Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(10): e2304814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875646

RESUMO

Owing to the limited electrochemical stability window of carbonate electrolytes, the initial formation of a solid electrolyte interphase and surface film on the negative and positive electrode surfaces by the decomposition of the electrolyte component is inevitable for the operation of lithium secondary batteries. The deposited film on the surface of the active material is vital for reducing further electrochemical side reactions at the surface; hence, the manipulation of this formation process is necessary for the appropriate operation of the assembled battery system. In this study, the thermal decomposition of LiPF6 salt is used as a surface passivation agent, which is autocatalytically formed during high-temperature storage. The thermally formed difluorophosphoric acid is subsequently oxidized on the partially charged high-Ni positive electrode surface, which improves the cycleability of lithium metal cells via phosphorus- and fluorine-based surface film formation. Moreover, the improvement in the high-temperature cycleability is demonstrated by controlling the formation process in the lithium-ion pouch cell with a short period of high-temperature storage before battery usage.

2.
Small ; 19(28): e2301754, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36970771

RESUMO

The uncontrollable dendritic growth of metallic lithium during repeated cycling in carbonate electrolytes is a crucial obstacle hindering the practical use of Li-metal batteries (LMBs). Among numerous approaches proposed to mitigate the intrinsic constraints of Li metal, the design of a functional separator is an attractive approach to effectively suppress the growth of Li dendrites because direct contact with both the Li metal surface and the electrolyte is maintained. Here, a newly designed all-in-one separator containing bifunctional CaCO3 nanoparticles (CPP separator) is proposed to achieve the flattening of Li deposits on the Li electrode. Strong interactions between the highly polar CaCO3 nanoparticles and the polar solvent reduces the ionic radius of the Li+ -solvent complex, thus increasing the Li+ transference number and leading to a reduced concentration overpotential in the electrolyte-filled separator. Furthermore, the integration of CaCO3 nanoparticles into the separator induces the spontaneous formation of mechanically-strong and lithiophilic CaLi2 at the Li/separator interface, which effectively decreases the nucleation overpotential toward Li plating. As a result, the Li deposits exhibit dendrite-free planar morphologies, thus enabling excellent cycling performance in LMBs configured with a high-Ni cathode in a carbonate electrolyte under practical operating conditions.

3.
Transpl Int ; 36: 11552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663524

RESUMO

Although the association between post-transplant malignancy (PTM) and immunosuppressive therapy after organ transplantation has been studied, an integrated review of PTM after lung transplantation is lacking. We investigated the incidence and types of de novo PTM and its impact on survival following double lung transplantation (DLT). The incidence and type of PTM as well as the annual and cumulative risks of each malignancy after DLT were analyzed. The overall survival (OS) of recipients with or without PTM was compared by the Kaplan-Meier survival method and landmark analysis. There were 5,629 cases (23.52%) with 27 types of PTMs and incidences and OS varied according to the types of PTMs. The recipients with PTM showed a significantly longer OS than those without PTM (p < 0.001). However, while the recipients with PTM showed significantly better OS at 3, and 5 years (p < 0.001, p = 0.007), it was worse at the 10-year landmark time (p = 0.013). And the single PTM group showed a worse OS rate than the multiple PTM group (p < 0.001). This comprehensive report on PTM following DLT can help understand the risks and timing of PTM to improve the implementation of screening and treatment.


Assuntos
Terapia de Imunossupressão , Transplante de Pulmão , Neoplasias , Incidência , Risco , Terapia de Imunossupressão/efeitos adversos , Neoplasias/classificação , Neoplasias/epidemiologia , Neoplasias/mortalidade , Humanos , Masculino , Adulto , Pessoa de Meia-Idade
4.
Small ; 17(9): e1902138, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31441230

RESUMO

An all-solid-state lithium battery based on a sulfide electrolyte is one of the most promising next-generation energy storage systems. However, the high interfacial impedance, particularly due to the internal pores in the electrode or electrolyte layers, is the major limiting factor to the development of sheet-type all-solid-state batteries. In this study, a low-resistance integrated all-solid composite electrode is developed using a hybrid of a pyrrolidinium-based ionic liquid and a polyethylene oxide polymer with lithium salt as a multifunctional interphase material, which is engineered to be compatible with the sulfide electrolyte as well as the fabrication process of sheet-type composite electrode. The interphase material fills the pore in the composite sheet while binding the components together, which effectively increases the interfacial contact area and strengthens the physical network between the components, thereby enabling enhanced ion transport throughout the electrode. The interphase-engineered sheet-type LiNi0.8 Co0.1 Mn0.1 O2 /Li10 GeP2 S12 electrode shows a high reversible capacity of 166 mAh g-1 at 25 °C, corresponding to 92% of the observed capacity in a current liquid-based cathode system, as well as enhanced cycle and rate performances. This study proposes a novel and practical method for the development of high-performance sheet-type all-solid-state lithium batteries.

5.
Chemphyschem ; 20(5): 752-756, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30629322

RESUMO

Porous carbonaceous anode materials have received considerable attention as an alternative anode material, however, there is a critical bottleneck as it suffers from a large irreversible specific capacity loss over several initial cycles owing to undesired surface reactions. In order to suppress undesired surface reactions of porous carbonaceous anode material, here, we suggest a simple and convenient two-step surface modification approach that allows the embedding of an amide functional group on the surface of a porous carbonaceous anode, which effectively improves the surface stability. In this approach, the porous carbonaceous anode material is firstly activated by means of strong acid treatment comprising a combination of H2 SO4 and HNO3 , and it is subjected to further modification by means of an amide coupling reaction. Our additional systematic analyses confirm that the acid functional group effectively transforms into the amide functional group. The resulting amide-functionalized porous carbon exhibits an improved electrochemical performance: the initial discharge specific capacity is greatly reduced to less than 2,620 mA h g-1 and charge specific capacity is well still remained, indicating stabling cycling performance of the cell.

6.
Nano Lett ; 15(8): 5059-67, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26177284

RESUMO

User safety is one of the most critical issues for the successful implementation of lithium ion batteries (LIBs) in electric vehicles and their further expansion in large-scale energy storage systems. Herein, we propose a novel approach to realize self-extinguishing capability of LIBs for effective safety improvement by integrating temperature-responsive microcapsules containing a fire-extinguishing agent. The microcapsules are designed to release an extinguisher agent upon increased internal temperature of an LIB, resulting in rapid heat absorption through an in situ endothermic reaction and suppression of further temperature rise and undesirable thermal runaway. In a standard nail penetration test, the temperature rise is reduced by 74% without compromising electrochemical performances. It is anticipated that on the strengths of excellent scalability, simplicity, and cost-effectiveness, this novel strategy can be extensively applied to various high energy-density devices to ensure human safety.

7.
Biochem Biophys Res Commun ; 460(3): 603-8, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25800872

RESUMO

Signaling events triggered by T cell receptor (TcR) stimulation are important targets for the development of common therapeutics for various autoimmune diseases. SLAP is a negative regulator of TcR-mediated signaling cascade via targeting TcR zeta chain for degradation through recruiting the ubiquitin ligase c-Cbl. In this study, we generated a transducible form of SH3 and SH2 domains of SLAP (ctSLAPΔC) which can be specifically targeted to the cytoplasm of a cell. ctSLAPΔC inhibited tyrosine phosphorylation of signaling mediators such as ZAP-70 and LAT involved in T cell activation, and effectively suppressed transcriptional activity of NFAT and NFκB upon TcR stimulation. The transduced ctSLAPΔC in T cells blocked the secretion of T cell-specific cytokines such as IL-2, IFNγ, IL-17A, and IL-4 and induced the expression of CD69 and CD25 on effector T cells without influencing the cell viability. Inhibition of TcR-mediated signaling via SLAP blocked the differentiation of naïve T cells into Th1, Th2 or Treg cells with different sensitivity, suggesting that qualitative and quantitative intensity of TcR-mediated signaling in the context of polarizing cytokines environment may be a critical factor to determine the differentiation fate of naïve T cells. These results suggest that cytoplasm-specific transduction of the SH3 and SH2 domains of SLAP has a therapeutic potential of being an immunosuppressive reagent for the treatment of various autoimmune diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoplasma/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais/fisiologia , Domínios de Homologia de src , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Células HeLa , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas pp60(c-src)/química
8.
Phys Chem Chem Phys ; 16(20): 9337-43, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24715040

RESUMO

We introduce a ceramic composite separator prepared by coating moisturized ZrO2 nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-12wt%HFP) copolymer on a polyethylene separator. The effect of moisturized ZrO2 nanoparticles on the morphology and the microstructure of the polymeric coating layer is investigated. A large number of micropores formed around the embedded ZrO2 nanoparticles in the coating layer as a result of the phase inversion caused by the adsorbed moisture. The formation of micropores highly affects the ionic conductivity and electrolyte uptake of the ceramic composite separator and, by extension, the rate discharge properties of lithium ion batteries. In particular, thermal stability of the ceramic composite separators coated with the highly moisturized ZrO2 nanoparticles (a moisture content of 16 000 ppm) is dramatically improved without any degradation in electrochemical performance compared to the performance of pristine polyethylene separators.

9.
Clin Lung Cancer ; 25(4): 365-375.e14, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644088

RESUMO

INTRODUCTION: Immune checkpoint inhibitors (ICIs) may be associated with hyperprogressive disease (HPD). However, there is currently no standardized definition of HPD, with its risk factors and clinical implications remaining unclear. We investigated HPD in lung cancer patients undergoing immunotherapy, aiming to redefine HPD, identify risk factors, and assess its impact on survival. METHODS: Clinical and radiologic data from 121 non-small cell lung cancer (NSCLC) patients with 136 immunotherapy cases were reviewed retrospectively. Three HPD definitions (Champiat et al., HPDc; Saâda-Bouzid et al., HPDs; and Ferrara et al., HPDf) were employed. Additionally, all new measurable lesions on the post-treatment CT scan were incorporated in measuring the sum of longest diameters (SLD) to define modified HPD (mHPD). RESULTS: Among the 121 patients, 4 (3.3%) had HPDc, 11 (9.1%) had HPDs, and none had HPDf. Adding all new measurable lesions increased HPD incidence by 5%-10% across definitions. Multivariate analysis revealed significantly lower progression-free survival (PFS) and overall survival (OS) for patients with HPDc (HR 5.25, P = .001; HR 3.75, P = .015) and HPDs (HR 3.74, P < .001; HR 3.46, P < .001) compared to those without. Patients with mHPD showed similarly poor survival outcomes as HPD patients. Liver metastasis at diagnosis was associated with HPDs, and a high tumor burden correlated with HPDc. CONCLUSIONS: The incidence and risk factors of HPD varied with different definitions, but mHPD identified more cases with poor outcomes. This comprehensive approach may enhance the identification of at-risk patients and lead to a better understanding of HPD in lung cancer during immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Progressão da Doença , Imunoterapia , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Feminino , Fatores de Risco , Idoso , Estudos Retrospectivos , Pessoa de Meia-Idade , Imunoterapia/métodos , Incidência , Inibidores de Checkpoint Imunológico/uso terapêutico , Idoso de 80 Anos ou mais , Adulto , Taxa de Sobrevida , Prognóstico
10.
J Nanosci Nanotechnol ; 13(5): 3298-302, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23858847

RESUMO

The effect of a oxygen treatment on the electrochemical characteristics of a soft carbon anode material for Li-ion batteries was investigated. After a coke carbonization process at 1000 degrees C in an argon atmosphere, the samples were treated under a flow of oxygen gas to obtain a mild oxidation effect. After this oxygen treatment, the coke samples exhibited an improved initial coulombic efficiency and cycle performance as compared to the carbonized sample. High-resolution transmission electron microscopy revealed that the carbonized cokes consisted of disordered and nanosized graphene layers and the surface of the modified carbon was significantly changed after the treatment. The chemical state of the cokes was analyzed using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The enhanced electrochemical properties of the surface modified cokes could be attributed to the mild oxidation effect induced by the oxygen treatment. The mild oxidation process could have led to the elimination of surface imperfections and the reinforcement of a solid electrolyte interphase film, which resulted in the improved electrochemical characteristics.


Assuntos
Coque , Fontes de Energia Elétrica , Eletrodos , Lítio/química , Oxigênio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura Alta , Íons , Teste de Materiais
11.
ACS Appl Mater Interfaces ; 15(8): 10744-10751, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787511

RESUMO

This study validates the beneficial role of residual Li compounds on the surface of Ni-rich cathode materials (LiNixCoyMnzO2, NCM). Residual Li compounds on Ni-rich NCM are naturally formed during the synthesis procedure, which degrades the initial Coulombic efficiency and generates slurry gelation during electrode fabrication in Li-ion batteries (LIBs) using liquid electrolytes. To solve this problem, washing pretreatment is usually introduced to remove residual Li compounds on the NCM surface. In contrast to LIBs, we found that residual Li compounds can serve as a functional layer that suppresses the interfacial side reactions of the NCM in all-solid-state batteries (ASSBs). The formation of resistive phosphate-based compounds from the undesirable side reaction during the initial charging step is suppressed by the residual Li compounds on the surface of the NCM, thereby reducing polarization growth in ASSBs and enhancing rate performances. The advantageous effects of the intrinsic residual Li compounds on the NCM surface suggest that the essential washing process of the NCM for the liquid-based LIB system should be reconsidered for ASSB systems.

12.
ACS Nano ; 17(16): 15931-15941, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37548961

RESUMO

For realizing all-solid-state batteries (ASSBs), it is highly desirable to develop a robust solid electrolyte (SE) that has exceptional ionic conductivity and electrochemical stability at room temperature. While argyrodite-type Li6PS5Cl (LPSCl) SE has garnered attention for its relatively high ionic conductivity (∼3.19 × 10-3 S cm-1), it tends to emit hydrogen sulfide (H2S) in the presence of moisture, which can hinder the performance of ASSBs. To address this issue, researchers are exploring approaches that promote structural stability and moisture resistance through elemental doping or substitution. Herein, we suggest using zeolite imidazolate framework-8 as a moisture absorbent in LPSCl without modifying the structure of the SE or the electrode configuration. By incorporating highly ordered porous materials, we demonstrate that ASSBs configured with LPSCl SE display stable cyclability due to effective and long-lasting moisture absorption. This approach not only improves the overall quality of ASSBs but also lays the foundation for developing a moisture-resistant sulfide electrolyte.

13.
ChemSusChem ; 16(10): e202202009, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36577695

RESUMO

Porous carbon is considered an attractive host material for high-energy sulfur electrodes. This study concerns the design of a porous carbon-based sulfur electrode for the formulation of high-energy Li-S batteries. The porous carbon is impregnated with up to 80 vol.% of sulfur and a reduction in both the conductive agent and binder content. Therefore, less solvent can be used during slurry casting to inhibit crack formation following electrode drying. In addition, the utilization of two distinct electrically conducting networks enables reduced battery polarization, resulting in a battery with a capacity of 690 mAh g-1 (even after 100 cycles). Finally, pouch cells are prepared to characterize the practical performance of the optimized cathode. This yields a capacity of 741 mAh and a cathode energy density of 1001 Wh kg-1 . These findings are expected to guide the further development of high-energy-density cathode materials for Li-S batteries.

14.
Ann Transplant ; 28: e941301, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050347

RESUMO

BACKGROUND To evaluate the role of double-lung transplantation (DLT) for lung cancer, the survival outcomes of patients who underwent DLT for lung cancer and the incidence of de novo lung cancer after DLT were assessed. MATERIAL AND METHODS Data from all cases reported in the literature were pooled for analysis and additional data were collected from the Organ Procurement Transplantation Network (OPTN) registry. Recurrence-free survival (RFS), overall survival (OS), and cancer-specific survival (CSS) of patients who underwent DLT for lung cancer were determined. Moreover, the incidence of de novo lung cancer and associated OS in lung transplant recipients were examined. RESULTS Of the 20 cases series and 15 cases from the OPTN registry, the 5-year RFS was 55.0% and 66.7% and the 5-year OS was 55.0% and 26.7%, respectively, and the median CSS was 48.0 (range, 2.0-144.0) and 27.7 (range, 0.2-66.6) months, respectively. In the OPTN data, the incidence of post-transplant lung cancer in patients who underwent DLT for the non-cancerous disease was 0.8% and the 5-year OS was 47.3%. CONCLUSIONS In conclusion, our integrated analysis of the case series and the OPTN registry demonstrated promising survival outcomes for patients with refractory bilateral lung cancer who underwent DLT. Although there are limitations to consider, the results of this study underscore the potential benefits of DLT in managing refractory lung-limited lung cancer.


Assuntos
Neoplasias Pulmonares , Transplante de Pulmão , Transplante de Órgãos , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/cirurgia , Incidência , Transplante de Pulmão/métodos , Pulmão , Estudos Retrospectivos
15.
ACS Appl Mater Interfaces ; 15(5): 6923-6932, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715535

RESUMO

The lithium (Li) metal anode is highly desirable for high-energy density batteries. During prolonged Li plating-stripping, however, dendritic Li formation and growth are probabilistically high, allowing physical contact between the two electrodes, which results in a cell short-circuit. Engineering the separator is a promising and facile way to suppress dendritic growth. When a conventional coating approach is applied, it usually sacrifices the bare separator structure and severely increases the thickness, ultimately decreasing the volumetric density. Herein, we introduce dielectric silicon oxide with the feature of bi-morphological form, i.e., backbone-covered and backbone-anchored, onto the conventional polyethylene separator without any volumetric change. These functionally vary the Li+ transference number and the ionic conductivity so as to modulate Li-ion solvation and self-scavenging of Li dendrites. The proposed separator paves the way to maximizing the full cell performance of Li/NCM622 toward practical application.

16.
ACS Appl Mater Interfaces ; 15(50): 58367-58376, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079499

RESUMO

Halide solid electrolytes (SEs) have been highlighted for their high-voltage stability. Among the halide SEs, the ionic conductivity has been improved by aliovalent metal substitutions or choosing a ccp-like anion-arranged monoclinic structure (C2/m) over hcp- or bcc-like anion-arranged structures. Here, we present a new approach, hard-base substitution, and its underlying mechanism to increase the ionic conductivity of halide SEs. The oxygen substitution to Li2ZrCl6 (trigonal, hcp) increased the ionic conductivity from 0.33 to 1.3 mS cm-1 at Li3.1ZrCl4.9O1.1 (monoclinic, ccp), while the sulfur and fluorine substitutions were not effective. A systematic comparison study revealed that the energetic stabilization of interstitial sites for Li migration plays a key role in improving the ionic conductivity, and the ccp-like anion sublattice is not sufficient to achieve high ionic conductivity. We further examined the feasibility of the oxyhalide SE for practical and all-solid-state battery applications.

17.
Phys Chem Chem Phys ; 14(19): 6796-804, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22481469

RESUMO

A practical route is introduced for synthesizing a sulfur-impregnated graphene composite as a promising cathode material for lithium-sulfur batteries. Sulfur particles with a size of a few microns are successfully grown in the interior spaces between randomly dispersed graphene sheets through a heterogeneous crystal growth mechanism. The proposed route not only enables the control of the particle size of active sulfur but also affords quantitative yields of composite powder in large quantities. We investigate the potential use of the sulfur-impregnated graphene composite as a cathode material owing to its advantages of confining active sulfur, preventing the dissolution of soluble polysulfides, and providing sufficient electrical conduction. A high discharge capacity of 1237 mA h g(-1) during the first cycle and a good cyclic retention of 67% after 50 cycles are attained in a voltage range of 1.8-2.6 V vs. Li/Li(+). These results emphasize the importance of tailoring cathode materials for improving the electrochemical properties of lithium-sulfur batteries. Our results provide a basis for further investigations on advanced lithium batteries.

18.
ACS Appl Mater Interfaces ; 14(31): 35645-35653, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900885

RESUMO

To promote the reversible cycleability of Li metal negative electrodes, a Li-chelating azamacrocyclic ligand molecule is introduced into a carbonate-based electrolyte intended for lithium metal batteries. Reversible Li plating and stripping on the Cu electrode are found to be the outcomes of the bifunctional effects of adding the lithium nitrate-chelating azamacrocyclic ligand. The negatively shifted redox potential of the Li-chelating macrocyclic ligand, relative to that of the free Li-ion, acted as a cationic shielding molecule for smooth Li deposition, and the Li3N-based solid electrolyte interphase (SEI) film derived from the nitrate anion strengthened the interphasial characteristics of the Li metal negative electrode. Cationic shielding and Li3N-based SEI composition could help enhance the cycleability of the Li metal in a cascading manner. Consequently, the physicochemical characteristics of the lithium nitrate-chelated 1,4,8,11-tetramethyl-1,4,8,11-tetraazacylcotetradecane molecule exhibit stable Li/LiNi0.8Co0.1Mn0.1O2 cycleability.

19.
Sci Rep ; 11(1): 4508, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627694

RESUMO

Zinc dendrite growth negatively affects zinc-bromine flow battery (ZBB) performance by causing membrane damage, inducing self-discharge. Herein, in a ZBB, a conventional polymer mesh was replaced with a titanium-based mesh interlayer; this provided additional abundant active sites for the Zn2+/Zn redox reaction and well-developed electrolyte flow channels, which resulted in improved reaction kinetics and suppressed Zn dendrite growth. Compared with a ZBB cell comprising a conventional polymer mesh and a carbon-based electrode, the ZBB cell using the titanium mesh interlayer and a carbon-based electrode showed significantly reduced frequency of the refreshing process, which occurs at regular cycling intervals during practical use for removing residual zinc dendrites in ZBB; also, the average energy efficiency at a current density of 40 mA cm-2 increased by 38.5%. Moreover, the modified ZBB cell exhibited higher energy efficiency at a high current density of 80 mA cm-2, which is an improvement of 14.7% than in case of the contemporary polymer mesh. Consequently, this study can provide helpful insights for new anode side structures including spacer mesh for developing high-performance ZBBs.

20.
Nat Commun ; 11(1): 4542, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917888

RESUMO

Previous research predicts significant negative yield impacts from warming temperatures, but estimating the effects on yield risk and disentangling the relative causes of these losses remains challenging. Here we present new evidence on these issues by leveraging a unique publicly available dataset consisting of roughly 30,000 county-by-year observations on insurance-based measures of yield risk from 1989-2014 for U.S. corn and soybeans. Our results suggest that yield risk will increase in response to warmer temperatures, with a 1 °C increase associated with yield risk increases of approximately 32% and 11% for corn and soybeans, respectively. Using cause of loss information, we also find that additional losses under warming temperatures primarily result from additional reported occurrences of drought, with reported losses due to heat stress playing a smaller role. An implication of our findings is that the cost of purchasing crop insurance will increase for producers as a result of warming temperatures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa