Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975948

RESUMO

Hydrogen sulfide (H2S) is an endogenously generated gaseous signaling molecule, which recently has been implicated in autophagy regulation in both plants and mammals through persulfidation of specific targets. Persulfidation has been suggested as the molecular mechanism through which sulfide regulates autophagy in plant cells. ATG18a is a core autophagy component that is required for bulk autophagy and also for reticulophagy during endoplasmic reticulum (ER) stress. In this research, we revealed the role of sulfide in plant ER stress responses as a negative regulator of autophagy. We demonstrate that sulfide regulates ATG18a phospholipid-binding activity by reversible persulfidation at Cys103, and that this modification activates ATG18a binding capacity to specific phospholipids in a reversible manner. Our findings strongly suggest that persulfidation of ATG18a at C103 regulates autophagy under ER stress, and that the impairment of persulfidation affects both the number and size of autophagosomes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/genética , Estresse do Retículo Endoplasmático , Sulfeto de Hidrogênio/metabolismo , Processamento de Proteína Pós-Traducional , Sulfetos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Sítios de Ligação , Cisteína/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Fosfolipídeos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais
2.
Plant Cell ; 32(12): 3902-3920, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33037147

RESUMO

Hydrogen sulfide is a signaling molecule that regulates essential processes in plants, such as autophagy. In Arabidopsis (Arabidopsis thaliana), hydrogen sulfide negatively regulates autophagy independently of reactive oxygen species via an unknown mechanism. Comparative and quantitative proteomic analysis was used to detect abscisic acid-triggered persulfidation that reveals a main role in the control of autophagy mediated by the autophagy-related (ATG) Cys protease AtATG4a. This protease undergoes specific persulfidation of Cys170 that is a part of the characteristic catalytic Cys-His-Asp triad of Cys proteases. Regulation of the ATG4 activity by persulfidation was tested in a heterologous assay using the Chlamydomonas reinhardtii CrATG8 protein as a substrate. Sulfide significantly and reversibly inactivates AtATG4a. The biological significance of the reversible inhibition of the ATG4 by sulfide is supported by the results obtained in Arabidopsis leaves under basal and autophagy-activating conditions. A significant increase in the overall ATG4 proteolytic activity in Arabidopsis was detected under nitrogen starvation and osmotic stress and can be inhibited by sulfide. Therefore, the data strongly suggest that the negative regulation of autophagy by sulfide is mediated by specific persulfidation of the ATG4 protease.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Proteases/metabolismo , Proteômica , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Autofagia , Proteínas Relacionadas à Autofagia/genética , Cisteína Proteases/genética , Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sulfetos/metabolismo
3.
New Phytol ; 227(6): 1618-1635, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31960995

RESUMO

Globins (Glbs) are widely distributed in archaea, bacteria and eukaryotes. They can be classified into proteins with 2/2 or 3/3 α-helical folding around the heme cavity. Both types of Glbs occur in green algae, bryophytes and vascular plants. The Glbs of angiosperms have been more intensively studied, and several protein structures have been solved. They can be hexacoordinate or pentacoordinate, depending on whether a histidine is coordinating or not at the sixth position of the iron atom. The 3/3 Glbs of class 1 and the 2/2 Glbs (also called class 3 in plants) are present in all angiosperms, whereas the 3/3 Glbs of class 2 have been only found in early angiosperms and eudicots. The three Glb classes are expected to play different roles. Class 1 Glbs are involved in hypoxia responses and modulate NO concentration, which may explain their roles in plant morphogenesis, hormone signaling, cell fate determination, nutrient deficiency, nitrogen metabolism and plant-microorganism symbioses. Symbiotic Glbs derive from class 1 or class 2 Glbs and transport O2 in nodules. The physiological roles of class 2 and class 3 Glbs are poorly defined but could involve O2 and NO transport and/or metabolism, respectively. More research is warranted on these intriguing proteins to determine their non-redundant functions.


Assuntos
Clorófitas , Magnoliopsida , Hemoglobinas , Simbiose
4.
Biochem J ; 475(1): 151-168, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29203647

RESUMO

FUR (Ferric uptake regulator) proteins are among the most important families of transcriptional regulators in prokaryotes, often behaving as global regulators. In the cyanobacterium Anabaena PCC 7120, FurB (Zur, Zinc uptake regulator) controls zinc and redox homeostasis through the repression of target genes in a zinc-dependent manner. In vitro, non-specific binding of FurB to DNA elicits protection against oxidative damage and avoids cleavage by deoxyribonuclease I. The present study provides, for the first time, evidence of the influence of redox environment in the interaction of FurB with regulatory zinc and its consequences in FurB-DNA-binding affinity. Calorimetry studies showed that, in addition to one structural Zn(II), FurB is able to bind two additional Zn(II) per monomer and demonstrated the implication of cysteine C93 in regulatory Zn(II) coordination. The interaction of FurB with the second regulatory zinc occurred only under reducing conditions. While non-specific FurB-DNA interaction is Zn(II)-independent, the optimal binding of FurB to target promoters required loading of two regulatory zinc ions. Those results combined with site-directed mutagenesis and gel-shift assays evidenced that the redox state of cysteine C93 conditions the binding of the second regulatory Zn(II) and, in turn, modulates the affinity for a specific DNA target. Furthermore, differential spectroscopy studies showed that cysteine C93 could also be involved in heme coordination by FurB, either as a direct ligand or being located near the binding site. The results indicate that besides controlling zinc homeostasis, FurB could work as a redox-sensing protein probably modifying its zinc and DNA-binding abilities depending upon environmental conditions.


Assuntos
Anabaena/metabolismo , Proteínas de Bactérias/química , DNA Bacteriano/química , Proteínas de Ligação a DNA/química , Heme/química , Metaloproteínas/química , Zinco/química , Sequência de Aminoácidos , Anabaena/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I/química , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Heme/metabolismo , Cinética , Metaloproteínas/genética , Metaloproteínas/metabolismo , Modelos Moleculares , Oxirredução , Estresse Oxidativo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Zinco/metabolismo
5.
J Exp Bot ; 69(7): 1437-1446, 2018 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-29394379

RESUMO

The evolution of complex multicellular life forms occurred multiple times and was attended by cell type specialization. We review seven lines of evidence indicating that intrinsically disordered/ductile proteins (IDPs) played a significant role in the evolution of multicellularity and cell type specification: (i) most eukaryotic transcription factors (TFs) and multifunctional enzymes contain disproportionately long IDP sequences (≥30 residues in length), whereas highly conserved enzymes are normally IDP region poor; (ii) ~80% of the proteome involved in development are IDPs; (iii) the majority of proteins undergoing alternative splicing (AS) of pre-mRNA contain significant IDP regions; (iv) proteins encoded by DNA regions flanking crossing-over 'hot spots' are significantly enriched in IDP regions; (v) IDP regions are disproportionately subject to combinatorial post-translational modifications (PTMs) as well as AS; (vi) proteins involved in transcription and RNA processing are enriched in IDP regions; and (vii) a strong positive correlation exists between the number of different cell types and the IDP proteome fraction across a broad spectrum of uni- and multicellular algae, plants, and animals. We argue that the multifunctionalities conferred by IDPs and the disproportionate involvement of IDPs with AS and PTMs provided a IDP-AS-PTM 'motif' that significantly contributed to the evolution of multicellularity in all major eukaryotic lineages.


Assuntos
Processamento Alternativo , Células Eucarióticas/citologia , Evolução Molecular , Redes Reguladoras de Genes/fisiologia , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proliferação de Células , Células Eucarióticas/metabolismo , Genes de Plantas , Proteínas Intrinsicamente Desordenadas/genética , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Nat Chem Biol ; 12(4): 240-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26854667

RESUMO

Protein O-fucosyltransferase 2 (POFUT2) is an essential enzyme that fucosylates serine and threonine residues of folded thrombospondin type 1 repeats (TSRs). To date, the mechanism by which this enzyme recognizes very dissimilar TSRs has been unclear. By engineering a fusion protein, we report the crystal structure of Caenorhabditis elegans POFUT2 (CePOFUT2) in complex with GDP and human TSR1 that suggests an inverting mechanism for fucose transfer assisted by a catalytic base and shows that nearly half of the TSR1 is embraced by CePOFUT2. A small number of direct interactions and a large network of water molecules maintain the complex. Site-directed mutagenesis demonstrates that POFUT2 fucosylates threonine preferentially over serine and relies on folded TSRs containing the minimal consensus sequence C-X-X-S/T-C. Crystallographic and mutagenesis data, together with atomic-level simulations, uncover a binding mechanism by which POFUT2 promiscuously recognizes the structural fingerprint of poorly homologous TSRs through a dynamic network of water-mediated interactions.


Assuntos
Proteínas de Caenorhabditis elegans/química , Fucosiltransferases/química , Proteínas Recombinantes de Fusão/química , Trombospondina 1/química , Água/química , Sequência de Bases , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , Transfecção
7.
Photosynth Res ; 133(1-3): 273-287, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28032235

RESUMO

The photosynthetic cytochrome c 550 from the marine diatom Phaeodactylum tricornutum has been purified and characterized. Cytochrome c 550 is mostly obtained from the soluble cell extract in relatively large amounts. In addition, the protein appeared to be truncated in the last hydrophobic residues of the C-terminus, both in the soluble cytochrome c 550 and in the protein extracted from the membrane fraction, as deduced by mass spectrometry analysis and the comparison with the gene sequence. Interestingly, it has been described that the C-terminus of cytochrome c 550 forms a hydrophobic finger involved in the interaction with photosystem II in cyanobacteria. Cytochrome c 550 was almost absent in solubilized photosystem II complex samples, in contrast with the PsbO and Psb31 extrinsic subunits, thus suggesting a lower affinity of cytochrome c 550 for the photosystem II complex. Under iron-limiting conditions the amount of cytochrome c 550 decreases up to about 45% as compared to iron-replete cells, pointing to an iron-regulated synthesis. Oxidized cytochrome c 550 has been characterized using continuous wave EPR and pulse techniques, including HYSCORE, and the obtained results have been interpreted in terms of the electrostatic charge distribution in the surroundings of the heme centre.


Assuntos
Grupo dos Citocromos c/metabolismo , Diatomáceas/metabolismo , Fotossíntese , Sequência de Aminoácidos , Grupo dos Citocromos c/química , Grupo dos Citocromos c/isolamento & purificação , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Peso Molecular , Complexo de Proteína do Fotossistema II/metabolismo , Eletricidade Estática
9.
BMC Genomics ; 14: 772, 2013 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-24206529

RESUMO

BACKGROUND: Intrinsically disordered proteins, found in all living organisms, are essential for basic cellular functions and complement the function of ordered proteins. It has been shown that protein disorder is linked to the G + C content of the genome. Furthermore, recent investigations have suggested that the evolutionary dynamics of the plant nucleus adds disordered segments to open reading frames alike, and these segments are not necessarily conserved among orthologous genes. RESULTS: In the present work the distribution of intrinsically disordered proteins along the chromosomes of several representative plants was analyzed. The reported results support a non-random distribution of disordered proteins along the chromosomes of Arabidopsis thaliana and Oryza sativa, two model eudicot and monocot plant species, respectively. In fact, for most chromosomes positive correlations between the frequency of disordered segments of 30+ amino acids and both recombination rates and G + C content were observed. CONCLUSIONS: These analyses demonstrate that the presence of disordered segments among plant proteins is associated with the rates of genetic recombination of their encoding genes. Altogether, these findings suggest that high recombination rates, as well as chromosomal rearrangements, could induce disordered segments in proteins during evolution.


Assuntos
Aminoácidos/genética , Evolução Molecular , Proteínas de Plantas/genética , Recombinação Genética , Arabidopsis/genética , Composição de Bases/genética , Biologia Computacional , Fases de Leitura Aberta , Oryza/genética , Filogenia , Proteínas de Plantas/química , Proteoma
10.
BMC Plant Biol ; 12: 165, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22970728

RESUMO

BACKGROUND: The intrinsically unstructured state of some proteins, observed in all living organisms, is essential for basic cellular functions. In this field the available information from plants is limited but it has been reached a point where these proteins can be comprehensively classified on the basis of disorder, function and evolution. RESULTS: Our analysis of plant genomes confirms that nuclear-encoded proteins follow the same trend than other multi-cellular eukaryotes; however, chloroplast- and mitochondria- encoded proteins conserve the patterns of Archaea and Bacteria, in agreement with their phylogenetic origin. Based on current knowledge about gene transference from the chloroplast to the nucleus, we report a strong correlation between the rate of disorder of transferred and nuclear-encoded proteins, even for polypeptides that play functional roles back in the chloroplast. We further investigate this trend by reviewing the set of chloroplast ribosomal proteins, one of the most representative transferred gene clusters, finding that the ribosomal large subunit, assembled from a majority of nuclear-encoded proteins, is clearly more unstructured than the small one, which integrates mostly plastid-encoded proteins. CONCLUSIONS: Our observations suggest that the evolutionary dynamics of the plant nucleus adds disordered segments to genes alike, regardless of their origin, with the notable exception of proteins currently encoded in both genomes, probably due to functional constraints.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Genoma de Planta , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Sequência de Aminoácidos , Núcleo Celular/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Biologia Computacional , Evolução Molecular , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas/genética , Transporte Proteico , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
11.
Photosynth Res ; 112(3): 193-204, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22855209

RESUMO

A study of the in vitro reconstitution of sugar beet cytochrome b(559) of the photosystem II is described. Both α and ß cytochrome subunits were first cloned and expressed in Escherichia coli. In vitro reconstitution of this cytochrome was carried out with partially purified recombinant subunits from inclusion bodies. Reconstitution with commercial heme of both (αα) and (ßß) homodimers and (αß) heterodimer was possible, the latter being more efficient. The absorption spectra of these reconstituted samples were similar to that of the native heterodimer cytochrome b(559) form. As shown by electron paramagnetic resonance and potentiometry, most of the reconstituted cytochrome corresponded to a low spin form with a midpoint redox potential +36 mV, similar to that from the native purified cytochrome b(559). Furthermore, during the expression of sugar beet and Synechocystis sp. PCC 6803 cytochrome b(559) subunits, part of the protein subunits were incorporated into the host bacterial inner membrane, but only in the case of the ß subunit from the cyanobacterium the formation of a cytochrome b(559)-like structure with the bacterial endogenous heme was observed. The reason for that surprising result is unknown. This in vivo formed (ßß) homodimer cytochrome b(559)-like structure showed similar absorption and electron paramagnetic resonance spectral properties as the native purified cytochrome b(559). A higher midpoint redox potential (+126 mV) was detected in the in vivo formed protein compared to the in vitro reconstituted form, most likely due to a more hydrophobic environment imposed by the lipid membrane surrounding the heme.


Assuntos
Citocromos b/química , Citocromos b/metabolismo , Embriófitas/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Synechocystis/fisiologia , Beta vulgaris/enzimologia , Beta vulgaris/genética , Beta vulgaris/fisiologia , Clonagem Molecular , Citocromos b/genética , Espectroscopia de Ressonância de Spin Eletrônica , Embriófitas/enzimologia , Embriófitas/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica , Corpos de Inclusão , Oxirredução , Fotossíntese , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusão , Synechocystis/enzimologia , Synechocystis/genética , Zea mays/enzimologia , Zea mays/genética , Zea mays/fisiologia
12.
Microbiol Spectr ; 10(2): e0229421, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35315701

RESUMO

Flavoproteins are a diverse class of proteins that are mostly enzymes and contain as cofactors flavin mononucleotide (FMN) and/or flavin adenine dinucleotide (FAD), which enable them to participate in a wide range of physiological reactions. We have compiled 78 potential proteins building the flavoproteome of Brucella ovis (B. ovis), the causative agent of ovine brucellosis. The curated list of flavoproteins here reported is based on (i) the analysis of sequence, structure and function of homologous proteins, and their classification according to their structural domains, clans, and expected enzymatic functions; (ii) the constructed phylogenetic trees of enzyme functional classes using 19 Brucella strains and 26 pathogenic and/or biotechnological relevant alphaproteobacteria together with B. ovis; and (iii) the evaluation of the genetic context for each entry. Candidates account for ∼2.7% of the B. ovis proteome, and 75% of them use FAD as cofactor. Only 55% of these flavoproteins belong to the core proteome of Brucella and contribute to B. ovis processes involved in maintenance activities, survival and response to stress, virulence, and/or infectivity. Several of the predicted flavoproteins are highly divergent in Brucella genus from revised proteins and for them it is difficult to envisage a clear function. This might indicate modified catalytic activities or even divergent processes and mechanisms still not identified. We have also detected the lack of some functional flavoenzymes in B. ovis, which might contribute to it being nonzoonotic. Finally, potentiality of B. ovis flavoproteome as the source of antimicrobial targets or biocatalyst is discussed. IMPORTANCE Some microorganisms depend heavily on flavin-dependent activities, but others maintain them at a minimum. Knowledge about flavoprotein content and functions in different microorganisms will help to identify their metabolic requirements, as well as to benefit either industry or health. Currently, most flavoproteins from the sheep pathogen Brucella ovis are only automatically annotated in databases, and only two have been experimentally studied. Indeed, certain homologues with unknown function are not characterized, and they might relate to still not identified mechanisms or processes. Our research has identified 78 members that comprise its flavoproteome, 76 of them flavoenzymes, which mainly relate to bacteria survival, virulence, and/or infectivity. The list of flavoproteins here presented allows us to better understand the peculiarities of Brucella ovis and can be applied as a tool to search for candidates as new biocatalyst or antimicrobial targets.


Assuntos
Brucella ovis , Brucella , Brucelose , Animais , Brucella/genética , Brucella ovis/genética , Brucella ovis/metabolismo , Brucelose/microbiologia , Brucelose/veterinária , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/genética , Flavoproteínas/metabolismo , Filogenia , Proteoma/genética , Proteoma/metabolismo , Ovinos , Carneiro Doméstico/metabolismo
13.
Trends Plant Sci ; 26(7): 741-757, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33461867

RESUMO

Zn2+-dependent histone deacetylases are widely distributed in archaea, bacteria, and eukaryotes. Through deacetylation of histones and other biomolecules, these enzymes regulate mammalian gene expression, microtubule stability, and polyamine metabolism. In plants, they play essential roles in development and stress response, but little is known about their biochemistry. We provide here a holistic revision of plant histone deacetylase (HDA) phylogeny and translate recent lessons from other organisms. HDA evolution correlates with a gain of structural ductility/disorder, as observed for other proteins. We also highlight two recently identified Brassicaceae-specific HDAs, as well as unprecedented key mutations that would affect the catalytic activity of individual HDAs. This revised phylogeny will contextualize future studies and illuminate research on plant development and adaptation.


Assuntos
Histona Desacetilases , Plantas , Animais , Histona Desacetilases/metabolismo , Histonas , Desenvolvimento Vegetal , Plantas/metabolismo , Zinco
14.
BMC Evol Biol ; 10: 311, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20955574

RESUMO

BACKGROUND: Flavin adenine dinucleotide synthetases (FADSs) - a group of bifunctional enzymes that carry out the dual functions of riboflavin phosphorylation to produce flavin mononucleotide (FMN) and its subsequent adenylation to generate FAD in most prokaryotes - were studied in plants in terms of sequence, structure and evolutionary history. RESULTS: Using a variety of bioinformatics methods we have found that FADS enzymes localized to the chloroplasts, which we term as plant-like FADS proteins, are distributed across a variety of green plant lineages and constitute a divergent protein family clearly of cyanobacterial origin. The C-terminal module of these enzymes does not contain the typical riboflavin kinase active site sequence, while the N-terminal module is broadly conserved. These results agree with a previous work reported by Sandoval et al. in 2008. Furthermore, our observations and preliminary experimental results indicate that the C-terminus of plant-like FADS proteins may contain a catalytic activity, but different to that of their prokaryotic counterparts. In fact, homology models predict that plant-specific conserved residues constitute a distinct active site in the C-terminus. CONCLUSIONS: A structure-based sequence alignment and an in-depth evolutionary survey of FADS proteins, thought to be crucial in plant metabolism, are reported, which will be essential for the correct annotation of plant genomes and further structural and functional studies. This work is a contribution to our understanding of the evolutionary history of plant-like FADS enzymes, which constitute a new family of FADS proteins whose C-terminal module might be involved in a distinct catalytic activity.


Assuntos
Evolução Molecular , Complexos Multienzimáticos/genética , Nucleotidiltransferases/genética , Proteínas de Plantas/genética , Plantas/classificação , Plantas/enzimologia , Sequência de Aminoácidos , Biologia Computacional , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Nucleotidiltransferases/química , Filogenia , Proteínas de Plantas/química , Plantas/genética , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
15.
J Mol Biol ; 431(15): 2762-2776, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31132361

RESUMO

Listeria monocytogenes is riboflavin auxotrophic, but it has two genes envisaged to transform riboflavin into FMN and FAD after its uptaked by specialized transporters. One encodes a bifunctional type I FAD synthase (FADS, herein LmFADS-1), while the other produces a protein similar to type I at the FMN:ATP adenylyltransferase (FMNAT) site but with a shorter C-terminal that lacks any riboflavin kinase (RFK) motif. This second protein is rare among bacteria and has been named FADS type II (LmFADS-2). Here we present a biochemical and biophysical study of LmFADS-1 and LmFADS-2 by integrating kinetic and thermodynamic data together with sequence and structural prediction methods to evaluate their occurrence in Listeria, as well as their function and molecular properties. Despite LmFADS-1 similarities to other type I FADSs, (i) its RFK activity has not riboflavin substrate inhibition and occurs under reducing and oxidizing conditions, (ii) its FMNAT activity requires strong reducing environment, and (iii) binding of reaction products, but not substrates, favors binding of the second ligand. LmFADS-2 produces FAD under oxidizing and reducing environments, but its C-terminus module function remains unknown. Listeria species conserve both FADSs, being sequence identity high within L. monocytogenes strains. Our data exemplify alternative strategies for FMN and FAD biosynthesis and homeostasis, envisaging that in Listeria two FADSs might be required to fulfill the supply of flavin cofactors under niches that can go from saprophytism to virulence. As FADSs are attractive antimicrobial targets, understanding of FADSs traits in different species is essential to help in the discovery of specific antimicrobials.


Assuntos
Vias Biossintéticas , Flavinas/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Bactérias/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Listeriose/microbiologia , Modelos Moleculares , Nucleotidiltransferases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Especificidade por Substrato
16.
Biochim Biophys Acta ; 1767(6): 694-702, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17442261

RESUMO

Anomalies in photosynthetic activity of the soybean cell line STR7, carrying a single mutation (S268P) in the chloroplastic gene psbA that codes for the D1 protein of the photosystem II, have been examined using different spectroscopic techniques. Thermoluminescence emission experiments have shown important differences between STR7 mutant and wild type cells. The afterglow band induced by both white light flashes and far-red continuous illumination was downshifted by about 4 degrees C and the Q band was upshifted by 5 degrees C. High temperature thermoluminescence measurements suggested a higher level of lipid peroxidation in mutant thylakoid membranes. In addition, the reduction rate of P700(+) was significantly accelerated in STR7 suggesting that the mutation led to an activation of the photosystem I cyclic electron flow. Modulated fluorescence measurements performed at room temperature as well as fluorescence emission spectra at 77 K revealed that the STR7 mutant is defective in state transitions. Here, we discuss the hypothesis that activation of the cyclic electron flow in STR7 cells may be a mechanism to compensate the reduced activity of photosystem II caused by the mutation. We also propose that the impaired state transitions in the STR7 cells may be due to alterations in thylakoid membrane properties induced by a low content of unsaturated lipids.


Assuntos
Diurona/farmacologia , Glycine max/efeitos dos fármacos , Glycine max/genética , Herbicidas/farmacologia , Linhagem Celular , Transporte de Elétrons , Resistência a Inseticidas/genética , Cinética , Mutação , Oxirredução , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Glycine max/metabolismo , Espectrometria de Fluorescência , Temperatura
17.
Front Plant Sci ; 9: 1216, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30177944

RESUMO

Previous work has shown that ductile/intrinsically disordered proteins (IDPs) and residues (IDRs) are found in all unicellular and multicellular organisms, wherein they are essential for basic cellular functions and complement the function of rigid proteins. In addition, computational studies of diverse phylogenetic lineages have revealed: (1) that protein ductility increases in concert with organismic complexity, and (2) that distributions of IDPs and IDRs along the chromosomes of plant species are non-random and correlate with variations in the rates of the genetic recombination and chromosomal rearrangement. Here, we show that approximately 50% of aligned residues in paralogs across a spectrum of algae, bryophytes, monocots, and eudicots are IDRs and that a high proportion (ca. 60%) are in disordered segments greater than 30 residues. When three types of IDRs are distinguished (i.e., identical, similar and variable IDRs) we find that species with large numbers of chromosome and endoduplicated genes exhibit paralogous sequences with a higher frequency of identical IDRs, whereas species with small chromosomes numbers exhibit paralogous sequences with a higher frequency of similar and variable IDRs. These results are interpreted to indicate that genome duplication events influence the distribution of IDRs along protein sequences and likely favor the presence of identical IDRs (compared to similar IDRs or variable IDRs). We discuss the evolutionary implications of gene duplication events in the context of ductile/disordered residues and segments, their conservation, and their effects on functionality.

18.
Genome Biol Evol ; 9(5): 1248-1265, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430951

RESUMO

Studies of diverse phylogenetic lineages reveal that protein disorder increases in concert with organismic complexity but that differences nevertheless exist among lineages. To gain insight into this phenomenology, we analyzed all of the transcription factor (TF) families for which sequences are known for 17 species spanning bacteria, yeast, algae, land plants, and animals and for which the number of different cell types has been reported in the primary literature. Although the fraction of disordered residues in TF sequences is often moderately or poorly correlated with organismic complexity as gauged by cell-type number (r2 < 0.5), an unbiased and phylogenetically broad analysis shows that organismic complexity is positively and strongly correlated with the total number of TFs, the number of their spliced variants and their total disordered residues content (r2 > 0.8). Furthermore, the correlation between the fraction of disordered residues and cell-type number becomes stronger when confined to the TF families participating in cell cycle, cell size, cell division, cell differentiation, or cell proliferation, and other important developmental processes. The data also indicate that evolutionarily simpler organisms allow for the detection of subtle differences in the conserved IDRs of TFs as well as changes in variable IDRs, which can influence the DNA recognition and multifunctionality of TFs through direct or indirect mechanisms. Although strong correlations cannot be taken as evidence for cause-and-effect relationships, we interpret our data to indicate that increasing TF disorder likely was an important factor contributing to the evolution of organismic complexity and not merely a concurrent unrelated effect of increasing organismic complexity.


Assuntos
Eucariotos/classificação , Eucariotos/genética , Fatores de Transcrição/química , Motivos de Aminoácidos , Animais , Eucariotos/química , Evolução Molecular , Humanos , Plantas/genética
19.
Genome Biol Evol ; 8(12): 3751-3764, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062754

RESUMO

The advent of whole-genome sequencing has provided an unprecedented detail about the evolution and genetic significance of species-specific variations across the whole Mycobacterium tuberculosis Complex. However, little attention has been focused on understanding the functional roles of these variations in the protein coding sequences. In this work, we compare the coding sequences from 74 sequenced mycobacterial species including M. africanum, M. bovis, M. canettii, M. caprae, M. orygis, and M. tuberculosis. Results show that albeit protein variations affect all functional classes, those proteins involved in lipid and intermediary metabolism and respiration have accumulated mutations during evolution. To understand the impact of these mutations on protein functionality, we explored their implications on protein ductility/disorder, a yet unexplored feature of mycobacterial proteomes. In agreement with previous studies, we found that a Gly71Ile substitution in the PhoPR virulence system severely affects the ductility of its nearby region in M. africanum and animal-adapted species. In the same line of evidence, the SmtB transcriptional regulator shows amino acid variations specific to the Beijing lineage, which affects the flexibility of the N-terminal trans-activation domain. Furthermore, despite the fact that MTBC epitopes are evolutionary hyperconserved, we identify strain- and lineage-specific amino acid mutations affecting previously known T-cell epitopes such as EsxH and FbpA (Ag85A). Interestingly, in silico studies reveal that these variations result in differential interaction of epitopes with the main HLA haplogroups.


Assuntos
Evolução Molecular , Mycobacterium tuberculosis/genética , Fases de Leitura Aberta/genética , Substituição de Aminoácidos/genética , Epitopos/genética , Genoma Bacteriano , Mutação , Mycobacterium tuberculosis/classificação , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
20.
J Plant Physiol ; 182: 62-78, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26056993

RESUMO

Plant development, as occur in other eukaryotes, is conducted through a complex network of hormones, transcription factors, enzymes and micro RNAs, among other cellular components. They control developmental processes such as embryo, apical root and shoot meristem, leaf, flower, or seed formation, among others. The research in these topics has been very active in last decades. Recently, an explosion of new data concerning regulation mechanisms as well as the response of these processes to environmental changes has emerged. Initially, most of investigations were carried out in the model eudicot Arabidopsis but currently data from other plant species are available in the literature, although they are still limited. The aim of this review is focused on summarize the main molecular actors involved in plant development regulation in diverse plant species. A special attention will be given to the major families of genes and proteins participating in these regulatory mechanisms. The information on the regulatory pathways where they participate will be briefly cited. Additionally, the importance of certain structural features of such proteins that confer ductility and flexibility to these mechanisms will also be reported and discussed.


Assuntos
Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Redes Reguladoras de Genes , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa