Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(21): 6433-6445, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35894152

RESUMO

Warming is known to reduce soil carbon (C) stocks by promoting microbial respiration, which is associated with the decomposition of microbial residue carbon (MRC). However, the relative contribution of MRC to soil organic carbon (SOC) across temperature gradients is poorly understood. Here, we investigated the contribution of MRC to SOC along two independent elevation gradients of our model system (i.e., the Tibetan Plateau and Shennongjia Mountain in China). Our results showed that local temperature increases were negatively correlated with MRC and SOC. Further analyses revealed that rising temperature reduced SOC via decreasing MRC, which helps to explain future reductions in SOC under climate warming. Our findings demonstrate that climate warming has the potential to reduce C sequestration by increasing the decomposition of MRC, exacerbating the positive feedback between rising temperature and CO2 efflux. Our study also considered the influence of multiple environmental factors such as soil pH and moisture, which were more important in controlling SOC than microbial traits such as microbial life-style strategies and metabolic efficiency. Together, our work suggests an important mechanism underlying long-term soil C sequestration, which has important implications for the microbial-mediated C process in the face of global climate change.


Assuntos
Carbono , Solo , Carbono/metabolismo , Dióxido de Carbono , Solo/química , Microbiologia do Solo , Temperatura
2.
Molecules ; 23(1)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29324690

RESUMO

The effects of temperature, agitation and aeration on glycoprotein GP-1 production by Streptomyces kanasenisi ZX01 in bench-scale fermentors were systematically investigated. The maximum final GP-1 production was achieved at an agitation speed of 200 rpm, aeration rate of 2.0 vvm and temperature of 30 °C. By using a dynamic gassing out method, the effects of agitation and aeration on volumetric oxygen transfer coefficient (kLa) were also studied. The values of volumetric oxygen transfer coefficient in the logarithmic phase increased with increase of agitation speed (from 14.53 to 32.82 h-1) and aeration rate (from 13.21 to 22.43 h-1). In addition, a successful scale-up from bench-scale to pilot-scale was performed based on volumetric oxygen transfer coefficient, resulting in final GP-1 production of 3.92, 4.03, 3.82 and 4.20 mg/L in 5 L, 15 L, 70 L and 500 L fermentors, respectively. These results indicated that constant volumetric oxygen transfer coefficient was appropriate for the scale-up of batch fermentation of glycoprotein GP-1 by Streptomyces kanasenisi ZX01, and this scale-up strategy successfully achieved 100-fold scale-up from bench-scale to pilot-scale fermentor.


Assuntos
Reatores Biológicos , Fermentação , Glicoproteínas/biossíntese , Oxigênio/metabolismo , Streptomyces/metabolismo , Temperatura , Técnicas de Cultura Celular por Lotes/métodos
3.
Molecules ; 23(1)2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29320442

RESUMO

GP-1 is a novel glycoprotein produced by Streptomyces kanasenisi ZX01 that was isolated from soil near Kanas Lake with significant bioactivity against tobacco mosaic virus. However, extremely low fermentation production has largely hindered further research and market applications on glycoprotein GP-1. In this study, response surface methodology was used to optimize fermentation conditions in a shake flask for higher glycoprotein GP-1 production. When the optimized fermentation conditions were inoculum volume of 6%, initial pH of 6.5, and rotating speed of 150 rpm, glycoprotein GP-1 production could reach 0.9253 mg/L, which was increased by 52.14% compared to the original conditions. In addition, scale-up fermentation was conducted in a 5-L bioreactor to preliminarily explore the feasibility for mass production of glycoprotein GP-1 in a large fermentor, obtaining GP-1 production of 2.54 mg/L under the same conditions, which was 2.75 times higher than the production obtained from a shake flask of 0.9253 mg/L. This work will be helpful to improve GP-1 production on a large scale and lay the foundations for developing it as a novel agent against plant virus.


Assuntos
Antivirais/química , Antivirais/farmacologia , Fermentação , Glicoproteínas/biossíntese , Glicoproteínas/farmacologia , Streptomyces/metabolismo , Biomassa , Reatores Biológicos , Vírus do Mosaico do Tabaco/efeitos dos fármacos
4.
Biol Rev Camb Philos Soc ; 98(4): 1184-1199, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36914985

RESUMO

Biochar amendment is one of the most promising agricultural approaches to tackle climate change by enhancing soil carbon (C) sequestration. Microbial-mediated decomposition processes are fundamental for the fate and persistence of sequestered C in soil, but the underlying mechanisms are uncertain. Here, we synthesise 923 observations regarding the effects of biochar addition (over periods ranging from several weeks to several years) on soil C-degrading enzyme activities from 130 articles across five continents worldwide. Our results showed that biochar addition increased soil ligninase activity targeting complex phenolic macromolecules by 7.1%, but suppressed cellulase activity degrading simpler polysaccharides by 8.3%. These shifts in enzyme activities explained the most variation of changes in soil C sequestration across a wide range of climatic, edaphic and experimental conditions, with biochar-induced shift in ligninase:cellulase ratio correlating negatively with soil C sequestration. Specifically, short-term (<1 year) biochar addition significantly reduced cellulase activity by 4.6% and enhanced soil organic C sequestration by 87.5%, whereas no significant responses were observed for ligninase activity and ligninase:cellulase ratio. However, long-term (≥1 year) biochar addition significantly enhanced ligninase activity by 5.2% and ligninase:cellulase ratio by 36.1%, leading to a smaller increase in soil organic C sequestration (25.1%). These results suggest that shifts in enzyme activities increased ligninase:cellulase ratio with time after biochar addition, limiting long-term soil C sequestration with biochar addition. Our work provides novel evidence to explain the diminished soil C sequestration with long-term biochar addition and suggests that earlier studies may have overestimated soil C sequestration with biochar addition by failing to consider the physiological acclimation of soil microorganisms over time.


Assuntos
Carbono , Celulases , Solo , Sequestro de Carbono
5.
Genes (Basel) ; 8(12)2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29189712

RESUMO

Streptomyces kanasensis ZX01 produces some antibiotics and a glycoprotein with antiviral activity. To further evaluate its biosynthetic potential, here we sequenced the 7,026,279 bp draft genome of S. kanasensis ZX01 and analyzed all identifiable secondary gene clusters for controlling natural products. More than 60 putative clusters were found in S. kanasensis ZX01, the majority of these biosynthetic loci are novel. In addition, the regulators for secondary metabolism in S. kanasensis ZX01 were abundant. The global regulator nsdA not only controls biosynthesis of some antibiotics, but also enhances production of glycoprotein GP-1 with antiviral activity. This study importantly reveals the powerful interplay between genomic analysis and studies of traditional natural product purification/production increasing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa