Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Virol ; : e0070124, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888345

RESUMO

Vector competence defines the ability of a vector to acquire, host, and transmit a pathogen. Understanding the molecular determinants of the mosquitos' competence to host dengue virus (DENV) holds promise to prevent its transmission. To this end, we employed RNA-seq to profile mRNA transcripts of the female Aedes aegypti mosquitos feeding on naïve vs viremic mouse. While most transcripts (12,634) did not change their abundances, 360 transcripts showed decreases. Biological pathway analysis revealed representatives of the decreased transcripts involved in the wnt signaling pathway and hippo signaling pathway. One thousand three hundred fourteen transcripts showed increases in abundance and participate in 21 biological pathways including amino acid metabolism, carbon metabolism, fatty acid metabolism, and oxidative phosphorylation. Inhibition of oxidative phosphorylation with antimycin A reduced oxidative phosphorylation activity and ATP concentration associated with reduced DENV replication in the Aedes aegypti cells. Antimycin A did not affect the amounts of the non-structural proteins 3 and 5, two major components of the replication complex. Ribavirin, an agent that reduces GTP concentration, recapitulated the effects of reduced ATP concentration on DENV replication. Knocking down one of the oxidative phosphorylation components, ATP synthase subunit ß, reduced DENV replication in the mosquitos. In summary, our results suggest that DENV enhances metabolic pathways in the female Aedes aegypti mosquitos to supply nutrients and energy for virus replication. ATP synthase subunit ß knockdown might be exploited to reduce the mosquitos' competence to host and transmit DENV. IMPORTANCE: Through evolution, the mosquito-borne viruses have adapted to the blood-feeding behaviors of their opportunist hosts to fulfill a complete lifecycle in humans and mosquitos. Disruption in the mosquitos' ability to host these viruses offers strategies to prevent diseases caused by them. With the advent of genomic tools, we discovered that dengue virus (DENV) benefited from the female mosquitos' bloodmeals for metabolic and energetic supplies for replication. Chemical or genetic disruption in these supplies reduced DENV replication in the female mosquitos. Our discovery can be exploited to produce genetically modified mosquitos, in which DENV infection leads to disruption in the supplies and thereby reduces replication and transmission. Our discovery might be extrapolated to prevent mosquito-borne virus transmission and the diseases they cause.

2.
EMBO Rep ; 24(3): e55286, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36652307

RESUMO

An increasing amount of evidence emphasizes the role of metabolic reprogramming in immune cells to fight infections. However, little is known about the regulation of metabolite transporters that facilitate and support metabolic demands. In this study, we found that the expression of equilibrative nucleoside transporter 3 (ENT3, encoded by solute carrier family 29 member 3, Slc29a3) is part of the innate immune response, which is rapidly upregulated upon pathogen invasion. The transcription of Slc29a3 is directly regulated by type I interferon-induced signaling, demonstrating that this metabolite transporter is an interferon-stimulated gene (ISG). Suprisingly, we unveil that several viruses, including SARS-CoV-2, require ENT3 to facilitate their entry into the cytoplasm. The removal or suppression of Slc29a3 expression is sufficient to significantly decrease viral replication in vitro and in vivo. Our study reveals that ENT3 is a pro-viral ISG co-opted by some viruses to gain a survival advantage.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Interferons/metabolismo , Proteínas de Membrana Transportadoras/genética , Imunidade Inata , Genoma Viral , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo
3.
Cell ; 140(2): 197-208, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20141834

RESUMO

Epidemiological studies indicate that overweight and obesity are associated with increased cancer risk. To study how obesity augments cancer risk and development, we focused on hepatocellular carcinoma (HCC), the common form of liver cancer whose occurrence and progression are the most strongly affected by obesity among all cancers. We now demonstrate that either dietary or genetic obesity is a potent bona fide liver tumor promoter in mice. Obesity-promoted HCC development was dependent on enhanced production of the tumor-promoting cytokines IL-6 and TNF, which cause hepatic inflammation and activation of the oncogenic transcription factor STAT3. The chronic inflammatory response caused by obesity and enhanced production of IL-6 and TNF may also increase the risk of other cancers.


Assuntos
Carcinoma Hepatocelular/imunologia , Interleucina-6/imunologia , Neoplasias Hepáticas/imunologia , Obesidade/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/etiologia , Proliferação de Células , Dietilnitrosamina , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Hepatite/etiologia , Hepatite/imunologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/etiologia , Masculino , Camundongos , Obesidade/complicações , Fator de Transcrição STAT3/metabolismo
4.
PLoS Pathog ; 17(3): e1009480, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784371

RESUMO

Dengue virus (DENV) causes dengue fever and severe hemorrhagic fever in humans and is primarily transmitted by Aedes aegypti and A. albopictus mosquitoes. The incidence of DENV infection has been gradually increasing in recent years due to global urbanization and international travel. Understanding the virulence determinants in host and vector transmissibility of emerging epidemic DENV will be critical to combat potential outbreaks. The DENV serotype 2 (DENV-2), which caused a widespread outbreak in Taiwan in 2015 (TW2015), is of the Cosmopolitan genotype and is phylogenetically related to the virus strain linked to another large outbreak in Indonesia in 2015. We found that the TW2015 virus was highly virulent in type I and type II interferon-deficient mice, with robust replication in spleen, lung, and intestine. The TW2015 virus also had high transmissibility to Aedes mosquitoes and could be effectively spread in a continuous mosquitoes-mouse-mosquitoes-mouse transmission cycle. By making 16681-based mutants carrying different segments of the TW2015 virus, we identified the structural pre-membrane (prM) and envelope (E) genes as key virulence determinants in the host, with involvement in the high transmissibility of the TW2015 virus in mosquitoes. The transmission mouse model will make a useful platform for evaluation of DENV with high epidemic potential and development of new strategies against dengue outbreaks.


Assuntos
Culicidae/virologia , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Dengue/virologia , Insetos Vetores/virologia , Virulência/fisiologia , Animais , Modelos Animais de Doenças , Genótipo , Camundongos
5.
Nat Immunol ; 12(2): 144-50, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21170027

RESUMO

Transcription factor NF-κB and its activating kinase IKKß are associated with inflammation and are believed to be critical for innate immunity. Despite the likelihood of immune suppression, pharmacological blockade of IKKß-NF-κB has been considered as a therapeutic strategy. However, we found neutrophilia in mice with inducible deletion of IKKß (Ikkß(Δ) mice). These mice had hyperproliferative granulocyte-macrophage progenitors and pregranulocytes and a prolonged lifespan of mature neutrophils that correlated with the induction of genes encoding prosurvival molecules. Deletion of interleukin 1 receptor 1 (IL-1R1) in Ikkß(Δ) mice normalized blood cellularity and prevented neutrophil-driven inflammation. However, Ikkß(Δ)Il1r1(-/-) mice, unlike Ikkß(Δ) mice, were highly susceptible to bacterial infection, which indicated that signaling via IKKß-NF-κB or IL-1R1 can maintain antimicrobial defenses in each other's absence, whereas inactivation of both pathways severely compromises innate immunity.


Assuntos
Infecções Bacterianas/imunologia , Células Progenitoras de Granulócitos e Macrófagos/metabolismo , Quinase I-kappa B/metabolismo , Interleucina-1beta/metabolismo , Neutrófilos/metabolismo , Animais , Contagem de Células , Processos de Crescimento Celular/genética , Sobrevivência Celular/genética , Células Cultivadas , Suscetibilidade a Doenças , Células Progenitoras de Granulócitos e Macrófagos/imunologia , Células Progenitoras de Granulócitos e Macrófagos/patologia , Quinase I-kappa B/genética , Quinase I-kappa B/imunologia , Imunidade Inata/genética , Interleucina-1beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , Neutrófilos/imunologia , Neutrófilos/patologia , Receptores Tipo I de Interleucina-1/genética , Regulação para Cima/genética
6.
J Med Virol ; 95(1): e28370, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458553

RESUMO

The major challenge in COVID-19 vaccine effectiveness is immune escape by SARS-CoV-2 variants. To overcome this, an Omicron-specific messenger RNA (mRNA) vaccine was designed. The extracellular domain of the spike of the Omicron variant was fused with a modified GCN4 trimerization domain with low immunogenicity (TSomi). After immunization with TSomi mRNA in hamsters, animals were challenged with SARS-CoV-2 virus. The raised nonneutralizing antibodies or cytokine secretion responses can recognize both Wuhan S and Omicron S. However, the raised antibodies neutralized SARS-CoV-2 Omicron virus infection but failed to generate Wuhan virus neutralizing antibodies. Surprisingly, TSomi mRNA immunization protected animals from Wuhan virus challenge. These data indicated that non-neutralizing antibodies or cellular immunity may play a more important role in vaccine-induced protection than previously believed. Next-generation COVID-19 vaccines using the Omicron S antigen may provide sufficient protection against ancestral or current SARS-CoV-2 variants.


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , Vacinas contra COVID-19 , Anticorpos Neutralizantes , COVID-19/prevenção & controle , RNA Mensageiro/genética , Vacinas de mRNA , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética
7.
J Biomed Sci ; 30(1): 12, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36803804

RESUMO

BACKGROUND: Zika virus (ZIKV) infection is clinically known to induce testicular swelling, termed orchitis, and potentially impact male sterility, but the underlying mechanisms remain unclear. Previous reports suggested that C-type lectins play important roles in mediating virus-induced inflammatory reactions and pathogenesis. We thus investigated whether C-type lectins modulate ZIKV-induced testicular damage. METHODS: C-type lectin domain family 5 member A (CLEC5A) knockout mice were generated in a STAT1-deficient immunocompromised background (denoted clec5a-/-stat1-/-) to enable testing of the role played by CLEC5A after ZIKV infection in a mosquito-to-mouse disease model. Following ZIKV infection, mice were subjected to an array of analyses to evaluate testicular damage, including ZIKV infectivity and neutrophil infiltration estimation via quantitative RT-PCR or histology and immunohistochemistry, inflammatory cytokine and testosterone detection, and spermatozoon counting. Furthermore, DNAX-activating proteins for 12 kDa (DAP12) knockout mice (dap12-/-stat1-/-) were generated and used to evaluate ZIKV infectivity, inflammation, and spermatozoa function in order to investigate the potential mechanisms engaged by CLEC5A. RESULTS: Compared to experiments conducted in ZIKV-infected stat1-/- mice, infected clec5a-/-stat1-/- mice showed reductions in testicular ZIKV titer, local inflammation and apoptosis in testis and epididymis, neutrophil invasion, and sperm count and motility. CLEC5A, a myeloid pattern recognition receptor, therefore appears involved in the pathogenesis of ZIKV-induced orchitis and oligospermia. Furthermore, DAP12 expression was found to be decreased in the testis and epididymis tissues of clec5a-/-stat1-/- mice. As for CLEC5A deficient mice, ZIKV-infected DAP12-deficient mice also showed reductions in testicular ZIKV titer and local inflammation, as well as improved spermatozoa function, as compared to controls. CLEC5A-associated DAP12 signaling appears to in part regulate ZIKV-induced testicular damage. CONCLUSIONS: Our analyses reveal a critical role for CLEC5A in ZIKV-induced proinflammatory responses, as CLEC5A enables leukocytes to infiltrate past the blood-testis barrier and induce testicular and epididymal tissue damage. CLEC5A is thus a potential therapeutic target for the prevention of injuries to male reproductive organs in ZIKV patients.


Assuntos
Orquite , Infecção por Zika virus , Zika virus , Humanos , Masculino , Camundongos , Animais , Sêmen/metabolismo , Camundongos Knockout , Inflamação/genética , Lectinas Tipo C/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
8.
PLoS Pathog ; 16(5): e1008521, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32392268

RESUMO

Zika virus (ZIKV) infection may lead to congenital microcephaly and pregnancy loss in pregnant women. In the context of pregnancy, folic acid (FA) supplementation may reduce the risk of abnormal pregnancy outcomes. Intriguingly, FA may have a beneficial effect on the adverse pregnancy outcomes associated with ZIKV infection. Here, we show that FA inhibits ZIKV replication in human umbilical vein endothelial cells (HUVECs) and a cell culture model of blood-placental barrier (BPB). The inhibitory effect of FA against ZIKV infection is associated with FRα-AMPK signaling. Furthermore, treatment with FA reduces pathological features in the placenta, number of fetal resorptions, and stillbirths in two mouse models of in utero ZIKV transmission. Mice with FA treatment showed lower viral burden and better prognostic profiles in the placenta including reduced inflammatory response, and enhanced integrity of BPB. Overall, our findings suggest the preventive role of FA supplementation in ZIKV-associated abnormal pregnancy and warrant nutritional surveillance to evaluate maternal FA status in areas with active ZIKV transmission.


Assuntos
Ácido Fólico/farmacologia , Placenta , Complicações Infecciosas na Gravidez , Infecção por Zika virus/prevenção & controle , Zika virus/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Microcefalia/metabolismo , Microcefalia/patologia , Microcefalia/prevenção & controle , Microcefalia/virologia , Placenta/metabolismo , Placenta/patologia , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/metabolismo , Complicações Infecciosas na Gravidez/patologia , Complicações Infecciosas na Gravidez/prevenção & controle , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
9.
Am J Pathol ; 191(6): 1036-1048, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753025

RESUMO

Type I interferon (IFN-I) has a well-known function in controlling viral infections, but its contribution in hepatocyte proliferation and hepatocellular carcinoma (HCC) formation remains unclear. Mice deficient in IFN-α receptor expression in whole mice or only in hepatocytes (Ifnar-/- and IfnarΔliver) were used to investigate the role of IFN-I signaling in cell proliferation and cancer formation in the liver. Ifnar-/- mice were resistant to chemical-induced HCC formation in the absence of infection. The results show that low grade of IFN-I and interferon-stimulated gene were expressed substantially in naïve mouse liver. The low level of IFN-I activation is constantly present in mouse liver after weaning and negatively modulates forkhead box O hepatic expression. The IFN-I signaling can be partially blocked by the clearance of lipopolysaccharide. Mice lacking IFN-I signaling have lower basal proliferation activity and delayed liver regeneration processes after two-thirds partial hepatectomy. The activation of IFN-I signaling on hepatocyte controls glucose homeostasis and lipid metabolism to support proliferation potency and long-term tumorigenesis. Our results reveal a positive role of low-grade IFN-I singling to hepatocyte proliferation and HCC formation by modulating glucose homeostasis and lipid metabolism.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Interferon Tipo I/metabolismo , Neoplasias Hepáticas/metabolismo , Regeneração Hepática/fisiologia , Animais , Proliferação de Células/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia
10.
J Biomed Sci ; 29(1): 37, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681239

RESUMO

BACKGROUND: Calls for the coronavirus to be treated as an endemic illness, such as the flu, are increasing. After achieving high coverage of COVID-19 vaccination, therapeutic drugs have become important for future SARS-CoV-2 variant outbreaks. Although many monoclonal antibodies have been approved for emergency use as treatments for SARS-CoV-2 infection, some monoclonal antibodies are not authorized for variant treatment. Broad-spectrum monoclonal antibodies are unmet medical needs. METHODS: We used a DNA prime-protein boost approach to generate high-quality monoclonal antibodies. A standard ELISA was employed for the primary screen, and spike protein-human angiotensin-converting enzyme 2 blocking assays were used for the secondary screen. The top 5 blocking clones were selected for further characterization, including binding ability, neutralization potency, and epitope mapping. The therapeutic effects of the best monoclonal antibody against SARS-CoV-2 infection were evaluated in a hamster infection model. RESULTS: Several monoclonal antibodies were selected that neutralize different SARS-CoV-2 variants of concern (VOCs). These VOCs include Alpha, Beta, Gamma, Delta, Kappa and Lambda variants. The high neutralizing antibody titers against the Beta variant would be important to treat Beta-like variants. Among these monoclonal antibodies, mAb-S5 displays the best potency in terms of binding affinity and neutralizing capacity. Importantly, mAb-S5 protects animals from SARS-CoV-2 challenge, including the Wuhan strain, D614G, Alpha and Delta variants, although mAb-S5 exhibits decreased neutralization potency against the Delta variant. Furthermore, the identified neutralizing epitopes of monoclonal antibodies are all located in the receptor-binding domain (RBD) of the spike protein but in different regions. CONCLUSIONS: Our approach generates high-potency monoclonal antibodies against a broad spectrum of VOCs. Multiple monoclonal antibody combinations may be the best strategy to treat future SARS-CoV-2 variant outbreaks.


Assuntos
Anticorpos Monoclonais , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Vacinas contra COVID-19 , Cricetinae , Humanos , Glicoproteína da Espícula de Coronavírus/genética
11.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328676

RESUMO

For tiling of the SARS-CoV-2 genome, the ARTIC Network provided a V4 protocol using 99 pairs of primers for amplicon production and is currently the widely used amplicon-based approach. However, this technique has regions of low sequence coverage and is labour-, time-, and cost-intensive. Moreover, it requires 14 pairs of primers in two separate PCRs to obtain spike gene sequences. To overcome these disadvantages, we proposed a single PCR to efficiently detect spike gene mutations. We proposed a bioinformatic protocol that can process FASTQ reads into spike gene consensus sequences to accurately call spike protein variants from sequenced samples or to fairly express the cases of missing amplicons. We evaluated the in silico detection rate of primer sets that yield amplicon sizes of 400, 1200, and 2500 bp for spike gene sequencing of SARS-CoV-2 to be 59.49, 76.19, and 92.20%, respectively. The in silico detection rate of our proposed single PCR primers was 97.07%. We demonstrated the robustness of our analytical protocol against 3000 Oxford Nanopore sequencing runs of distinct datasets, thus ensuring high-integrity sequencing of spike genes for variant SARS-CoV-2 determination. Our protocol works well with the data yielded from versatile primer designs, making it easy to determine spike protein variants.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Biologia Computacional , Genoma Viral , Genômica/métodos , Humanos , Mutação , Taxa de Mutação , Filogenia , SARS-CoV-2/classificação , Análise de Sequência de DNA
12.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32699091

RESUMO

Replication of the genotype 2 hepatitis C virus (HCV) requires hyperphosphorylation of the nonstructural protein NS5A. It has been known that NS5A hyperphosphorylation results from the phosphorylation of a cluster of highly conserved serine residues (S2201, S2208, S2211, and S2214) in a sequential manner. It has also been known that NS5A hyperphosphorylation requires an NS3 protease encoded on one single NS3-5A polyprotein. It was unknown whether NS3 protease participates in this sequential phosphorylation process. Using an inventory of antibodies specific to S2201, S2208, S2211, and S2214 phosphorylation, we found that protease-dead S1169A mutation abrogated NS5A hyperphosphorylation and phosphorylation at all serine residues measured, consistent with the role of NS3 in NS5A sequential phosphorylation. These effects were not rescued by a wild-type NS3 protease provided in trans by another molecule. Mutations (T1661R, T1661Y, or T1661D) that prohibited proper cleavage at the NS3-4A junction also abolished NS5A hyperphosphorylation and phosphorylation at all serine residues, whereas mutations at the other cleavage sites, NS4A-4B (C1715S) or NS4B-5A (C1976F), did not. In fact, any combinatory mutations that prohibited NS3-4A cleavage (T1661Y/C1715S or T1661Y/C1976F) abrogated NS5A hyperphosphorylation and phosphorylation at all serine residues. In the C1715S/C1976F double mutant, which resulted in an NS4A-NS4B-NS5A fusion polyprotein, a hyperphosphorylated band was observed and was phosphorylated at all serine residues. We conclude that NS3-mediated autocleavage at the NS3-4A junction is critical to NS5A hyperphosphorylation at S2201, S2208, S2211, and S2214 and that NS5A hyperphosphorylation could occur in an NS4A-NS4B-NS5A polyprotein.IMPORTANCE For ca. 20 years, the HCV protease NS3 has been implicated in NS5A hyperphosphorylation. We now show that it is the NS3-mediated cis cleavage at the NS3-4A junction that permits NS5A phosphorylation at serines 2201, 2208, 2211, and 2214, leading to hyperphosphorylation, which is a necessary condition for genotype 2 HCV replication. We further show that NS5A may already be phosphorylated at these serine residues right after NS3-4A cleavage and before NS5A is released from the NS4A-5A polyprotein. Our data suggest that the dual-functional NS3, a protease and an ATP-binding RNA helicase, could have a direct or indirect role in NS5A hyperphosphorylation.


Assuntos
Hepacivirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Mutação , Fosforilação , Poliproteínas/metabolismo , RNA Helicases
13.
Proc Natl Acad Sci U S A ; 115(34): E8027-E8036, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30087184

RESUMO

Activated T cells undergo metabolic reprogramming and effector-cell differentiation but the factors involved are unclear. Utilizing mice lacking DUSP6 (DUSP6-/-), we show that this phosphatase regulates T cell receptor (TCR) signaling to influence follicular helper T (TFH) cell differentiation and T cell metabolism. In vitro, DUSP6-/- CD4+ TFH cells produced elevated IL-21. In vivo, TFH cells were increased in DUSP6-/- mice and in transgenic OTII-DUSP6-/- mice at steady state. After immunization, DUSP6-/- and OTII-DUSP6-/- mice generated more TFH cells and produced more antigen-specific IgG2 than controls. Activated DUSP6-/- T cells showed enhanced JNK and p38 phosphorylation but impaired glycolysis. JNK or p38 inhibitors significantly reduced IL-21 production but did not restore glycolysis. TCR-stimulated DUSP6-/- T cells could not induce phosphofructokinase activity and relied on glucose-independent fueling of mitochondrial respiration. Upon CD28 costimulation, activated DUSP6-/- T cells did not undergo the metabolic commitment to glycolysis pathway to maintain viability. Unexpectedly, inhibition of fatty acid oxidation drastically lowered IL-21 production in DUSP6-/- TFH cells. Our findings suggest that DUSP6 connects TCR signaling to activation-induced metabolic commitment toward glycolysis and restrains TFH cell differentiation via inhibiting IL-21 production.


Assuntos
Diferenciação Celular/fisiologia , Fosfatase 6 de Especificidade Dupla , Glicólise/fisiologia , Receptores de Antígenos de Linfócitos T , Transdução de Sinais/fisiologia , Linfócitos T Auxiliares-Indutores , Animais , Formação de Anticorpos/fisiologia , Antígenos CD28/genética , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/imunologia , Fosfatase 6 de Especificidade Dupla/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Interleucinas/genética , Interleucinas/imunologia , Interleucinas/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/imunologia , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360989

RESUMO

Increasing evidence suggests that elderly people with dementia are vulnerable to the development of severe coronavirus disease 2019 (COVID-19). In Alzheimer's disease (AD), the major form of dementia, ß-amyloid (Aß) levels in the blood are increased; however, the impact of elevated Aß levels on the progression of COVID-19 remains largely unknown. Here, our findings demonstrate that Aß1-42, but not Aß1-40, bound to various viral proteins with a preferentially high affinity for the spike protein S1 subunit (S1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the viral receptor, angiotensin-converting enzyme 2 (ACE2). These bindings were mainly through the C-terminal residues of Aß1-42. Furthermore, Aß1-42 strengthened the binding of the S1 of SARS-CoV-2 to ACE2 and increased the viral entry and production of IL-6 in a SARS-CoV-2 pseudovirus infection model. Intriguingly, data from a surrogate mouse model with intravenous inoculation of Aß1-42 show that the clearance of Aß1-42 in the blood was dampened in the presence of the extracellular domain of the spike protein trimers of SARS-CoV-2, whose effects can be prevented by a novel anti-Aß antibody. In conclusion, these findings suggest that the binding of Aß1-42 to the S1 of SARS-CoV-2 and ACE2 may have a negative impact on the course and severity of SARS-CoV-2 infection. Further investigations are warranted to elucidate the underlying mechanisms and examine whether reducing the level of Aß1-42 in the blood is beneficial to the fight against COVID-19 and AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Fragmentos de Peptídeos/metabolismo , SARS-CoV-2/enzimologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Células A549 , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Animais , COVID-19/complicações , COVID-19/metabolismo , Chlorocebus aethiops , Humanos , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fragmentos de Peptídeos/química , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Células Vero , Internalização do Vírus
15.
J Biomed Sci ; 27(1): 51, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32290844

RESUMO

BACKGROUND: The emergence of Zika virus (ZV) in tropical and subtropical areas of the world has created an urgent need for vaccines against ZV. However, approved vaccines that prevent ZV infection are not available. To develop an effective vaccine against ZV infection, a lipidated form of ZV envelope protein domain III that possesses an intrinsic adjuvant property was rationally designed. Our goal was to examine the immunogenicity of recombinant lipidated ZV envelope protein domain III (rLZE3) and evaluate its potential as a vaccine candidate against ZV. METHODS: Recombinant ZV envelope protein domain III (rZE3) and rLZE3 were prepared with an Escherichia coli-based system. Dendritic cell surface marker expression and cytokine production upon stimulation were analyzed to evaluate the function of rLZE3. Neutralizing antibody capacities were evaluated using focus reduction neutralization tests after immunization. To investigate the protective immunity in immunized mice, serum samples collected from immunized mice were adoptively transferred into AG129 mice, and then viremia levels and survival times were examined after ZV challenge. RESULTS: rLZE3 alone but not rZE3 alone efficiently activated dendritic cells in vitro and was taken up by dendritic cells in vivo. Immunization of C57BL/6 mice with rLZE3 alone (without exogenous adjuvant) could induce ZV-specific neutralizing antibody responses. Furthermore, serum samples obtained from rLZE3-immunized mice provided protection as indicated by a reduction in viremia levels and prolongation of survival times after ZV challenge. CONCLUSION: These results indicate that rLZE3 is an excellent vaccine candidate and has great potential that should be evaluated in further preclinical studies.


Assuntos
Anticorpos Antivirais/imunologia , Proteínas do Envelope Viral/imunologia , Infecção por Zika virus/imunologia , Zika virus/fisiologia , Animais , Anticorpos Neutralizantes/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos/imunologia , Proteínas Recombinantes/imunologia
16.
Mol Cell ; 48(2): 313-21, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22959272

RESUMO

Innate immunity controls pathogen replication and spread. Yet, certain pathogens, such as Hepatitis C Virus (HCV), escape immune elimination and establish persistent infections that promote chronic inflammation and related diseases. Whereas HCV regulatory proteins that attenuate antiviral responses are known, those that promote inflammation and liver injury remain to be identified. Here, we show that transient expression of HCV RNA-dependent RNA polymerase (RdRp), NS5B, in mouse liver and human hepatocytes results in production of small RNA species that activate innate immune signaling via TBK1-IRF3 and NF-κB and induce cytokine production, including type I interferons (IFN) and IL-6. NS5B-expression also results in liver damage.


Assuntos
Hepacivirus , Hepatite C Crônica , Imunidade Inata , Fígado , Proteínas não Estruturais Virais , Animais , Hepacivirus/genética , Hepacivirus/metabolismo , Hepacivirus/patogenicidade , Hepatite C Crônica/genética , Hepatite C Crônica/metabolismo , Hepatite C Crônica/virologia , Hepatócitos/metabolismo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/biossíntese , Interferon Tipo I/metabolismo , Interleucina-6/biossíntese , Interleucina-6/metabolismo , Fígado/lesões , Fígado/metabolismo , Fígado/virologia , Camundongos , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
17.
Nature ; 491(7423): 254-8, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23034650

RESUMO

Approximately 2% of colorectal cancer is linked to pre-existing inflammation known as colitis-associated cancer, but most develops in patients without underlying inflammatory bowel disease. Colorectal cancer often follows a genetic pathway whereby loss of the adenomatous polyposis coli (APC) tumour suppressor and activation of ß-catenin are followed by mutations in K-Ras, PIK3CA and TP53, as the tumour emerges and progresses. Curiously, however, 'inflammatory signature' genes characteristic of colitis-associated cancer are also upregulated in colorectal cancer. Further, like most solid tumours, colorectal cancer exhibits immune/inflammatory infiltrates, referred to as 'tumour-elicited inflammation'. Although infiltrating CD4(+) T(H)1 cells and CD8(+) cytotoxic T cells constitute a positive prognostic sign in colorectal cancer, myeloid cells and T-helper interleukin (IL)-17-producing (T(H)17) cells promote tumorigenesis, and a 'T(H)17 expression signature' in stage I/II colorectal cancer is associated with a drastic decrease in disease-free survival. Despite its pathogenic importance, the mechanisms responsible for the appearance of tumour-elicited inflammation are poorly understood. Many epithelial cancers develop proximally to microbial communities, which are physically separated from immune cells by an epithelial barrier. We investigated mechanisms responsible for tumour-elicited inflammation in a mouse model of colorectal tumorigenesis, which, like human colorectal cancer, exhibits upregulation of IL-23 and IL-17. Here we show that IL-23 signalling promotes tumour growth and progression, and development of a tumoural IL-17 response. IL-23 is mainly produced by tumour-associated myeloid cells that are likely to be activated by microbial products, which penetrate the tumours but not adjacent tissue. Both early and late colorectal neoplasms exhibit defective expression of several barrier proteins. We propose that barrier deterioration induced by colorectal-cancer-initiating genetic lesions results in adenoma invasion by microbial products that trigger tumour-elicited inflammation, which in turn drives tumour growth.


Assuntos
Adenoma/microbiologia , Adenoma/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Interleucina-17/imunologia , Interleucina-23/imunologia , Adenoma/genética , Adenoma/imunologia , Animais , Bactérias/metabolismo , Bactérias/patogenicidade , Divisão Celular , Colite/complicações , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Modelos Animais de Doenças , Intervalo Livre de Doença , Genes APC , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Interleucina-17/genética , Interleucina-23/deficiência , Interleucina-23/genética , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Células Mieloides/metabolismo , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Microambiente Tumoral , beta Catenina/metabolismo
18.
BMC Bioinformatics ; 18(Suppl 16): 548, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297305

RESUMO

BACKGROUND: Viruses of the flaviviridae family are responsible for some of the major infectious viral diseases around the world and there is an urgent need for drug development for these diseases. Most of the virtual screening methods in flaviviral drug discovery suffer from a low hit rate, strain-specific efficacy differences, and susceptibility to resistance. It is because they often fail to capture the key pharmacological features of the target active site critical for protein function inhibition. So in our current work, for the flaviviral NS3 protease, we summarized the pharmacophore features at the protease active site as anchors (subsite-moiety interactions). RESULTS: For each of the four flaviviral NS3 proteases (i.e., HCV, DENV, WNV, and JEV), the anchors were obtained and summarized into 'Pharmacophore anchor (PA) models'. To capture the conserved pharmacophore anchors across these proteases, were merged the four PA models. We identified five consensus core anchors (CEH1, CH3, CH7, CV1, CV3) in all PA models, represented as the "Core pharmacophore anchor (CPA) model" and also identified specific anchors unique to the PA models. Our PA/CPA models complied with 89 known NS3 protease inhibitors. Furthermore, we proposed an integrated anchor-based screening method using the anchors from our models for discovering inhibitors. This method was applied on the DENV NS3 protease to screen FDA drugs discovering boceprevir, telaprevir and asunaprevir as promising anti-DENV candidates. Experimental testing against DV2-NGC virus by in-vitro plaque assays showed that asunaprevir and telaprevir inhibited viral replication with EC50 values of 10.4 µM & 24.5 µM respectively. The structure-anchor-activity relationships (SAAR) showed that our PA/CPA model anchors explained the observed in-vitro activities of the candidates. Also, we observed that the CEH1 anchor engagement was critical for the activities of telaprevir and asunaprevir while the extent of inhibitor anchor occupation guided their efficacies. CONCLUSION: These results validate our NS3 protease PA/CPA models, anchors and the integrated anchor-based screening method to be useful in inhibitor discovery and lead optimization, thus accelerating flaviviral drug discovery.


Assuntos
Vírus da Dengue/imunologia , Reposicionamento de Medicamentos/métodos , Flavivirus/química , Peptídeo Hidrolases/química , Vírus da Dengue/genética , Humanos
19.
J Biol Chem ; 291(37): 19299-311, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27458013

RESUMO

Innate immune responses are important for pathogen elimination and adaptive immune response activation. However, excess inflammation may contribute to immunopathology and disease progression (e.g. inflammation-associated hepatocellular carcinoma). Immune modulation resulting from pattern recognition receptor-induced responses is a potential strategy for controlling immunopathology and related diseases. This study demonstrates that the mycotoxin patulin suppresses Toll-like receptor- and RIG-I/MAVS-dependent cytokine production through GSH depletion, mitochondrial dysfunction, the activation of p62-associated mitophagy, and p62-TRAF6 interaction. Blockade of autophagy restored the immunosuppressive activity of patulin, and pharmacological activation of p62-dependent mitophagy directly reduced RIG-I-like receptor-dependent inflammatory cytokine production. These results demonstrated that p62-dependent mitophagy has an immunosuppressive role to innate immune response and might serve as a potential immunomodulatory target for inflammation-associated diseases.


Assuntos
Imunidade Inata/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Micotoxinas/farmacologia , Patulina/farmacologia , Proteína Sequestossoma-1/imunologia , Animais , Células HEK293 , Humanos , Camundongos , Mitofagia/imunologia , Células RAW 264.7
20.
Proc Natl Acad Sci U S A ; 110(51): 20711-6, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24282308

RESUMO

CpG-oligodeoxynucleotides (CpG-ODNs) are potent immune stimuli currently under investigation as antimicrobial agents for different species. Toll-like receptor (TLR) 9 and TLR21 are the cellular receptors of CpG-ODN in mammals and chickens, respectively. The avian genomes lack TLR9, whereas mammalian genomes lack TLR21. Although fish contain both of these genes, the biological functions of fish TLR9 and TLR21 have not been investigated previously. In this study, we comparatively investigated zebrafish TLR9 (zebTLR9) and TLR21 (zebTLR21). The two TLRs have similar expression profiles in zebrafish. They are expressed during early development stages and are preferentially expressed in innate immune function-related organs in adult fish. Results from cell-based activation assays indicate that these two zebrafish TLRs are functional, responding to CpG-ODN but not to other TLR ligands. zebTLR9 broadly recognized CpG-ODN with different CpG motifs, but CpG-ODN with GACGTT or AACGTT had better activity to this TLR. In contrast, zebTLR21 responded preferentially to CpG-ODN with GTCGTT motifs. The distinctive ligand recognition profiles of these two TLRs were determined by their ectodomains. Activation of these two TLRs by CpG-ODN occurred inside the cells and was modulated by UNC93B1. The biological functions of these two TLRs were further investigated. The CpG-ODNs that activate both zebTLR9 and zebTLR21 were more potent than others that activate only zebTLR9 in the activation of cytokine productions and were more bactericidal in zebrafish. These results suggest that zebTLR9 and zebTLR21 cooperatively mediate the antimicrobial activities of CpG-ODN. Overall, this study provides a molecular basis for the activities of CpG-ODN in fish.


Assuntos
Adjuvantes Imunológicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Oligodesoxirribonucleotídeos/farmacologia , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/imunologia , Proteínas de Peixe-Zebra/agonistas , Proteínas de Peixe-Zebra/imunologia , Adjuvantes Imunológicos/farmacocinética , Animais , Anti-Infecciosos/farmacocinética , Anti-Infecciosos/farmacologia , Sequência de Bases , Galinhas , Citocinas/biossíntese , Citocinas/genética , Citocinas/imunologia , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos/farmacocinética , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa