Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884136

RESUMO

This study introduces machine learning predictive models to predict the future values of the monitored vital signs of COVID-19 ICU patients. The main vital sign predictors include heart rate, respiration rate, and oxygen saturation. We investigated the performances of the developed predictive models by considering different approaches. The first predictive model was developed by considering the following vital signs: heart rate, blood pressure (systolic, diastolic and mean arterial, pulse pressure), respiration rate, and oxygen saturation. Similar to the first approach, the second model was developed using the same vital signs, but it was trained and tested based on a leave-one-subject-out approach. The third predictive model was developed by considering three vital signs: heart rate (HR), respiration rate (RR), and oxygen saturation (SpO2). The fourth model was a leave-one-subject-out model for the three vital signs. Finally, the fifth predictive model was developed based on the same three vital signs, but with a five-minute observation rate, in contrast with the aforementioned four models, where the observation rate was hourly to bi-hourly. For the five models, the predicted measurements were those of the three upcoming observations (on average, three hours ahead). Based on the obtained results, we observed that by limiting the number of vital sign predictors (i.e., three vital signs), the prediction performance was still acceptable, with the average mean absolute percentage error (MAPE) being 12%,5%, and 21.4% for heart rate, oxygen saturation, and respiration rate, respectively. Moreover, increasing the observation rate could enhance the prediction performance to be, on average, 8%,4.8%, and 17.8% for heart rate, oxygen saturation, and respiration rate, respectively. It is envisioned that such models could be integrated with monitoring systems that could, using a limited number of vital signs, predict the health conditions of COVID-19 ICU patients in real-time.


Assuntos
COVID-19 , Saturação de Oxigênio , Humanos , Unidades de Terapia Intensiva , SARS-CoV-2 , Sinais Vitais
2.
Sensors (Basel) ; 20(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218084

RESUMO

In this prospective, interventional, international study, we investigate continuous monitoring of hospitalised patients' vital signs using wearable technology as a basis for real-time early warning scores (EWS) estimation and vital signs time-series prediction. The collected continuous monitored vital signs are heart rate, blood pressure, respiration rate, and oxygen saturation of a heterogeneous patient population hospitalised in cardiology, postsurgical, and dialysis wards. Two aspects are elaborated in this study. The first is the high-rate (every minute) estimation of the statistical values (e.g., minimum and mean) of the vital signs components of the EWS for one-minute segments in contrast with the conventional routine of 2 to 3 times per day. The second aspect explores the use of a hybrid machine learning algorithm of kNN-LS-SVM for predicting future values of monitored vital signs. It is demonstrated that a real-time implementation of EWS in clinical practice is possible. Furthermore, we showed a promising prediction performance of vital signs compared to the most recent state of the art of a boosted approach of LSTM. The reported mean absolute percentage errors of predicting one-hour averaged heart rate are 4.1, 4.5, and 5% for the upcoming one, two, and three hours respectively for cardiology patients. The obtained results in this study show the potential of using wearable technology to continuously monitor the vital signs of hospitalised patients as the real-time estimation of EWS in addition to a reliable prediction of the future values of these vital signs is presented. Ultimately, both approaches of high-rate EWS computation and vital signs time-series prediction is promising to provide efficient cost-utility, ease of mobility and portability, streaming analytics, and early warning for vital signs deterioration.


Assuntos
Escore de Alerta Precoce , Monitorização Fisiológica , Sinais Vitais , Dispositivos Eletrônicos Vestíveis , Hospitalização , Humanos , Oxigênio/sangue , Estudos Prospectivos , Taxa Respiratória
3.
Sensors (Basel) ; 18(3)2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509691

RESUMO

Four novel EEG signal features for discriminating phase-coded steady-state visual evoked potentials (SSVEPs) are presented, and their performance in view of target selection in an SSVEP-based brain-computer interfacing (BCI) is assessed. The novel features are based on phase estimation and correlations between target responses. The targets are decoded from the feature scores using the least squares support vector machine (LS-SVM) classifier, and it is shown that some of the proposed features compete with state-of-the-art classifiers when using short (0.5 s) EEG recordings in a binary classification setting.

4.
PLoS One ; 18(4): e0285131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37104506

RESUMO

This study introduces the global-local least-squares support vector machine (GLocal-LS-SVM), a novel machine learning algorithm that combines the strengths of localised and global learning. GLocal-LS-SVM addresses the challenges associated with decentralised data sources, large datasets, and input-space-related issues. The algorithm is a double-layer learning approach that employs multiple local LS-SVM models in the first layer and one global LS-SVM model in the second layer. The key idea behind GLocal-LS-SVM is to extract the most informative data points, known as support vectors, from each local region in the input space. Local LS-SVM models are developed for each region to identify the most contributing data points with the highest support values. The local support vectors are then merged at the final layer to form a reduced training set used to train the global model. We evaluated the performance of GLocal-LS-SVM using both synthetic and real-world datasets. Our results demonstrate that GLocal-LS-SVM achieves comparable or superior classification performance compared to standard LS-SVM and state-of-the-art models. In addition, our experiments show that GLocal-LS-SVM outperforms standard LS-SVM in terms of computational efficiency. For instance, on a training dataset of 9, 000 instances, the average training time for GLocal-LS-SVM was only 2% of the time required to train the LS-SVM model while maintaining classification performance. In summary, the GLocal-LS-SVM algorithm offers a promising solution to address the challenges associated with decentralised data sources and large datasets while maintaining high classification performance. Furthermore, its computational efficiency makes it a valuable tool for practical applications in various domains.


Assuntos
Algoritmos , Máquina de Vetores de Suporte , Aprendizado de Máquina , Análise dos Mínimos Quadrados
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa