Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(5): 3087-3097, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38584438

RESUMO

Heparan sulfate proteoglycans (HSPGs) play a crucial role in regulating cancer growth and migration by mediating interactions with growth factors. In this study, we developed a self-assembling peptide (S1) containing a sulfate group to simulate the contiguous sulfated regions (S-domains) in heparan sulfate for growth factor binding, aiming to sequester growth factors like VEGF. Spectral and structural studies as well as simulation studies suggested that S1 self-assembled into nanostructures similar to the heparan sulfate chains and effectively bound to VEGF. On cancer cell surfaces, S1 self-assemblies sequestered VEGF, leading to a reduction in VEGF levels in the medium, consequently inhibiting cancer cell growth, invasion, and angiogenesis. This study highlights the potential of self-assembling peptides to emulate extracellular matrix functions, offering insights for future cancer therapeutic strategies.


Assuntos
Invasividade Neoplásica , Peptídeos , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Heparitina Sulfato/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Proliferação de Células/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico
2.
J Sci Food Agric ; 104(10): 5647-5659, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318758

RESUMO

The rapid growth of organic solid waste has recently exacerbated environmental pollution problems, and its improper treatment has led to the loss of a large number of biomass resources. Here, we expound the advantages of microbial agents composting compared with conventional organic solid waste treatment technology, and review the important role of microbial agents composting in organic solid waste composting from the aspects of screening and identification, optimization of conditions, mechanism of action, combination with other technologies and ultra-high-temperature and ultra-low-temperature microbial composting. We discuss the value of microorganisms with different growth conditions in organic solid waste composting, and put forward a seasonal multi-temperature composite microbial composting technology. Provide new ideas for the all-round treatment of microbial agents in organic solid waste in the future. © 2024 Society of Chemical Industry.


Assuntos
Bactérias , Compostagem , Eliminação de Resíduos , Resíduos Sólidos , Compostagem/métodos , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Microbiologia do Solo , Fungos/metabolismo , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Temperatura , Solo/química
3.
BMC Genomics ; 24(1): 268, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208635

RESUMO

BACKGROUND: The molecular mechanisms underlying the onset and progression of irreversible pulpitis have been studied for decades. Many studies have indicated a potential correlation between autophagy and this disease. Against the background of the competing endogenous RNA (ceRNA) theory, protein-coding RNA functions are linked with long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). This mechanism has been widely studied in various fields but has rarely been reported in the context of irreversible pulpitis. The hub genes selected under this theory may represent the key to the interaction between autophagy and irreversible pulpitis. RESULTS: Filtering and differential expression analyses of the GSE92681 dataset, which contains data from 7 inflamed and 5 healthy pulp tissue samples, were conducted. The results were intersected with autophagy-related genes (ARGs), and 36 differentially expressed ARGs (DE-ARGs) were identified. Functional enrichment analysis and construction of the protein‒protein interaction (PPI) network of DE-ARGs were performed. Coexpression analysis was conducted between differentially expressed lncRNAs (DElncRNAs) and DE-ARGs, and 151 downregulated and 59 upregulated autophagy-related DElncRNAs (AR-DElncRNAs) were identified. StarBase and multiMiR were then used to predict related microRNAs of AR-DElncRNAs and DE-ARGs, respectively. We established ceRNA networks including 9 hub lncRNAs (HCP5 and AC112496.1 ↑; FENDRR, AC099850.1, ZSWIM8-AS1, DLX6-AS1, LAMTOR5-AS1, TMEM161B-AS1 and AC145207.5 ↓), which were validated by a qRT‒PCR analysis of pulp tissue from patients with irreversible pulpitis. CONCLUSION: We constructed two networks consisting of 9 hub lncRNAs based on the comprehensive identification of autophagy-related ceRNAs. This study may provide novel insights into the interactive relationship between autophagy and irreversible pulpitis and identifies several lncRNAs that may serve as potential biological markers.


Assuntos
MicroRNAs , Pulpite , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Redes Reguladoras de Genes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
4.
Chembiochem ; 24(5): e202200652, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592168

RESUMO

Heparin is a commonly used anticoagulant in clinical practice; however, excessive heparin can cause serious adverse reactions. Convenient and accurate detection of heparin levels is thus very important. In this research, a pyrene-based self-assembling fluorescent peptide PyFFRRR was designed for simple, selective, and efficient heparin detection. The guanidine groups in the arginine residues of PyFFRRR bind tightly with heparin, which is highly sulfated, through electrostatic interactions. Charge neutralization facilitated the self-assembly of PyFFRRR, resulting in its spectral response changing from deep blue monomer fluorescence to green excimer fluorescence. PyFFRRR exhibited excellent sensitivity and selectivity for ratiometric detection of heparin. The binding mechanism was investigated by using spectral and simulation tools, and structural observation. Finally, PyFFRRR was employed in human serum samples for ratiometric detection of heparin.


Assuntos
Corantes Fluorescentes , Heparina , Humanos , Heparina/química , Corantes Fluorescentes/química , Peptídeos/química , Anticoagulantes , Espectrometria de Fluorescência/métodos , Pirenos/química
5.
Environ Res ; 237(Pt 2): 116976, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37625535

RESUMO

Soil, as a heterogeneous body, is composed of different-sized aggregates. There is limited data available on the potential role of microplastics (MPs) in microbial properties at the soil aggregate level. In this study, changes in microbial construction and diversity in farmland bulk soil and aggregates induced by polyethylene MPs (PE-MPs) were investigated at a dose of 0.5% (w/w) through 16s rDNA sequencing and enzyme activity measurements of different particle size aggregates in incubated soil. The presence of low-dose PE-MPs increased the proportion of >1 mm soil aggregates fraction, and decreased soil available nitrogen and available phosphorus in bulk soils. Furthermore, low-dose PE-MPs increased bacterial richness and diversity in 1-0.5 and < 0.25 mm fractions and decreased operational taxonomic unit, abundance-based coverage estimator, and Chao1 indices in bulk soil and >1 mm fractions. The levels of predicted functional genes taking part in the biodegradation and metabolism of exogenous substances also increased. At the phylum level, PE-MPs changed the proportion of Proteobacteria and Actinobacteria. The variations in soil aggregate properties were significantly correlated with the bacterial communities' composition and diversity. This study deepens our perception of the soil microenvironment, microbial community composition, and diversity in response to PE-MPs.

6.
Clin Oral Implants Res ; 34(6): 602-617, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37092468

RESUMO

AIM: Diabetics experience severe peri-implant inflammatory bone damage. We aimed to provide powerful evidence supporting the novel adiponectin receptor agonist AdipoAI in treating diabetes-associated peri-implantitis. MATERIALS AND METHODS: Twenty-four ZDF-Leprfa/Crl rats were randomly allocated to three groups (N = 8). After feeding with a high-fat diet to establish diabetic rats, experimental peri-implantitis was induced by implanting titanium rods (1.5 mm diameter and 20 mm length) contaminated with Staphylococcus aureus into the femurs. Radiographic evaluation, microCT, histological analyses and qRT-PCR were used to detect inflammatory infiltration and bone destruction. In vitro, the inhibition by AdipoAI of osteoclastogenesis, including the number and function of osteoclasts, was investigated by TRAP staining, immunofluorescence, qRT-PCR and Western blotting. Immunofluorescence, qRT-PCR and Western blotting were also utilized to explore AdipoR1, APPL1, NF-κB and Wnt5a-Ror2 signalling molecules in this process. One-way ANOVA with Tukey's post hoc test was used to compare the data. RESULTS: AdipoAI reduced inflammation and bone destruction caused by peri-implantitis in diabetic rats, which were manifested by a reduction in F4/80-positive macrophage infiltration by 72%, the number of osteoclasts by 58% and the levels of cytokines (p < .05) in disease group. In vitro, 1 µM AdipoAI decreased the number of osteoclasts to 51%, inhibited F-actin ring formation and reduced the levels of related markers (p < .05). Mechanistically, AdipoAI activated AdipoR1/APPL1 and conversely suppressed the phosphorylation of IκB-α, nuclear translocation of P65 and the Wnt5a-Ror2 signalling pathway (p < .05). CONCLUSIONS: AdipoAI suppressed osteoclastogenesis in diabetes-associated peri-implantitis by inhibiting the NF-κB and Wnt5a-Ror2 pathways via the AdipoR1/APPL1 axis.


Assuntos
Reabsorção Óssea , Implantes Dentários , Diabetes Mellitus Experimental , Peri-Implantite , Ratos , Animais , Peri-Implantite/patologia , Osteogênese , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Ligante RANK , Reabsorção Óssea/patologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia
7.
Ecotoxicol Environ Saf ; 259: 115037, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37210996

RESUMO

Peri-urban vegetable field plays an essential role in providing vegetables for local residents. Because of its particularity, it is affected by both industrial and agricultural activities which have led to the accumulations of heavy metal in soil. So far, information on heavy metal pollution status, spatial features, and human health risks in peri-urban vegetable areas across China is still scarce. To fill this gap, we systematically compiled soil and vegetable data collected from 123 articles published between 2010 and 2022 at a national level. The pollution status of heavy metals (i.e., cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn)) in peri-urban vegetable soils and vegetables were investigated. To evaluate the levels of heavy metal pollution in soil and human health risks, the geoaccumulation index (Igeo) and target hazard quotient (HQ) were calculated. The results showed that mean concentrations of Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn in peri-urban vegetable soils were 0.50, 0.53, 12.03, 41.97, 55.56, 37.69, 28.55, and 75.38 mg kg-1, respectively. The main pollutants in peri-urban vegetable soil were Cd and Hg, and 85.25% and 92.86% of the soil samples had Igeo > 1, respectively. The mean Igeo values of this regions followed the order of northwest > central > south > north > east > southwest > northeast for Cd and northeast > northwest > north > southwest > east > central > south for Hg. The mean Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn concentrations in vegetables were 0.30, 0.26, 0.37, 0.54, 1.17, 6.17, 1.96, and 18.56 mg kg-1, respectively. Approximately 87.01% (Cd), 71.43% (Hg), 20% (As), 65.15% (Pb), 27.08% (Cr) of the vegetable samples exceeded the safety requirement values. The vegetables grown in central, northwest, and northern China accumulated much more heavy metals than those grown in other regions. As the HQ values for adults, 53.25% (Cd), 71.43% (Hg), 84.00% (As), and 58.33% (Cr) of the sampled vegetables were higher than 1. For children, the HQ values were higher than 1 for 66.23% (Cd), 73.81% (Hg), 86.00% (As), and 87.50% (Cr) of the sampled vegetables. The findings of this study demonstrate that the situation of heavy metal pollution in peri-urban vegetable areas across China are not optimistic and residents who consume the vegetables are at high risk of health issues. To ensure soil quality and human health, strategies should be taken to guide vegetable production and remedy soil pollution in peri-urban areas with the rapidly urbanizing China.


Assuntos
Arsênio , Mercúrio , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Verduras , Solo , Cádmio , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Zinco , Cromo , Níquel , China , Medição de Risco , Monitoramento Ambiental/métodos
8.
Environ Monit Assess ; 195(2): 288, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627398

RESUMO

Mines are mostly located in the mountains and national forestlands in Taiwan. The development and use of mines have severely damaged the environment. Despite the long history of mining, the value of forest ecological services lost during mining operations have not yet been incorporated into the expenses borne by miners, and miners are not liable for compensation for ecological damage. This study evaluated the forest ecosystem service benefits lost since mining began, with the aim of providing future reference for calculating ecological damage related to mining. We investigated Mount Taibai mines in Yilan (northeast Taiwan) and Mount Yongshi mines in Hualian (east Taiwan), which are richly forested areas. According to Article 13 of the Mining Act in Taiwan, mining rights have a limitation of 20 years, and the two mines in this study have been in operation for 20 years. By using four ecological services-forest production, carbon sequestration, water resource replenishment, and forest recreation-we estimated the loss of ecological values in both mining regions. The result indicated that the loss of total forest production benefits over 20 years was 7,498.6 k New Taiwanese dollars (NTD) in Mount Taibai mines and 6,543.1 k NTD for Mount Yongshi mines, while the loss for the total carbon sequestration benefits over 20 years was 19,950 k NTD in Mount Taibai mines and 17,400 k NTD in Mount Yongshi mines. The loss of value for the total water conservation benefits over 20 years was 11,160 k NTD in Mount Taibai mines and 5,070 k NTD in Mount Yongshi mines. The loss value of forest recreation over 20 years was 1,443,855 k NTD for the two mines.


Assuntos
Ecossistema , Mineração , Monitoramento Ambiental , Taiwan
9.
Ecotoxicol Environ Saf ; 228: 112952, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34736033

RESUMO

To date, although there are many studies investigating the toxicity of heavy metal to plant, little research exists in the seasonal freeze-thaw (FT) regions where FT cycles often happen during the plant growing process. To reveal the adaptive mechanisms of plants to the combination stresses of cadmium (Cd) and FT, the Cd accumulation, subcellular distribution, chemical forms, and antioxidant enzyme activity (peroxidase (POD)) were investigated in spinach (Spinacia oleracea L.) growing under different soil Cd levels (i.e., 0.10 mg Cd kg-1 soil (low), 1.21 mg Cd kg-1 soil (medium), and 2.57 mg Cd kg-1 soil (high)). Compared to the non-freeze-thaw (NFT) treatments, higher Cd concentrations in the root and lower translocation factors from root to leaf were found for the plants experiencing FT cycles. FT significantly decreased the Cd concentrations in the leaves under the low- and medium-Cd treatments, while similar values were found for the high-Cd treatments. Generally, FT could decrease the concentrations and proportions of Cd stored in the cell wall and soluble fractions and increase them in the organelle fractions for the medium- and high-Cd treatments, while opposite tendency was found for the low-Cd treatments. Moreover, larger Cd amounts in the inorganic and water-soluble forms were found for the low- and medium-Cd treated plants under FT, while lower values were found for the high-Cd treatments. Additionally, POD, which presented higher activities at the low- and medium-Cd treatments and lower activities at the high-Cd treatments under FT, were also significantly influenced by the Cd × FT interaction. This study indicated that FT could significantly change the accumulations of Cd in plant, and it provided a new insight into the Cd accumulation by plants in the seasonal FT region.

10.
Analyst ; 145(15): 5266-5272, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32724991

RESUMO

Since most toxicological risk assessments are based on individual single-species tests, there is uncertainty in extrapolating these results to ecosystem assessments. Herein, we successfully developed a mediated microbial electrochemical biosensor with mixed microorganisms for toxicity detection by microelectrode array (MEA). In order to fully mobilize all the mixed microorganisms to participate in electron transfer to amplify the current signal, 1,4-benzoquinone (BQ) was used as the lipophilic mediator to mediate the intracellular metabolic activities. Hydrophilic K3[Fe(CN)6] was employed as an extracellular electron acceptor to transport electrons from hydroquinone (HQ) to the working electrode. Under the optimal conditions of 50 mM phosphate buffer solution (PBS), 0.4 mM BQ, 10 mM K3[Fe(CN)6] and OD600 = 0.5 bacteria concentration, the half-maximal inhibitory concentration (IC50) values measured with the composite-mediated respiration (CM-RES) of BQ-K3[Fe(CN)6] for Cu2+, Cd2+ and Zn2+ were 5.95, 7.12 and 8.86 mg L-1, respectively. IC50 values obtained with the single mediator K3[Fe(CN)6] were 2.34, 5.88 and 2.42 mg L-1 for the same samples. The results indicate that the biosensor with the single mediator K3[Fe(CN)6] had higher sensitivity to heavy metal ions than the biosensor with composite mediators. After verification, we found that the addition of BQ cannot amplify the current. The IC50 value of 0.89 mg L-1 for BQ was obtained using K3[Fe(CN)6] as the single mediator. This suggests that BQ is highly toxic, which explained why the sensitivity of the biosensor with the combined mediator BQ-K3[Fe(CN)6] was lower than that of the biosensor with the single mediator K3[Fe(CN)6]. At the same time, this also implies that toxicity itself cannot be ignored when it is used as an electronic mediator in a mediated microbial electrochemical biosensor.


Assuntos
Técnicas Biossensoriais , Metais Pesados , Benzoquinonas/toxicidade , Ecossistema , Água
11.
J Environ Manage ; 256: 109943, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31989978

RESUMO

Magnetic graphene oxide-titanate composites (MGO@TNs) were synthesized via growing titanate nanosheets on the graphene oxide sheets with magnetite nanoparticles anchored on. The as-prepared MGO@TNs showed a hierarchical structure and large specific surface area (193.4 m2/g), which were suitable for rapid and effective adsorption of Pb(II) from wastewater. Moreover, the loaded magnetite nanoparticles guaranteed the effective magnetic separation of MGO@TNs, avoiding secondary pollution. The adsorption mechanism were illuminated to be ion exchange and surface complexation. Batch adsorption experiments showed the maximum adsorption capacity of MGO@TNs reached 322.7 mg/g for Pb(II) removal. The removal efficiency retained 89.6% after six adsorption-desorption cycles. In addition, the efficiency reached up to 99.8% when applying MGO@TNs for removal of Pb(II) from simulated realistic battery wastewater, ensuring the safe discharge of treated water. The good adsorption performance, recyclability and easy magnetic separation ability made sure that the MGO@TNs has great potential for purification of Pb(II) contaminated wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Grafite , Cinética , Chumbo , Fenômenos Magnéticos , Águas Residuárias
12.
Molecules ; 25(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151026

RESUMO

The solar selective absorber coating (SSAC) are at the core of the efficient solar-thermal system. In this paper, for the first time, the Chromium-iron oxidation mixture cermet was successfully prepared on the surface of ultra-pure ferritic stainless steel by chemical coloring as SSAC. The coating surface has an optical trap structure, and the chromium-iron oxidation mixture cermet is used as an absorption layer to realize solar-thermal conversion. The solar absorptance (AM1.5) of the coating reached 93.66, and the thermal emittance was less than 13. After thermal shock tests at 25/300 °C done 32 times (accumulated 812.8 h), the Performance Criterion (PC) of the coating was 0.01375 < 0.05, showing outstanding thermal stability.


Assuntos
Cimentos Cermet/química , Cromo/química , Ferro/química , Oxirredução , Luz Solar , Fenômenos Químicos , Modelos Teóricos , Propriedades de Superfície , Termodinâmica
13.
Ecotoxicol Environ Saf ; 161: 662-668, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29935430

RESUMO

Because the extensive use of Cu-based fungicides, the accumulation of Cu in agricultural soil has been widely reported. However, little information is known about the bioavailability of Cu deriving from different fungicides in soil. This paper investigated both the distribution behaviors of Cu from two commonly used fungicides (Bordeaux mixture and copper oxychloride) during the aging process and the toxicological effects of Cu on earthworms. Copper nitrate was selected as a comparison during the aging process. The distribution process of exogenous Cu into different soil fractions involved an initial rapid retention (the first 8 weeks) and a following slow continuous retention. Moreover, Cu mainly moved from exchangeable and carbonate fractions to Fe-Mn oxides-combined fraction during the aging process. The Elovich model fit well with the available Cu aging process, and the transformation rate was in the order of Cu(NO3)2 > Bordeaux mixture > copper oxychloride. On the other hand, the biological responses of earthworms showed that catalase activities and malondialdehyde contents of the copper oxychloride treated earthworms were significantly higher than those of Bordeaux mixture treated earthworms. Also, body Cu loads of earthworms from different Cu compounds spiked soils were in the following order: copper oxychloride > Bordeaux mixture. Thus, the bioavailability of Cu from copper oxychloride in soil was significantly higher than that of Bordeaux mixture, and different Cu compounds should be taken into consideration when studying the bioavailability of Cu-based fungicides in the soil.


Assuntos
Cobre/análise , Fungicidas Industriais/análise , Poluentes do Solo/análise , Animais , Disponibilidade Biológica , Cobre/farmacocinética , Cobre/toxicidade , Fungicidas Industriais/farmacocinética , Fungicidas Industriais/toxicidade , Nitratos/análise , Oligoquetos/efeitos dos fármacos , Oligoquetos/enzimologia , Oligoquetos/metabolismo , Solo/química , Poluentes do Solo/farmacocinética , Poluentes do Solo/toxicidade
14.
J Sol Energy Eng ; 140(2): 0210051-210055, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29844616

RESUMO

The increase of operating temperature on a photovoltaic (PV) cell degrades its electrical efficiency. This paper is organized to describe our latest design of an aluminum substrate-based photovoltaic/thermal (PV/T) system. The electrical efficiency of the proposed PV/T can be increased by ∼ 20% in comparison with a conventional glass substrate-based PV. The work will benefit hybrid utilization of solar energy in development of building integrated photovoltaic systems.

15.
J Environ Manage ; 196: 8-15, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28284141

RESUMO

Due to the long and severe winter in Northeast China, wastewater containing lead (Pb) is treated inefficiently, resulting in irregular disposal. In order to solve this problem, a Pb-resistant psychrotrophic bacterium, Pseudomonas sp. I3, was isolated from permafrost soil of Mohe wetland and served as biosorbent for Pb2+ removal under 15 °C. The minimum inhibitory concentration of strain I3 for Pb2+ was 7.5 mM, which was higher than that of Escherichia coli DH5α (1.5 mM). However, acid digestion results showed that these two bacteria had a comparable biosorption capacity for Pb2+, suggesting no direct relationship between biosorption ability of bacteria and their metal-resistance. Acid digestion results also proved that intracellular Pb accumulation was mainly contributed to the distinct performance between living and non-living biosorbents, which was further confirmed by the analyses of TEM-EDS. Results of FTIR revealed that functional groups including CH2, CO, CN, NH, COO and SO3 were participated in the biosorption process of the tested biosorbents no matter bacteria were living or not. The effects of environmental factors including pH, temperature, biomass dose, operation time and initial Pb2+ concentration were investigated through a batch of biosorption experiments. The equilibrium data for living and non-living biosorbent were well fitted to Langmuir model with their maximum Pb2+ biosorption capacities of 49.48 and 42.37 mg/g, respectively. The kinetic data for each biosorbent were well described by pseudo-second order kinetic model. Overall, Pseudomonas sp. I3 seemed to be an effective biosorbent for cleansing Pb2+ from contaminated wastewater at low temperature.


Assuntos
Pergelissolo , Pseudomonas , Áreas Alagadas , Adsorção , Biomassa , China , Concentração de Íons de Hidrogênio , Cinética , Chumbo
16.
Bioresour Technol ; 396: 130415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316228

RESUMO

Microbial immobilization technology is effective in improving bioremediation efficiency and heavy metal pollution. Herein, Bacillus LD513 with hexavalent chromium (Cr(VI)) tolerance was isolated and immobilized on a novel ferrous disulfide (FeS2)/iron nitride (FeN) modified hydrochar (Fe3-SNHC) prepared from waste straws. The prepared Fe3-SNHC-based LD513 (FeLD) significantly improves Cr(VI) adsorption and reduction by 31.4 % and 15.7 %, respectively, compared to LD513 alone. Furthermore, the FeLD composite system demonstrates efficient Cr(VI) removal efficiency and good environmental adaptability under different culture conditions. Microbial metabolism and electrochemical analysis indicate that Fe3-SNHC is an ideal carrier for protecting LD513 activity, promoting extracellular polymer secretion, and reducing oxidative stress. Additionally, the carrier serves as an electron shuttle that accelerates electron transfer and promotes Cr(VI) reduction. Overall, FeLD is an environmentally friendly biocomposite that shows good promise for reducing Cr(VI) contamination in wastewater treatment.


Assuntos
Bacillus , Compostos Férricos , Ferro , Sulfetos , Poluentes Químicos da Água , Bacillus/metabolismo , Adsorção , Elétrons , Cromo/metabolismo
17.
J Hazard Mater ; 471: 134251, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640669

RESUMO

Corn planting is often associated with serious atrazine pollution and excessive corn straw amounts, causing severe threats to environmental and ecological security, as well as to green agricultural development. In this context, a Paenarthrobacter sp. KN0901 strain was applied to simultaneously remove atrazine and straw at low temperatures. The results of whole genome sequencing indicated that KN0901 encoded over nine straw biodegradation-related enzymes. In addition, 100 % and 27.3 % of atrazine and straw were simultaneously degraded by KN0901 following an incubation period of seven days at 15 ºC and 180 rpm in darkness. The KN0901 strain maintained high atrazine and straw biodegradation rates under temperature and pH ranges of 4-25 ºC and 5-9, respectively. The simultaneous atrazine and corn straw additions improved the microbial growth and biodegradation rates by increasing the functional gene expression level, cell viability, inner membrane permeability, and extracellular polymeric substance contents of KN0901. The hydroponic experiment results demonstrated the capability of the KN0901 strain to mitigate the toxicity of atrazine to soybeans in four days under the presence of corn straw. The present study provides a new perspective on the development of bioremediation approaches and their application to restore atrazine-polluted cornfields with large straw quantities, particularly in cold areas.


Assuntos
Atrazina , Biodegradação Ambiental , Temperatura Baixa , Herbicidas , Zea mays , Atrazina/toxicidade , Atrazina/metabolismo , Herbicidas/toxicidade , Herbicidas/metabolismo , Sequenciamento Completo do Genoma , Genoma Bacteriano
18.
Sci Total Environ ; 917: 170541, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38290684

RESUMO

Microplastics (MPs) can co-occur widely with heavy metals in soil. This study intended to investigate the influences of the co-exposure of polyethylene MPs (0.5 %, w/w) and cadmium (Cd) in black soil on the Cd distribution, enzyme activities, and bacterial communities in both bulk soil and different sized soil aggregates (> 1, 0.50-1, 0.25-0.50, and < 0.25 mm aggregates) after a 90-day incubation. Our results showed that the existence of MPs increased the distributions of Cd in >1 mm and < 0.25 mm soil aggregates and decreased its distributions in 0.50-1 mm and 0.25-0.50 mm soil aggregates. About 12.15 %-17.65 % and 9.03 %-11.13 % of Cd were distributed in the exchangeable and oxidizable forms in bulk soil and various sized soil aggregates after the addition of MPs which were higher than those in the only Cd-treated soil (11.17 %-14.72 % and 8.66 %-10.43 %, respectively), while opposite tendency was found for Cd in the reducible form. Urease and ß-glucosidase activities in the Cd-treated soils were 1.14-1.18 and 1.07-1.31 times higher than those in the Cd-MPs treated soils. MPs disturbed soil bacterial community at phylum level and increased the bacteria richness in bulk soil. The levels of predicted functional genes which are linked to the biodegradation and metabolism of exogenous substances and soil C and N cycles were altered by the co-exposure of Cd and MPs. The findings of this study could help deepen our knowledge about the responses of soil properties, especially microbial community, to the co-occurrence of MPs and heavy metals in soil.


Assuntos
Metais Pesados , Poluentes do Solo , Microplásticos , Cádmio/análise , Plásticos , Solo , Polipropilenos , Poluentes do Solo/análise , Bactérias
19.
Heliyon ; 10(7): e28255, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560198

RESUMO

The thermal performance of a flat plate solar collector (FPSC) is a critical indicator that depends on the environment, operational parameters, and dimensions. This study examines the impact of size on thermal performance improvement mechanisms. Firstly, numerical simulation models are introduced as the foundation for optimization research. This involves analyzing the flow resistance of microchannels and defining their structural parameters. Furthermore, experimental tests were conducted on a stainless steel flat plate solar collector (S/S FPSC) with the best design parameters to validate the accuracy of the mathematical model during the design phase. The results indicate that increasing the width of the microchannel and the height of corrugations can effectively enhance the thermal performance of the S/S FPSC. The momentary efficiency is projected to reach a remarkable 86.10% under ideal circumstances. Additionally, a mathematical expression was proposed to establish the relationship between the surrounding conditions and the momentary efficiency of the S/S FPSC. Moreover, the microchannel comprises S/S material, maintaining a homogeneous temperature distribution to maximize heat absorption. The use of stainless steel also extends the lifespan of the FPSC.

20.
Sci Total Environ ; 946: 174147, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909800

RESUMO

Environmental behaviors of heavy metal in soil are strongly influenced by seasonal freeze-thaw events at the mid-high altitudes. However, the potential impact mechanisms of freeze-thaw cycles on the vertical migration of heavy metal are still poor understood. This study aimed to explore how exogenous cadmium (Cd) migrated and remained in soil during the in-situ seasonal freeze-thaw action using rare earth elements (REEs) as tracers. As a comparison, soil which was incubated in the controlled laboratory (25 °C) was employed. Although there was no statistically significant difference in the Cd levels of different soil depths under different treatments, the original aggregate sources of Cd in the 5-10 cm and 10-15 cm soil layers differed. From the distributions of REEs in soil profile, it can be known that Cd in the subsurface of field incubated soil was mainly from the breakdown of >0.50 mm aggregates, while it was mainly from the <0.106 mm aggregates for the laboratory incubated soil. Furthermore, the dissolved and colloidal Cd concentrations were 0.47 µg L-1 and 0.62 µg L-1 in the leachates from field incubated soil than those from control soil (0.21 µg L-1 and 0.43 µg L-1). Additionally, the colloid-associated Cd in the leachate under field condition was mainly from the breakdown of >0.25 mm aggregates and the direct migration of <0.106 mm aggregates, while it was the breakdown of >0.50 mm and the direct migration of <0.106 mm aggregates for the soil under laboratory condition. Our results for the first time provided insights into the fate of exogenous contaminants in seasonal frozen regions using the rare earth element tracing method.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa