modelling support nucleation of the MLKL tetramer assembly by a central coiled coil formed by the extended, ~80 Å brace helix that connects the pseudokinase and executioner four-helix bundle domains. Mutational data assert MLKL tetramerization as an essential prerequisite step to enable the release and reorganization of four-helix bundle domains for membrane permeabilization and cell death.


Assuntos
Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Fosforilação , Necrose , Proteínas Quinases/metabolismo , Dimerização , Morte Celular , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose
18.
Nat Commun ; 14(1): 6046, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770424

RESUMO

Across the globe, 2-3% of humans carry the p.Ser132Pro single nucleotide polymorphism in MLKL, the terminal effector protein of the inflammatory form of programmed cell death, necroptosis. Here we show that this substitution confers a gain in necroptotic function in human cells, with more rapid accumulation of activated MLKLS132P in biological membranes and MLKLS132P overriding pharmacological and endogenous inhibition of MLKL. In mouse cells, the equivalent Mlkl S131P mutation confers a gene dosage dependent reduction in sensitivity to TNF-induced necroptosis in both hematopoietic and non-hematopoietic cells, but enhanced sensitivity to IFN-ß induced death in non-hematopoietic cells. In vivo, MlklS131P homozygosity reduces the capacity to clear Salmonella from major organs and retards recovery of hematopoietic stem cells. Thus, by dysregulating necroptosis, the S131P substitution impairs the return to homeostasis after systemic challenge. Present day carriers of the MLKL S132P polymorphism may be the key to understanding how MLKL and necroptosis modulate the progression of complex polygenic human disease.


Assuntos
Apoptose , Proteínas Quinases , Humanos , Animais , Camundongos , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Membrana Celular/metabolismo , Mutação , Fatores de Transcrição/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
19.
Cell Death Dis ; 13(6): 565, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739084

RESUMO

Necroptosis is a caspase-independent, pro-inflammatory mode of programmed cell death which relies on the activation of the terminal effector, MLKL, by the upstream protein kinase RIPK3. To mediate necroptosis, RIPK3 must stably interact with, and phosphorylate the pseudokinase domain of MLKL, although the precise molecular cues that provoke RIPK3 necroptotic signaling are incompletely understood. The recent finding that RIPK3 S227 phosphorylation and the occurrence of a stable RIPK3:MLKL complex in human cells prior to exposure to a necroptosis stimulus raises the possibility that additional, as-yet-unidentified phosphorylation events activate RIPK3 upon initiation of necroptosis signaling. Here, we sought to identify phosphorylation sites of RIPK3 and dissect their regulatory functions. Phosphoproteomics identified 21 phosphorylation sites in HT29 cells overexpressing human RIPK3. By comparing cells expressing wild-type and kinase-inactive D142N RIPK3, autophosphorylation sites and substrates of other cellular kinases were distinguished. Of these 21 phosphosites, mutational analyses identified only pT224 and pS227 as crucial, synergistic sites for stable interaction with MLKL to promote necroptosis, while the recently reported activation loop phosphorylation at S164/T165 negatively regulate the kinase activity of RIPK3. Despite being able to phosphorylate MLKL to a similar or higher extent than wild-type RIPK3, mutation of T224, S227, or the RHIM in RIPK3 attenuated necroptosis. This finding highlights the stable recruitment of human MLKL by RIPK3 to the necrosome as an essential checkpoint in necroptosis signaling, which is independent from and precedes the phosphorylation of MLKL.


Assuntos
Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Apoptose , Humanos , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais
20.
Cell Death Dis ; 12(4): 345, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795639

RESUMO

Maturity-onset diabetes of the young, MODY, is an autosomal dominant disease with incomplete penetrance. In a family with multiple generations of diabetes and several early onset diabetic siblings, we found the previously reported P33T PDX1 damaging mutation. Interestingly, this substitution was also present in a healthy sibling. In contrast, a second very rare heterozygous damaging mutation in the necroptosis terminal effector, MLKL, was found exclusively in the diabetic family members. Aberrant cell death by necroptosis is a cause of inflammatory diseases and has been widely implicated in human pathologies, but has not yet been attributed functions in diabetes. Here, we report that the MLKL substitution observed in diabetic patients, G316D, results in diminished phosphorylation by its upstream activator, the RIPK3 kinase, and no capacity to reconstitute necroptosis in two distinct MLKL-/- human cell lines. This MLKL mutation may act as a modifier to the P33T PDX1 mutation, and points to a potential role of impairment of necroptosis in diabetes. Our findings highlight the importance of family studies in unraveling MODY's incomplete penetrance, and provide further support for the involvement of dysregulated necroptosis in human disease.


Assuntos
Diabetes Mellitus/genética , Necroptose/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Apoptose/genética , Humanos , Mutação/genética , Necroptose/genética , Necrose/genética , Linhagem , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa