RESUMO
Amorphous arrays assembled from colloidal microspheres are a way that obtains angle-independent structural colors. In order to obtain additional properties, colloidal microspheres, which are constituent units, can be modified with other materials. Here, we utilized the silane-functionalized carbon quantum dots (SiCDs) by incorporating them into the Stöber reaction to fabricate Fe3O4@SiO2/SiCDs nanospheres with a core-shell structure. Amorphous colloidal arrays (ACAs) were constructed on commercial printing paper using Fe3O4@SiO2/SiCDs nanoparticles as structural units by a simple permeation assembly. Macroscopically, the prepared ACAs exhibit the magnetic properties of Fe3O4, while under sunlight, they display bright, angle-independent structural colors. Under ultraviolet light, the array shows significant fluorescence. This enables the presentation of multidimensional information under varying magnetic and lighting conditions. By adjusting the thickness of the outer SiO2/SiCDs composite layer, the optical properties and magnetism can be controlled easily. Moreover, due to the strong light absorption capability and high refractive index of Fe3O4, the digital patterns constructed with Fe3O4@SiO2/SiCDs nanospheres demonstrate excellent multi-level anti-counterfeiting characteristics, even under water exposure. The magnetic properties of Fe3O4@SiO2/SiCDs nanospheres, along with their distinct display characteristics under different optical environments, suggest their wide applicability in the fields of multifunctional anti-counterfeiting pigments, bioimaging, and sensing displays.
RESUMO
We demonstrate the stable and flexible light delivery of multi-microjoule, sub-200-fs pulses over a â¼10-m-long vacuumized anti-resonant hollow-core fiber (AR-HCF), which was successfully used for high-performance pulse synchronization. Compared with the pulse train launched into the AR-HCF, the transmitted pulse train out of the fiber exhibits excellent stabilities in pulse power and spectrum, with pointing stability largely improved. The walk-off between the fiber-delivery and the other free-space-propagation pulse trains, in an open loop, was measured to be <6 fs root mean square (rms) over 90 minutes, corresponding to a relative optical-path variation of <2 × 10-7. This walk-off can be further suppressed to â¼2 fs rms simply by using an active control loop, highlighting the great application potentials of this AR-HCF setup in large-scale laser and accelerator facilities.
RESUMO
Distributed static and dynamic sensing is demonstrated with an ultra-short fiber Bragg grating (USFBG) array. The USFBGs serve as the sensors and reflection mirrors at the same time. Distributed static sensing is performed by demodulating the strain-induced or temperature-induced wavelength shift of each USFBG. Dynamic vibration sensing is realized based on phase variation between two adjacent USFBG reflected pulses. Static temperature and dynamic vibration are applied to the sensing ultra-short FBG array simultaneously. The experiments show that the temperature measurement from 30 °C to 80 °C is achieved successfully. And dynamic sensing of nε scale vibration and 12.5 kHz acoustic wave are demonstrated at a sampling rate of 50 kHz.
RESUMO
A Fabry-Perot interferometric sensor for temperature measurement was fabricated based on a silica glass solid-core photonic crystal fiber with a central air-bore. By splicing a stub of photonic crystal fiber to a standard single-mode fiber, an intrinsic Fabry-Perot cavity was formed inside the photonic crystal fiber. Sensing experiment results show that the sensor can work stably for a consecutive 24 h under temperatures up to 1100 °C, and the short-term operation temperature can reach as high as 1200 °C (<30 min). In the measurement range of 300-1200 °C, the temperature sensitivity of the peak wavelength shift can reach as high as 15.61 pm/°C, with a linearity of 99.76%. The presented interferometric sensor is compact in size and possesses advantages such as an extended working range and high sensitivity, showing promising application prospects.
RESUMO
A novel relative humidity (RH) sensing network based on ultra-weak fiber Bragg gratings (FBGs) is proposed and demonstrated. Experiment is demonstrated on a 5 serial ultra-weak FBGs sensing network chopped from a fiber array with 1124 FBGs. Experimental results show that the corresponding RH sensitivity varies from 1.134 to 1.832 pm/%RH when ambient environmental RH changes from 23.8%RH to 83.4%RH. The low-reflectance FBGs and time-division multiplexing (TDM) technology makes it possible to multiplex thousands of RH sensors in single optical fiber.
RESUMO
For the online writing of ultra-weak fiber Bragg gratings (FBGs) in the drawing optical fibers, the effects of the intensity profile, pulse fluctuation and pulse width of the excimer laser, as well as the transverse and longitudinal vibrations of the optical fiber have been investigated. Firstly, using Lorentz-Loren equation, Gladstone-Dale mixing rule and continuity equation, we have derived the refractive index (RI) fluctuation along the optical fiber and the RI distribution in the FBG, they are linear with the gradient of longitudinal vibration velocity. Then, we have prepared huge amounts of ultra-weak FBGs in the non-moving optical fiber and obtained their reflection spectra, the measured reflection spectra shows that the intensity profile and pulse fluctuation of the excimer laser, as well as the transverse vibration of the optical fiber are little responsible for the inconsistency of ultra-weak FBGs. Finally, the effect of the longitudinal vibration of the optical fiber on the inconsistency of ultra-weak FBGs has been discussed, and the vibration equations of the drawing optical fiber are given in the appendix.
RESUMO
We demonstrate a distributed sensing network with 500 identical ultra-weak fiber Bragg gratings (uwFBGs) in an equal separation of 2m using balanced Michelson interferometer of the phase sensitive optical time domain reflectometry (φ-OTDR) for acoustic measurement. Phase, amplitude, frequency response and location information can be directly obtained at the same time by using the passive 3 × 3 coupler demodulation. Lab experiments on detecting sound waves in water tank are carried out. The results show that this system can well demodulate distributed acoustic signal with the pressure detection limit of 0.122Pa and achieve an acoustic phase sensitivity of around -158dB (re rad/µPa) with a relatively flat frequency response between 450Hz to 600Hz.
RESUMO
The weakly bound organic ligand shells around perovskite quantum dots (QDs) are easily decomposed and cannot provide sufficient stability in polar solvents, which greatly obstructs their applications in sensing. Herein, a fluorescent sensor based on CsPbBr3/CdS core/shell QDs was developed for the detection of tetracycline (TC) in the polar solvent-ethanol. Pristine CsPbBr3 QDs were treated with cadmium diethyldithiocarbamate (Cd(DDTC)2) to form a shell on the surface at 110 °C, while extra oleylammonium bromide (OAmBr) was added to inhibit the phase transformation of CsPbBr3 into a Cs4PbBr6 impurity phase during high-temperature processing. And finally CsPbBr3/CdS core/shell QDs were successfully synthesized. The capping with the CdS inorganic shell remediated surface defects and improved the stability in ethanol without affecting the emission properties of the parent CsPbBr3 QDs. The results showed that the fluorescent sensor detected TC in the range of 0.05-25 µM with a low detection limit of 22.6 nM, whereas it had high selectivity and anti-interference ability for TC. And the fluorescence quenching mechanism of the sensor was mainly photoinduced electron transfer between TC and CsPbBr3/CdS QDs. Our research provides a unique way to improve the stability of perovskite QDs in polar solvents and applications in fluorescence detection.
RESUMO
A ratiometric fluorescence probe based on the conjugation of peroxyfluor-NHS (PF) and carbon dots (CDs) was designed for selective and rapid detection of glucose. When glucose was catalytically oxidized by glucose oxidase (GOx), the product H2O2 would react with colorless and non-fluorescent peroxyfluor moiety to give the colored and fluorescent fluorescein moiety which would absorb the energy of CDs emission at 450 nm due to the Förster Resonance Energy Transfer (FRET) and generate a new emission peak at 517 nm. The reaction between PF and H2O2 was slow with a rate constant of about 2.7 × 10-4 s-1 under pseudo-first-order conditions (1 uM PF, 1 mM H2O2), which was unconducive to rapid detection. Given this, a short time detection method was proposed by studying the kinetics of the reaction between PF and H2O2. In this method, the detection time was fixed at three minutes. The linear detection of glucose could be well realized even if the reaction was partially done. As glucose concentration increased from 0.05 mM to 5 mM, the fluorescence intensity ratio (I517/I450) after 3 minutes' reaction of CDs-PF and glucose oxidation products changed linearly from 0.269 to 1.127 with the limit of detection (LOD) of 17.19 µM. In addition, the applicability of the probe in blood glucose detection was verified.
Assuntos
Glucose , Pontos Quânticos , Carbono , Peróxido de Hidrogênio , Glicemia , Corantes FluorescentesRESUMO
It is significant for people with diabetes to know their body's real-time glucose level, which can guide the diagnosis and treatment. Therefore, it is necessary to research continuous glucose monitoring (CGM) as it gives us real-time information about our health condition and its dynamic changes. Here, we report a novel hydrogel optical fiber fluorescence sensor segmentally functionalized with fluorescein derivative and CdTe QDs/3-APBA, which can continuously monitor pH and glucose simultaneously. In the glucose detection section, the complexation of PBA and glucose will expand the local hydrogel and decrease the fluorescence of the quantum dots. The fluorescence can be transmitted to the detector by the hydrogel optical fiber in real time. As the complexation reaction and the swelling-deswelling of the hydrogel are all reversible, the dynamic change of glucose concentration can be monitored. For pH detection, the fluorescein attached to another segment of the hydrogel exhibits different protolytic forms when pH changes and the fluorescence changes correspondingly. The significance of pH detection is compensation for pH errors in glucose detection because the reaction between PBA and glucose is sensitive to pH. The emission peaks of the two detection units are 517 nm and 594 nm, respectively, so there is no signal interference between them. The sensor can continuously monitor glucose in 0-20 mM and pH in 5.4-7.8. The advantages of this sensor are multi-parameter simultaneous detection, transmission-detection integration, real-time dynamic detection, and good biocompatibility.
Assuntos
Compostos de Cádmio , Pontos Quânticos , Humanos , Fibras Ópticas , Glucose , Hidrogéis , Tecnologia de Fibra Óptica , Automonitorização da Glicemia , Glicemia , Telúrio , Fluoresceína , Concentração de Íons de HidrogênioRESUMO
A simple yet powerful approach to obtain structural color is the amorphous assembly of colloidal spheres, which is also referred to as the amorphous photonic structure or photonic glasses (PGs). Additionally, the functionalization of the colloidal spheres as building blocks can further endow the resulting PGs with multifunctions. Herein, we have developed a facile strategy to prepare SiO2 colloidal spheres with concentrically embedded carbon dots (CDs). Notably, the CDs are prepared and silane-functionalized simultaneously, which enables the perfect incorporation of CDs into the Si-O network during the Stöber reaction and thus leads to the formation of a concentric SiO2/CD interlayer within the obtained SiO2 spheres. Moreover, the obtained SiO2/CD spheres can be applied as photonic pigments by assembling them into PGs, which exhibit structural color under daylight and fluorescence under UV illumination. With incorporation of carbon black, the structural color saturation and fluorescence intensity can be further manipulated. Owing to the combination of structural colored PGs and fluorescent CDs, our study can offer inspiration for color- and fluorescence-related applications such as sensing, in vivo imaging, LEDs, and anticounterfeiting.
RESUMO
On-line fabricated fiber Bragg grating (FBG) array and its sensing potentials have attracted plenty of attention in recent years. In this paper, FBG arrays are written on-line on a two-mode fiber, and this two-mode fiber Bragg grating (TM-FBG) is further experimentally investigated for temperature and curvature sensing. The responses of this sensor were characterized by 11.2 pm/°C and -0.21 dB/m-1 for temperature and curvature, respectively. Based on the measurements, a dual-parameter fiber sensing system was developed, which can realize the quasi-distributed, simultaneous detection of temperature and curvature, making it suitable for structural health monitoring or perimeter security.
RESUMO
Colloidal gold was prepared by citrate-induced reduction of hydrogen tetrachloroaurate. Gold nanoparticulate thin films were built up using the electrostatic self-assembly technique and characterized by different spectroscopes. The UV-Vis absorbance spectrum indicated that the gold colloid was a monodisperse suspension. The calculation using the Scherrer's equation on base of the X-ray diffraction spectrum indicated that the average size of the gold particles assembled on the substrates was about 21 nm. The X-ray photoelectron spectra showed that the reduction of hydrogen tetrachloroaurate was almost complete and that the gold was present in the thin films largely as Au zero. The X-ray photoelectron spectra also showed that the gold particles were attracted and fixed onto the PDDA-modified substrates by electrostatic forces. The UV-Vis absorbance spectra and the surface enhanced Raman scattering spectra indicated that, arising from the interparticle coupling, the gold nanoparticulate thin films displayed strong collective plasma resonance absorption and sur faced enhanced Raman scattering effect.