Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(13): 5404-5413, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961760

RESUMO

Pesticides have been reported in treated wastewater effluent at concentrations that exceed aquatic toxicity thresholds, indicating that treatment may be insufficient to adequately address potential pesticide impacts on aquatic life. Gaining a better understanding of the relative contribution from specific use patterns, transport pathways, and flow characteristics is an essential first step to informing source control measures. The results of this study are the first of their kind, reporting pesticide concentrations at sub-sewershed sites within a single sewer catchment to provide information on the relative contribution from various urban sources. Seven monitoring events were collected from influent, effluent, and seven sub-sewershed sites to capture seasonal variability. In addition, samples were collected from sites with the potential for relatively large mass fluxes of pesticides (pet grooming operations, pest control operators, and laundromats). Fipronil and imidacloprid were detected in most samples (>70%). Pyrethroids were detected in >50% of all influent and lateral samples. There were significant removals of pyrethroids from the aqueous process stream within the facility to below reporting limits. Imidacloprid and fiproles were the only pesticides that were detected above reporting limits in effluent, highlighting the importance of source identification and control for the more hydrophilic compounds. Single source monitoring revealed large contributions of fipronil, imidacloprid, and permethrin originating from a pet groomer, with elevated levels of cypermethrin at a commercial laundry location. The results provide important information needed to prioritize future monitoring efforts, calibrate down-the-drain models, and identify potential mitigation strategies at the site of pesticide use to prevent introduction to sewersheds.


Assuntos
Praguicidas , Piretrinas , Poluentes Químicos da Água , Animais , Praguicidas/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
Environ Sci Technol ; 57(26): 9580-9591, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37350451

RESUMO

The Longfin Smelt (Spirinchus thaleichthys) population in the San Franscisco Bay/Sacramento-San Joaquin Delta (Bay-Delta) has declined to ∼1% of its pre-1980s abundance and, as a result, is listed as threatened under the California Endangered Species Act. The reasons for this decline are multiple and complex, including the impacts of contaminants. Because the spawning and rearing seasons of Longfin Smelt coincide with the rainy season, during which concentrations of contaminants increase due to runoff, we hypothesized that early life stages may be particularly affected by those contaminants. Bifenthrin, a pyrethroid insecticide commonly used in agricultural and urban sectors, is of concern. Concentrations measured in the Bay-Delta have been shown to disrupt the behavior, development, and endocrine system of other fish species. The objective of the present work was to assess the impact of bifenthrin on the early developmental stages of Longfin Smelt. For this, embryos were exposed to 2, 10, 100, and 500 ng/L bifenthrin from fertilization to hatch, and larvae were exposed to 2, 10, and 100 ng/L bifenthrin from one day before to 3 days post-hatch. We assessed effects on size at hatch, yolk sac volume, locomotory behavior, and upper thermal susceptibility (via cardiac endpoints). Exposure to these environmentally relevant concentrations of bifenthrin did not significantly affect the cardiac function of larval Longfin Smelt; however, exposures altered their behavior and resulted in smaller hatchlings with reduced yolk sac volumes. This study shows that bifenthrin affects the fitness-determinant traits of Longfin Smelt early life stages and could contribute to the observed population decline.


Assuntos
Osmeriformes , Piretrinas , Poluentes Químicos da Água , Animais , Piretrinas/toxicidade , Espécies em Perigo de Extinção
3.
Anal Bioanal Chem ; 415(7): 1321-1331, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36627378

RESUMO

Nontarget chemical analysis using high-resolution mass spectrometry has increasingly been used to discern spatial patterns and temporal trends in anthropogenic chemical abundance in natural and engineered systems. A critical experimental design consideration in such applications, especially those monitoring complex matrices over long time periods, is a choice between analyzing samples in multiple batches as they are collected, or in one batch after all samples have been processed. While datasets acquired in multiple analytical batches can include the effects of instrumental variability over time, datasets acquired in a single batch risk compound degradation during sample storage. To assess the influence of batch effects on the analysis and interpretation of nontarget data, this study examined a set of 56 samples collected from a municipal wastewater system over 7 months. Each month's samples included 6 from sites within the collection system, one combined influent, and one treated effluent sample. Samples were analyzed using liquid chromatography high-resolution mass spectrometry in positive electrospray ionization mode in multiple batches as the samples were collected and in a single batch at the conclusion of the study. Data were aligned and normalized using internal standard scaling and ComBat, an empirical Bayes method developed for estimating and removing batch effects in microarrays. As judged by multiple lines of evidence, including comparing principal variance component analysis between single and multi-batch datasets and through patterns in principal components and hierarchical clustering analyses, ComBat appeared to significantly reduce the influence of batch effects. For this reason, we recommend the use of more, small batches with an appropriate batch correction step rather than acquisition in one large batch.

4.
Anal Chem ; 93(33): 11601-11611, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34382770

RESUMO

There is an increasing need for comparable and harmonized retention times (tR) in liquid chromatography (LC) among different laboratories, to provide supplementary evidence for the identity of compounds in high-resolution mass spectrometry (HRMS)-based suspect and nontarget screening investigations. In this study, a rigorously tested, flexible, and less system-dependent unified retention time index (RTI) approach for LC is presented, based on the calibration of the elution pattern. Two sets of 18 calibrants were selected for each of ESI+ and ESI-based on the maximum overlap with the retention times and chemical similarity indices from a total set of 2123 compounds. The resulting calibration set, with RTI set to range between 1 and 1000, was proposed as the most appropriate RTI system after rigorous evaluation, coordinated by the NORMAN network. The validation of the proposed RTI system was done externally on different instrumentation and LC conditions. The RTI can also be used to check the reproducibility and quality of LC conditions. Two quantitative structure-retention relationship (QSRR)-based models were built based on the developed RTI systems, which assist in the removal of false-positive annotations. The applicability domains of the QSRR models allowed completing the identification process with higher confidence for substances within the domain, while indicating those substances for which results should be treated with caution. The proposed RTI system was used to improve confidence in suspect and nontarget screening and increase the comparability between laboratories as demonstrated for two examples. All RTI-related calculations can be performed online at http://rti.chem.uoa.gr/.


Assuntos
Reprodutibilidade dos Testes , Calibragem , Cromatografia Líquida , Espectrometria de Massas
5.
Environ Sci Technol ; 55(10): 6729-6739, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33909413

RESUMO

Diverse organic compounds, many derived from consumer products, are found in sewage sludge worldwide. Understanding which of these poses the most significant environmental threat following land application can be investigated through a variety of predictive and cell-based toxicological techniques. Nontargeted analysis using high-resolution mass spectrometry with predictive estrogenic activity modeling was performed on sewage sludge samples from 12 wastewater treatment plants in California. Diisobutyl phthalate and dextrorphan were predicted to exhibit estrogenic activity and identified in >75% of sludge samples, signifying their universal presence and persistence. Additionally, the application of an estrogen-responsive cell bioassay revealed reductions in agonistic activity during mesophilic and thermophilic treatment but significant increases in antagonism during thermophilic treatment, which warrants further research. Ten nontarget features were identified (metoprolol, fenofibric acid, erythrohydrobupropion, oleic acid, mestranol, 4'-chlorobiphenyl-2,3-diol, medrysone, scillarenin, sudan I, and N,O-didesmethyltramadol) in treatment set samples and are considered to have influenced the in vitro estrogenic activity observed. The combination of predictive and in vitro estrogenicity with nontargeted analysis has led to confirmation of 12 estrogen-active contaminants in California sewage sludge and has highlighted the importance of evaluating both agonistic and antagonistic responses when evaluating the bioactivity of complex samples.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Estrogênios , Estrona/análise , Esgotos , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 55(19): 12809-12817, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34523924

RESUMO

Airborne carbonyl compounds such as formaldehyde, acrolein, and methyl ethyl ketone have long been chemicals-of-concern in the environment due to their reactivity and their potential for negative health effects. Standard methods for determining carbonyls in air, which focus on a set of 15 or fewer compounds, involve derivatization to form nonvolatile hydrazones, which can readily be analyzed via liquid chromatography (LC) with ultraviolet detectors. Here, we apply a new LC-high-resolution mass spectrometry (HRMS) method to natural gas and a variety of upgraded biofuels to better assess their total carbonyl profile using the inherent selectivity of the standard sampling methodology and the selectivity and sensitivity of HRMS. The standard method accounted for only 64% of the total carbonyl content in natural gas and between 26 and 45% of the total carbonyl content in biogas sources, with the balance detected by the new LC/HRMS method. An additional 540 compounds with molecular formulas consistent with carbonyl compounds were detected compared to only 14 target compounds using the standard method. These results demonstrate that the established method dramatically under-reports both the total carbonyl load and the diversity of carbonyl species in natural gas and biogas samples.


Assuntos
Biocombustíveis , Gás Natural , Acroleína , Formaldeído , Espectrometria de Massas
7.
Environ Sci Technol ; 55(5): 2820-2830, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33555876

RESUMO

Biogas consisting primarily of methane (CH4) and carbon dioxide (CO2) can be upgraded to a transportation fuel referred to as renewable natural gas (RNG) by removing CO2 and other impurities. RNG has energy content comparable to fossil compressed natural gas (CNG) but with lower life-cycle greenhouse gas (GHG) emissions. In this study, a light-duty cargo van was tested with CNG and two RNG blends on a chassis dynamometer in order to compare the toxicity of the resulting exhaust. Tests for reactive oxygen species (ROS), biomarker expressions (CYP1A1, IL8, COX-2), and mutagenicity (Ames) show that RNG exhaust has toxicity that is comparable or lower than CNG exhaust. Statistical analysis reveals associations between toxicity and tailpipe emissions of benzene, dibenzofuran, and dihydroperoxide dimethyl hexane (the last identification is considered tentative/uncertain). Further gas-phase toxicity may be associated with tailpipe emissions of formaldehyde, dimethyl sulfide, propene, and methyl ketene. CNG exhaust contained higher concentrations of these potentially toxic chemical constituents than RNG exhaust in all of the current tests. Photochemical aging of the vehicle exhaust did not alter these trends. These preliminary results suggest that RNG adoption may be a useful strategy to reduce the carbon intensity of transportation fuels without increasing the toxicity of the vehicle exhaust.


Assuntos
Poluentes Atmosféricos , Gás Natural , Poluentes Atmosféricos/análise , Biocombustíveis , Gasolina , Metano/análise , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
8.
Environ Sci Technol ; 55(6): 3657-3667, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33647203

RESUMO

Urban wildfires may generate numerous unidentified chemicals of toxicity concern. Ash samples were collected from burned residences and from an undeveloped upwind reference site, following the Tubbs fire in Sonoma County, California. The solvent extracts of ash samples were analyzed using GC- and LC-high-resolution mass spectrometry (HRMS) and using a suite of in vitro bioassays for their bioactivity toward nuclear receptors [aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and androgen receptor (AR)], their influence on the expression of genetic markers of stress and inflammation [interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2)], and xenobiotic metabolism [cytochrome P4501A1 (CYP1A1)]. Genetic markers (CYP1A1, IL-8, and COX-2) and AhR activity were significantly higher with wildfire samples than in solvent controls, whereas AR and ER activities generally were unaffected or reduced. The bioassay responses of samples from residential areas were not significantly different from the samples from the reference site despite differing chemical compositions. Suspect and nontarget screening was conducted to identify the chemicals responsible for elevated bioactivity using the multiple streams of HRMS data and open-source data analysis workflows. For the bioassay endpoint with the largest available database of pure compound results (AhR), nontarget features statistically related to whole sample bioassay response using Spearman's rank-order correlation coefficients or elastic net regression were significantly more likely (by 10 and 15 times, respectively) to be known AhR agonists than the overall population of compounds tentatively identified by nontarget analysis. The findings suggest that a combination of nontarget analysis, in vitro bioassays, and statistical analysis can identify bioactive compounds in complex mixtures.


Assuntos
Poluentes Químicos da Água , Incêndios Florestais , Animais , Bioensaio , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas , Camundongos , Receptores de Hidrocarboneto Arílico , Receptores de Estrogênio , Poluentes Químicos da Água/análise
9.
Indoor Air ; 31(3): 693-701, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33022817

RESUMO

The determinants of the temporal variability of indoor dust concentrations of semivolatile organic compounds (SVOCs) remain mostly unexplored. We examined temporal variability of dust concentrations and factors affecting dust concentrations for a wide range of SVOCs. We collected dust samples three times from 29 California homes during a period of 22 months and quantified concentrations of 47 SVOCs in 87 dust samples. We computed intraclass correlation coefficients (ICCs) using three samples collected within the same house. We calculated correlation coefficients (r) between two seasons with similar climate (spring and fall) and between two seasons with opposite climate (summer and winter). Among 26 compounds that were detected in more than 50% of the samples at all three visits, 20 compounds had ICCs above 0.50 and 6 compounds had ICCs below 0.50. For 19 out of 26 compounds, correlation coefficients between spring and fall (r = 0.48-0.98) were higher than those between summer and winter (r = 0.09-0.92), implying seasonal effects on dust concentrations. Our study showed that within-home temporal variability of dust concentrations was small (ICC > 0.50) for most SVOCs, but dust concentrations may vary over time for some SVOCs with seasonal variations in source rates, such as product use.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Compostos Orgânicos Voláteis/análise , Poeira , Retardadores de Chama , Humanos , Estações do Ano
10.
Indoor Air ; 30(1): 60-75, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31587372

RESUMO

Household dust is a reservoir of various consumer product chemicals. Thus, characterizing comprehensive chemical profiles of house dust may help improve our understanding of residential chemical exposure. We have previously developed a method for detecting a broad spectrum of chemicals in dust by applying a combination of target, suspect screening, and non-target methods with mass spectrometry preceded by liquid chromatography and gas chromatography. Building upon a previous study that detected 271 compounds in 38 dust samples, we presented concentrations of 144 compounds that were confirmed and quantified by standards in the same set of samples. Ten compounds were measured with median concentrations greater than 10 000 ng/g of dust: cis-hexadec-6-enoic acid, squalene, cholesterol, vitamin E, bis(2-ethylhexyl) phthalate, dioctyl terephthalate, linoleic acid, tricaprylin, tris(1-chloroisopropyl) phosphate, and oxybenzone. We also reviewed in vitro toxicity screening data to identify compounds that were not previously detected in indoor dust but have potential for adverse health effects. Among 119 newly detected compounds, 13 had endocrine-disrupting potential and 7 had neurotoxic potential. Toxicity screening data were not available for eight biocides, which may adversely affect health. Our results strive to provide more comprehensive chemical profiles of house dust and identified information gaps for future health studies.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Monitoramento Ambiental , Produtos Domésticos/análise , Poluentes Atmosféricos/toxicidade , California , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Organofosfatos/análise
11.
Environ Sci Technol ; 53(3): 1608-1616, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30525510

RESUMO

Semivolatile organic compounds (SVOCs) are ubiquitous in the indoor environment and a priority for exposure assessment because of the environmental health concerns that they pose. Direct air-to-skin dermal uptake has been shown to be comparable to the inhalation intake for compounds with certain chemical properties. In this study, we aim to further understand the transport of these types of chemicals through the skin, specifically through the stratum corneum (SC). Our assessment is based on collecting three sequential forehead skin wipes, each hypothesized to remove pollutants from successively deeper skin layers, and using these wipe analyses to determine the skin concentration profiles. The removal of SVOCs with repeated wipes reveals the concentration profiles with depth and provides a way to characterize penetration efficiency and potential transfer to blood circulation. We used a diffusion model applied to surface skin to simulate concentration profiles of SVOCs and compared them with the measured values. We found that two phthalates, dimethyl and diethyl phthalates, penetrate deeper into skin with similar exposure compared to other phthalates and targeted SVOCs, an observation supported by the model results as well. We also report the presence of statistically significant declining patterns with skin depth for most SVOCs, indicating that their diffusion through the SC is relevant and eventually can reach the blood vessels in the vascularized dermis. Finally, using a nontarget approach, we identified skin oxidation products, linked to respiratory irritation symptoms, formed from the reaction between ozone and squalene.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Derme , Pele
12.
Environ Sci Technol ; 53(19): 11569-11579, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479247

RESUMO

Biogas is a renewable energy source composed of methane, carbon dioxide, and other trace compounds produced from anaerobic digestion of organic matter. A variety of feedstocks can be combined with different digestion techniques that each yields biogas with different trace compositions. California is expanding biogas production systems to help meet greenhouse gas reduction goals. Here, we report the composition of six California biogas streams from three different feedstocks (dairy manure, food waste, and municipal solid waste). The chemical and biological composition of raw biogas is reported, and the toxicity of combusted biogas is tested under fresh and photochemically aged conditions. Results show that municipal waste biogas contained elevated levels of chemicals associated with volatile chemical products such as aromatic hydrocarbons, siloxanes, and certain halogenated hydrocarbons. Food waste biogas contained elevated levels of sulfur-containing compounds including hydrogen sulfide, mercaptans, and sulfur dioxide. Biogas produced from dairy manure generally had lower concentrations of trace chemicals, but the combustion products had slightly higher toxicity response compared to the other feedstocks. Atmospheric aging performed in a photochemical smog chamber did not strongly change the toxicity (oxidative capacity or mutagenicity) of biogas combustion exhaust.


Assuntos
Biocombustíveis , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , California , Alimentos , Esterco , Metano
13.
J Environ Manage ; 234: 484-493, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30641359

RESUMO

Municipal biosolids are commonly applied to agricultural lands as fertilizer, but this also poses potential risks to groundwater and surface water quality from constituents that may be mobilized during storm events. In the present study, an existing model, Groundwater Loading Effects of Agricultural Management Systems (GLEAMS), is modified to predict the fate and transport of organic contaminants from land-applied biosolids, primarily via addition of a labile biosolids organic carbon phase distinct from soil organic carbon. While capable of simulating contaminant transport in runoff and via percolation, only the runoff portion of the model was able to be calibrated using existing experimental data, and showed good agreement with field runoff data for acetaminophen, ibuprofen, triclosan, triclocarban, and estrone, but substantially under-predicted concentrations for carbamazepine, androstenedione, and progesterone. The model is applied to various scenarios using varied chemical properties, application date in the arid west, and application method (i.e., surface spreading vs. incorporation). Chemicals with longer half-lives and lower KOCs exhibited higher losses in runoff than chemicals with shorter half-lives and higher KOCs. For short half-life chemicals (i.e., ≤100 days), application at the beginning of the dry season resulted in the lowest losses. However, for long half-life chemicals (∼1000 days) with high KOC (10,000-100,000), application during the rainy season resulted in the lowest losses, because this caused organic carbon to be high during the period of highest runoff. While further work is necessary to calibrate the percolation and subsurface transport portion, the model can help predict environmental risk from land-application of biosolids, highlight gaps in our knowledge about how chemicals are mobilized and transported from biosolids, and help identify management practices that result in minimal impacts to water quality.


Assuntos
Água Subterrânea , Poluentes do Solo , Agricultura , Monitoramento Ambiental , Fertilizantes , Solo
14.
Environ Sci Technol ; 52(5): 2878-2887, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437387

RESUMO

Chemical exposure in household dust poses potential risks to human health but has been studied incompletely thus far. Most analytical studies have focused on one or several compound classes, with analysis performed by either liquid or gas chromatography coupled with mass spectrometry (LC-MS or GC-MS). However, a comprehensive investigation of individual dust samples is missing. The present study comprehensively characterizes chemicals in dust by applying a combination of target, suspect, and nontarget screening approaches using both LC and GC with quadrupole time-of-flight (Q/TOF) MS. First, the extraction method was optimized to streamline detection of LC-Q/TOF and GC-Q/TOF amenable compounds and was successfully validated with over 100 target compounds. Nontarget screening with GC-Q/TOF was done by spectral deconvolution followed by a library search. Suspect screening by LC-Q/TOF was carried out with an accurate mass spectral library. Finally, LC-Q/TOF nontarget screening was carried out by extracting molecular features, acquiring tandem mass spectrometric (MS/MS) spectra, and performing compound identification by use of in silico fragmentation software tools. In total, 271 chemicals could be detected in 38 dust samples, 163 of which could be unambiguously confirmed by a reference standard. Many of them, such as the plastic leachable 7,9-di- tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione (CAS 82304-66-3) and three organofluorine compounds, are of emerging concern and their presence in dust has been underestimated. Advantages and drawbacks of the different approaches and analytical instruments are critically discussed.


Assuntos
Poeira , Espectrometria de Massas em Tandem , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Plásticos
15.
Environ Sci Technol ; 52(22): 13619-13628, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30296061

RESUMO

Biogas and biomethane (=purified biogas) are major renewable fuels that play a pivotal role in the evolving global energy economy. Here, we measure ultrafine particle (UFP; Dp (particle diameter) < 100 nm) emissions from the combustion of biomethane and biogas produced from five different representative sources: two food waste digesters, two dairy waste digesters, and one landfill. Combustion exhaust for each of these sources is measured from one or more representative sectors including electricity generation, motor vehicles, and household use. Results show that UFP emissions are similar when using biomethane and natural gas with similar sulfur and siloxane content. Approximately 70% of UFPs emitted from water heaters and cooking stoves were semivolatile, but 30% of the UFPs were nonvolatile and did not evaporate even under extremely high dilution conditions. Photochemical aging of biomethane combustion exhaust and natural gas combustion exhaust produced similar amounts of secondary organic aerosol (SOA) formation. The results of the current study suggest that widespread adoption of biogas and biomethane as a substitute for natural gas will not significantly increase ambient concentrations of primary and secondary UFPs if advanced combustion technology is used and the sulfur and siloxane content is similar for biogas/biomethane and natural gas.


Assuntos
Biocombustíveis , Gás Natural , Aerossóis , Veículos Automotores , Emissões de Veículos
16.
Environ Sci Technol ; 51(3): 1553-1561, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28026950

RESUMO

Efficient strategies are required to implement comprehensive suspect screening methods using high-resolution mass spectrometry within environmental monitoring campaigns. In this study, both liquid and gas chromatography time-of-flight mass spectrometry (LC-QTOF-MS and GC-QTOF-MS) were used to screen for >5000 target and suspect compounds in the Sacramento-San Joaquin River Delta in Northern California. LC-QTOF-MS data were acquired in All-Ions fragmentation mode in both positive and negative electrospray ionization (ESI). LC suspects were identified using two accurate mass LC-QTOF-MS/MS libraries containing pesticides, pharmaceuticals, and other environmental contaminants and a custom exact mass database with predicted transformation products (TPs). The additional fragment information from the All-Ions acquisition improved the confirmation of the compound identity, with a low false positive rate (9%). Overall, 25 targets, 73 suspects, and 5 TPs were detected. GC-QTOF-MS extracts were run in negative chemical ionization (NCI) for 21 targets (mainly pyrethroids) at sub-ng/L levels. For suspect screening, extracts were rerun in electron ionization (EI) mode with a retention time locked method using a GC-QTOF-MS pesticide library (containing exact mass fragments and retention times). Sixteen targets and 42 suspects were detected, of which 12 and 17, respectively, were not identified by LC-ESI-QTOF-MS. The results highlight the importance of analyzing water samples using multiple separation techniques and in multiple ionization modes to obtain a comprehensive chemical contaminant profile. The investigated river delta experiences significant pesticide inputs, leading to environmentally critical concentrations during rain events.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Cromatografia Líquida , Praguicidas , Rios
17.
J Environ Qual ; 45(6): 1998-2006, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27898796

RESUMO

Agricultural practices are increasingly incorporating recycled waste materials, such as biosolids, to provide plant nutrients and enhance soil functions. Although biosolids provide benefits to soil, municipal wastewater treatment plants receive pharmaceuticals and heavy metals that can accumulate in biosolids, and land application of biosolids can transfer these contaminants to the soil. Environmental exposure of these contaminants may adversely affect wildlife, disrupt microbial communities, detrimentally affect human health through long-term exposure, and cause the proliferation of antibiotic-resistant bacteria. This study considers the use of biochar co-amendments as sorbents for contaminants from biosolids. The sorption of pharmaceuticals (ciprofloxacin, triclocarban, triclosan), and heavy metals (Cu, Cd, Ni, Pb) to biochars and biochar-biosolids-soil mixtures was examined. Phenylurea herbicide (monuron, diuron, linuron) sorption was also studied to determine the potential effect of biochar on soil-applied herbicides. A softwood (SW) biochar (510°C) and a walnut shell (WN) biochar (900°C) were used as contrasting biochars to highlight potential differences in biochar reactivity. Kaolinite and activated carbon served as mineral and organic controls. Greater sorption for almost all contaminants was observed with WN biochar over SW biochar. The addition of biosolids decreased sorption of herbicides to SW biochar, whereas there was no observable change with WN biochar. The WN biochar showed potential for reducing agrochemical and contaminant transport but may inhibit the efficacy of soil-applied herbicides. This study provides support for minimizing contaminant mobility from biosolids using biochar as a co-amendment and highlights the importance of tailoring biochars for specific characteristics through feedstock selection and pyrolysis-gasification conditions.


Assuntos
Carvão Vegetal/química , Herbicidas/análise , Metais Pesados/análise , Preparações Farmacêuticas/análise , Solo , Poluentes do Solo
19.
Environ Sci Technol ; 48(1): 234-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24304124

RESUMO

Pesticide runoff from impervious surfaces is a significant cause of aquatic contamination and ecologic toxicity in urban waterways. Effective mitigation requires better understanding and prediction of off-site transport processes. Presented here is a comprehensive study on pesticide washoff from concrete surfaces, including washoff tests, experimental data analysis, model development, and application. Controlled rainfall experiments were conducted to characterize washoff loads of commercially formulated insecticides with eight different active ingredients. On the basis of the analysis of experimental results, a semimechanistic model was developed to predict pesticide buildup and washoff processes on concrete surfaces. Three pesticide product specific parameters and their time dependences were introduced with empirical functions to simulate the persistence, transferability, and exponential characteristics of the pesticide washoff mechanism. The parameters were incorporated using first-order kinetics and Fick's second law to describe pesticide buildup and washoff processes, respectively. The model was applied to data from 21 data sets collected during 38 rainfall events, with parameters calibrated to pesticide products and environmental conditions. The model satisfactorily captured pesticide mass loads and their temporal variations for pesticides with a wide range of chemical properties (log KOW = 0.6-6.9) under both single and repeated (1-7 times) rainfall events after varying set times (1.5 h∼238 days after application). Results of this study suggested that, in addition to commonly reported physicochemical properties for the active ingredient of a pesticide product, additional parameters determined from washoff experiments are required for risk assessments of pesticide applications on urban impervious surfaces.


Assuntos
Inseticidas/análise , Calibragem , Materiais de Construção , Poluentes Ambientais/análise , Cinética , Modelos Teóricos , Praguicidas/análise , Praguicidas/química , Chuva
20.
Water Environ Res ; 86(3): 197-203, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24734467

RESUMO

The antimicrobial compounds triclosan (TCS) and triclocarban (TCC) accumulate in sludges produced during municipal wastewater treatment and persist through sludge treatment processes into finished biosolids. The objective of this research was to determine the extent to which conventional sludge processing systems such as aerobic digestion, anaerobic digestion, and lime stabilization were able to remove TCC and TCS. The concentrations of TCC and TCS in sludge and biosolid samples were determined via heated solvent extraction and analysis with liquid chromatography electrospray ionization mass spectrometry. The removal of TCC and TCS in municipal biosolid processing systems was determined from the measured concentration change after correcting for reductions in solid mass during sludge treatment. Removal in the digester systems ranged from 15 to 68% for TCC and 20 to 75% for TCS. Increased solid retention times during sludge treatment operations were correlated with higher removals of TCC and TCS.


Assuntos
Carbanilidas/química , Cidades , Esgotos/química , Triclosan/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Anti-Infecciosos Locais/química , Cromatografia Líquida , Estrutura Molecular , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa