Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849556

RESUMO

Surface terminations profoundly influence the intrinsic properties of MXenes, but existing terminations are limited to monoatomic layers or simple groups, showing disordered arrangements and inferior stability. Here we present the synthesis of MXenes with triatomic-layer borate polyanion terminations (OBO terminations) through a flux-assisted eutectic molten etching approach. During the synthesis, Lewis acidic salts act as the etching agent to obtain the MXene backbone, while borax generates BO2- species, which cap the MXene surface with an O-B-O configuration. In contrast to conventional chlorine/oxygen-terminated Nb2C with localized charge transport, OBO-terminated Nb2C features band transport described by the Drude model, exhibiting a 15-fold increase in electrical conductivity and a 10-fold improvement in charge mobility at the d.c. limit. This transition is attributed to surface ordering that effectively mitigates charge carrier backscattering and trapping. Additionally, OBO terminations provide Ti3C2 MXene with substantially enriched Li+-hosting sites and thereby a large charge-storage capacity of 420 mAh g-1. Our findings illustrate the potential of intricate termination configurations in MXenes and their applications for (opto)electronics and energy storage.

2.
Chemistry ; 30(2): e202302779, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37877583

RESUMO

Sulfur is one of the most abundant and economical elements in the p-block family and highly redox active, potentially utilizable as a charge-storing electrode with high theoretical capacities. However, its inherent good solubility in many electrolytes inhibits its accessibility as an electrode material in typical metal-sulfur batteries. In this work, the synthetically designed fluorinated porous polymer, when treated with elemental sulfur through a well-known nucleophilic aromatic substitution mechanism (SN Ar), allows for the covalent integration of polysulfides into a highly conjugated benzimidazole polymer by replacing the fluorine atoms. Chemically robust benzimidazole linkages allow such harsh post-synthetic treatment and facilitate the electronic activation of the anchored polysulfides for redox reactions under applied potential. The electrode amalgamated with sulfurized polymer mitigates the so-called polysulfide shuttle effect in the lithium-sulfur (Li-S) battery and also enables a reversible, more environmentally friendly, and more economical aluminum-sulfur (Al-S) battery that is configured with mostly p-block elements as cathode, anode, and electrolytes. The improved cycling stabilities and reduction of the overpotential in both cases pave the way for future sustainable energy storage solutions.

3.
Angew Chem Int Ed Engl ; 63(19): e202401818, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38465851

RESUMO

Magnesium (Mg) batteries hold promise as a large-scale energy storage solution, but their progress has been hindered by the lack of high-performance cathodes. Here, we address this challenge by unlocking the reversible four-electron Te0/Te4+ conversion in elemental Te, enabling the demonstration of superior Mg//Te dual-ion batteries. Specifically, the classic magnesium aluminum chloride complex (MACC) electrolyte is tailored by introducing Mg bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2), which initiates the Te0/Te4+ conversion with two distinct charge-storage steps. Te cathode undergoes Te/TeCl4 conversion involving Cl- as charge carriers, during which a tellurium subchloride phase is presented as an intermediate. Significantly, the Te cathode achieves a high specific capacity of 543 mAh gTe -1 and an outstanding energy density of 850 Wh kgTe -1, outperforming most of the previously reported cathodes. Our electrolyte analysis indicates that the addition of Mg(TFSI)2 reduces the overall ion-molecule interaction and mitigates the strength of ion-solvent aggregation within the MACC electrolyte, which implies the facilized Cl- dissociation from the electrolyte. Besides, Mg(TFSI)2 is verified as an essential buffer to mitigate the corrosion and passivation of Mg anodes caused by the consumption of the electrolyte MgCl2 in Mg//Te dual-ion cells. These findings provide crucial insights into the development of advanced Mg-based dual-ion batteries.

4.
Angew Chem Int Ed Engl ; 63(24): e202316299, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38422222

RESUMO

Vinylene-linked two-dimensional polymers (V-2DPs) and their layer-stacked covalent organic frameworks (V-2D COFs) featuring high in-plane π-conjugation and robust frameworks have emerged as promising candidates for energy-related applications. However, current synthetic approaches are restricted to producing V-2D COF powders that lack processability, impeding their integration into devices, particularly within membrane technologies reliant upon thin films. Herein, we report the novel on-water surface synthesis of vinylene-linked cationic 2DPs films (V-C2DP-1 and V-C2DP-2) via Knoevenagel polycondensation, which serve as the anion-selective electrode coating for highly-reversible and durable zinc-based dual-ion batteries (ZDIBs). Model reactions and theoretical modeling revealed the enhanced reactivity and reversibility of the Knoevenagel reaction on the water surface. On this basis, we demonstrated the on-water surface 2D polycondensation towards V-C2DPs films that show large lateral size, tunable thickness, and high chemical stability. Representatively, V-C2DP-1 presents as a fully crystalline and face-on oriented film with in-plane lattice parameters of a=b≈43.3 Å. Profiting from its well-defined cationic sites, oriented 1D channels, and stable frameworks, V-C2DP-1 film possesses superior bis(trifluoromethanesulfonyl)imide anion (TFSI-)-transport selectivity (transference, t_=0.85) for graphite cathode in high-voltage ZDIBs, thus triggering additional TFSI--intercalation stage and promoting its specific capacity (from ~83 to 124 mAh g-1) and cycling life (>1000 cycles, 95 % capacity retention).

5.
Angew Chem Int Ed Engl ; 63(3): e202313591, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38011010

RESUMO

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) are emerging as a unique subclass of layer-stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make the best use of the intrinsic electronic properties and structural features of 2D c-MOFs, the controlled synthesis of hierarchically nanostructured 2D c-MOFs with high crystallinity and customized morphologies is essential, which remains a great challenge. Herein, we present a template strategy to synthesize a library of 2D c-MOFs with controlled morphologies and dimensions via insulating MOFs-to-c-MOFs transformations. The resultant hierarchically nanostructured 2D c-MOFs feature intrinsic electrical conductivity and higher surface areas than the reported bulk-type 2D c-MOFs, which are beneficial for improved access to active sites and enhanced mass transport. As proof-of-concept applications, the hierarchically nanostructured 2D c-MOFs exhibit a superior performance for electrical properties related applications (hollow Cu-BHT nanocubes-based supercapacitor and Cu-HHB nanoflowers-based chemiresistive gas sensor), achieving over 225 % and 250 % improvement in specific capacity and response intensity over the corresponding bulk type c-MOFs, respectively.

6.
J Am Chem Soc ; 145(11): 6247-6256, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36893495

RESUMO

Although two-dimensional conjugated metal-organic frameworks (2D c-MOFs) provide an ideal platform for precise tailoring of capacitive electrode materials, high-capacitance 2D c-MOFs for non-aqueous supercapacitors remain to be further explored. Herein, we report a novel phthalocyanine-based nickel-bis(dithiolene) (NiS4)-linked 2D c-MOF (denoted as Ni2[CuPcS8]) with outstanding pseudocapacitive properties in 1 M TEABF4/acetonitrile. Each NiS4 linkage is disclosed to reversibly accommodate two electrons, conferring the Ni2[CuPcS8] electrode a two-step Faradic reaction with a record-high specific capacitance among the reported 2D c-MOFs in non-aqueous electrolytes (312 F g-1) and remarkable cycling stability (93.5% after 10,000 cycles). Multiple analyses unveil that the unique electron-storage capability of Ni2[CuPcS8] originates from its localized lowest unoccupied molecular orbital (LUMO) over the nickel-bis(dithiolene) linkage, which allows the efficient delocalization of the injected electrons throughout the conjugated linkage units without inducing apparent bonding stress. The Ni2[CuPcS8] anode is used to demonstrate an asymmetric supercapacitor device that delivers a high operating voltage of 2.3 V, a maximum energy density of 57.4 Wh kg-1, and ultralong stability over 5000 cycles.

7.
Prostate ; 83(12): 1167-1175, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37189301

RESUMO

BACKGROUND: This study aimed to evaluate the effectiveness of 18 F-fluoro-2-deoxy-D-glucose Positron emission tomography/computed tomography (18 F-FDG PET/CT) in predicting prognosis and characterizing the intratumoral glucose uptake of neuroendocrine prostate cancer (NEPC). METHODS: We retrospectively reviewed 189 NEPC patients from two medical centers between January 2009 and April 2021. Of these, 44 patients met the inclusion criteria. The maximum standardized uptake value (SUVmax) was measured to assess the metabolic state of NEPC and comparison were made between different histopathological subtypes. Kaplan-Meier and Cox regression analyses were performed to evaluate the predictive value of SUVmax on overall survival (OS) and progression-free survival (PFS). RESULTS: This study analyzed 44 NEPC patients and found that 13 patients had small cell neuroendocrine carcinoma (SCNC), while 31 were diagnosed with adenocarcinoma with neuroendocrine differentiation (Ad-NED) based on histopathology, and a positive correlation was found between SUVmax and SCNC via Spearman correlation test (rs = 0.60, p < 0.0001). Furthermore, SUVmax demonstrated good diagnostic accuracy in differentiating SCNC from Ad-NED (area under the curve 0.88, 95% confidence interval [CI] 0.76-0.99). Kaplan-Meier survival analyses and univariate analyses revealed that patients with SUVmax > 10.2 had a significantly shorter OS than patients with SUVmax ≤ 10.2 (hazard ratio = 4.83, 95% CI 1.45-16.1, p = 0.01). CONCLUSIONS: The histopathological subtypes in NEPC showed a close correlation with the glucose metabolic activity of primary tumors as assessed by 18 F-FDG PET/CT. High SUVmax values in primary prostate tumors were associated with a worse OS in NEPC patients.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Tomografia por Emissão de Pósitrons , Prognóstico , Neoplasias da Próstata/diagnóstico por imagem
8.
Small ; 19(35): e2301546, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37186448

RESUMO

Laser reduction of graphene oxide (GO) with direct-write technology is promising to develop miniaturized energy storage devices because of highly flexible, mask-free, and chemical-free merits. However, laser reduction of GO is often accompanied with deflagration (spectacular and violent deoxygenating reaction), leading reduced graphene oxide (rGO) films into brittle and irregular internal structure which is harmful to the applications. Here, a pre-reduction strategy is demonstrated to avoid this deflagration and realize a uniform laser-reduced GO (LrGO) matrix for the application of flexible micro-supercapacitors (MSCs).The pre-reduction process with ascorbic acid decreases the content of oxygen-containing functional groups on GO in advance, and thus relieves gases emission and avoids unconstrained expansion during the laser reduction process. In addition, a self-assembled skeleton with pre-reduced GO (PGO) nanosheets could be constructed which is a more appropriate aforehand framework for laser reduction to establish controllable rGO films with the homogenous porosity. The quasi-solid-state MSCs assembled with laser-reduced PGO exhibit the maximum areal capacitance of 88.32 mF cm-2 , good cycling performance (capacitance retention of 82% after 2000 cycles), and outstanding flexibility (no capacitance degradation after bending for 5000 times). This finding provides opportunities to enhance quality of LrGO which is promising for micro-power devices and beyond.

9.
Small ; 19(34): e2301620, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093212

RESUMO

Aqueous zinc metal batteries (ZMBs) are a promising sustainable technology for large-scale energy storage applications. However, the water is often associated with problematic parasitic reactions on both anode and cathode, leading to the low durability and reliability of ZMBs. Here, a multifunctional separator for the Zn-V2 O5 batteries by growing the coordination supramolecular network (CSN:Zn-MBA, MBA = 2-mercaptobenzoic acid) on the conventional non-woven fabrics (NWF) is developed. CSN tends to form a stronger coordination bond as a softer cation, enabling a thermodynamically preferred Zn2+ to VO2 + substitution in the network, leading to the formation of VO2 -MBA interface, that strongly obstructs the VO2 (OH)2 - penetration but simultaneously allows Zn2+ transfer. Moreover, Zn-MBA molecules can adsorb the OTF- and distribute the interfacial Zn2+ homogeneous, which facilitate a dendrite-free Zn deposition. The Zn-V2 O5 cells with Zn-MBA@NWF separator realize high capacity of 567 mAh g-1 at 0.2 A g-1 , and excellent cyclability over 2000 cycles with capacity retention of 82.2% at 5 A g-1 . This work combines the original advantages of the template and new function of metals via cation metathesis within a CSN, provides a new strategy for inhibiting vanadium oxide dissolution.

10.
Small ; : e2306732, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38073322

RESUMO

Currently, most reported 2D conjugated metal-organic frameworks (2D c-MOFs) are based on planar polycyclic aromatic hydrocarbons (PAHs) with symmetrical functional groups, limiting the possibility of introducing additional substituents to fine-tune the crystallinity and electrical properties. Herein, a novel class of wavy 2D c-MOFs with highly substituted, core-twisted hexahydroxy-hexa-cata-benzocoronenes (HH-cHBCs) as ligands is reported. By tailoring the substitution of the c-HBC ligands with electron-withdrawing groups (EWGs), such as fluorine, chlorine, and bromine, it is demonstrated that the crystallinity and electrical conductivity at the molecular level can be tuned. The theoretical calculations demonstrate that F-substitution leads to a more reversible coordination bonding between HH-cHBCs and copper metal center, due to smaller atomic size and stronger electron-withdrawing effect. As a result, the achieved F-substituted 2D c-MOF exhibits superior crystallinity, comprising ribbon-like single crystals up to tens of micrometers in length. Moreover, the F-substituted 2D c-MOF displays higher electrical conductivity (two orders of magnitude) and higher charge carrier mobility (almost three times) than the Cl-substituted one. This work provides a new molecular design strategy for the development of wavy 2D c-MOFs and opens a new route for tailoring the coordination reversibility by ligand substitution toward increased crystallinity and superior electric conductivity.

11.
Phytother Res ; 37(10): 4321-4352, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37641442

RESUMO

Osteoarthritis (OA) is a degenerative joint disease that affects millions globally. The present nonsteroidal anti-inflammatory drug treatments have different side effects, leading researchers to focus on natural anti-inflammatory products (NAIPs). To review the effectiveness and mechanisms of NAIPs in the cellular microenvironment, examining their impact on OA cell phenotype and organelles levels. Additionally, we summarize relevant research on drug delivery systems and clinical randomized controlled trials (RCTs), to promote clinical studies and explore natural product delivery options. English-language articles were searched on PubMed using the search terms "natural products," "OA," and so forth. We categorized search results based on PubChem and excluded "natural products" which are mix of ingredients or compounds without the structure message. Then further review was separately conducted for molecular mechanisms, drug delivery systems, and RCTs later. At present, it cannot be considered that NAIPs can thoroughly prevent or cure OA. Further high-quality studies on the anti-inflammatory mechanism and drug delivery systems of NAIPs are needed, to determine the appropriate drug types and regimens for clinical application, and to explore the combined effects of different NAIPs to prevent and treat OA.

12.
Angew Chem Int Ed Engl ; 62(30): e202306091, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37204021

RESUMO

Emerging rechargeable aluminium batteries (RABs) offer a sustainable option for next-generation energy storage technologies with low cost and exemplary safety. However, the development of RABs is restricted by the limited availability of high-performance cathode materials. Herein, we report two polyimide two-dimensional covalent organic frameworks (2D-COFs) cathodes with redox-bipolar capability in RAB. The optimal 2D-COF electrode achieves a high specific capacity of 132 mAh g-1 . Notably, the electrode presents long-term cycling stability (with a negligible ≈0.0007 % capacity decay per cycle), outperforming early reported organic RAB cathodes. 2D-COFs integrate n-type imide and p-type triazine active centres into the periodic porous polymer skeleton. With multiple characterizations, we elucidate the unique Faradaic reaction of the 2D-COF electrode, which involves AlCl2+ and AlCl4 - dual-ions as charge carriers. This work paves the avenue toward novel organic cathodes in RABs.

13.
Small ; 18(22): e2107971, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35499186

RESUMO

Commercialization of aqueous zinc-metal batteries remains unrealistic due to the substantial dendrite growth and side reaction issues on the zinc anodes. It is highly demanded to develop easy-to-handle approaches for constructing stable, dense, as well as homogeneous solid anode/electrolyte interfaces. Herein, the authors construct the zinc anode interface with a close-packed Zn-TSA (TSA = thiosalicylate) coordination supramolecular network through the facile and up-scalable wet-chemical method. The hydrophobic Zn-TSA network can block solvated water and establish a solid-state diffusion barrier to well-distribute the interfacial Zn2+ , thus inhibiting hydrogen evolution and zinc dendrite growth on the anode. Meanwhile, the Zn-TSA network induces the formation of a uniform and stable solid electrolyte interphase composed of multiple inorganic-organic compounds. This denser structure can accommodate and self-heal the crack/degradation of the anode interphase associated with the repeated volume changes, and suppress the generation of detrimental by-product, Znx (OTF- )y (OH)2x-y ·nH2 O. Such a rationally fabricated anode/electrolyte interface further endows the assembled symmetric cells with superior plating/stripping stability for over 2000 h without dendrite formation (at 1 mA cm-2 and 1 mAh cm-2 ). Furthermore, this zinc anode has practical application in the Zn-MoS2 and Zn-V2 O5 full cells. This study provides a new train of thought for constructing the dense interface of zinc-metal anode.


Assuntos
Fontes de Energia Elétrica , Eletrólitos , Eletrodos , Água , Zinco
14.
Chem Soc Rev ; 50(4): 2388-2443, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33346774

RESUMO

The ever-increasing energy demand motivates the pursuit of inexpensive, safe, scalable, and high-performance rechargeable batteries. Carbon materials have been intensively investigated as electrode materials for various batteries on account of their resource abundance, low cost, nontoxicity, and diverse electrochemistry. Taking use of the reversible donor-type cation intercalation/de-intercalation (including Li+, Na+, and K+) at low redox potentials, carbon materials can serve as ideal anodes for 'Rocking-Chair' alkali metal-ion batteries. Meanwhile, acceptor-type intercalation of anions into graphitic carbon materials has also been revealed to be a facile, reversible process at high redox potentials. Based on anion-intercalation graphitic carbon materials, a number of dual-ion battery and Al-ion battery technologies are experiencing booming development. In this review, we summarize the significant advances of carbon materials in terms of the porous structure, chemical composition, and interlayer spacing control. Fundamental mechanisms of carbon materials as the cation host and anion host are further revisited by elaborating the electrochemistry, intercalant effect, and intercalation form. Subsequently, the recent progress in the development of novel carbon nanostructures and carbon-derived energy storage devices is presented with particular emphasis on correlating the structures with electrochemical properties as well as assessing the device configuration, electrochemical reaction, and performance metric. Finally, perspectives on the remaining challenges are provided, which will accelerate the development of new carbon material concepts and carbon-derived battery technologies towards commercial implementation.

15.
Angew Chem Int Ed Engl ; 61(36): e202209746, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35822954

RESUMO

Single-atom catalysts (SACs), as promising alternatives to Pt-based catalysts, suffer from the limited choice of center metals and low single-atom loading. Here, we report a pentacoordinated Zr-based SAC with nontrivial axial O ligands (denoted O-Zr-N-C) for oxygen reduction reaction (ORR). The O ligand downshifts the d-band center of Zr and confers Zr sites with stable local structure and proper adsorption capability for intermediates. Consequently, the ORR performance of O-Zr-N-C prominently surpasses that of commercial Pt/C, achieving a half-wave potential of 0.91 V vs. reversible hydrogen electrode and outstanding durability (92 % current retention after 130-hour operation). Moreover, the Zr site shows good resistance towards aggregation, enabling the synthesis of Zr-based SAC with high loading (9.1 wt%). With the high-loading catalyst, the zinc-air battery (ZAB) delivers a record-high power density of 324 mW cm-2 among those of SAC-based ZABs.

16.
Angew Chem Int Ed Engl ; 61(49): e202209762, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36161682

RESUMO

Vinylene-linked two-dimensional covalent organic frameworks (V-2D-COFs) have shown great promise in electronics and optoelectronics. However, only a few reactions for V-2D-COFs have been developed hitherto. Besides the kinetically low reversibility of C=C bond formation, another underlying issue facing the synthesis of V-2D-COFs is the attainment of high (E)-alkene selectivity to ensure the appropriate symmetry of 2D frameworks. Here, we tailor the E/Z selectivity of the Wittig reaction by employing a proper catalyst (i.e., Cs2 CO3 ) to obtain more stable intermediates and elevating the temperature across the reaction barrier. Subsequently, the Wittig reaction is innovatively utilized for the synthesis of four crystalline V-2D-COFs by combining aldehydes and ylides. Importantly, the efficient conjugation and decent crystallinity of the resultant V-2D-COFs are demonstrated by their high charge carrier mobilities over 10 cm2  V-1 s-1 , as revealed by non-contact terahertz (THz) spectroscopy.

17.
J Am Chem Soc ; 143(27): 10168-10176, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185519

RESUMO

Advanced supercapacitor electrodes require the development of materials with dense redox sites embedded into conductive and porous skeletons. Two-dimensional (2D) conjugated metal-organic frameworks (c-MOFs) are attractive supercapacitor electrode materials due to their high intrinsic electrical conductivities, large specific surface areas, and quasi-one-dimensional aligned pore arrays. However, the reported 2D c-MOFs still suffer from unsatisfying specific capacitances and narrow potential windows because large and redox-inactive building blocks lead to low redox-site densities of 2D c-MOFs. Herein, we demonstrate the dual-redox-site 2D c-MOFs with copper phthalocyanine building blocks linked by metal-bis(iminobenzosemiquinoid) (M2[CuPc(NH)8], M = Ni or Cu), which depict both large specific capacitances and wide potential windows. Experimental results accompanied by theoretical calculations verify that phthalocyanine monomers and metal-bis(iminobenzosemiquinoid) linkages serve as respective redox sites for pseudocapacitive cation (Na+) and anion (SO42-) storage, enabling the continuous Faradaic reactions of M2[CuPc(NH)8] occurring in a large potential window of -0.8 to 0.8 V vs Ag/AgCl (3 M KCl). The decent conductivity (0.8 S m-1) and high active-site density further endow the Ni2[CuPc(NH)8] with a remarkable specific capacitance (400 F g-1 at 0.5 A g-1) and excellent rate capability (183 F g-1 at 20 A g-1). Quasi-solid-state symmetric supercapacitors are further assembled to demonstrate the practical application of Ni2[CuPc(NH)8] electrode, which deliver a state-of-the-art energy density of 51.6 Wh kg-1 and a peak power density of 32.1 kW kg-1.

18.
Faraday Discuss ; 227: 321-331, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33290460

RESUMO

Flexible electrodes with robust mechanical properties and high electrochemical performance are of significance for the practical implementation of flexible batteries. Here we demonstrate a general and straightforward co-assembly approach to prepare flexible electrodes, where electrochemically exfoliated graphene (EG) is exploited as the film former/conducting matrix and different binary metal oxides (Li4Ti5O12, LiCoO2, Li2MnO4, LiFePO4) are incorporated. The resultant EG-metal oxide hybrids exhibit a unique layer-interlocked structure, where the metal oxide is conformably wrapped by the highly flexible graphene. Due to numerous contact interphases generated between EG and the intercalated material, the hybrid films show high flexibility and can endure rolling, bending, folding and even twisting. When serving as the anode for Li-ion batteries, the freestanding EG-Li4Ti5O12 hybrid presents a characteristic flat discharge plateau at 1.55 V (vs. Li/Li+), indicating transformation of Li4Ti5O12 to Li7Ti5O12. Small polarization, high rate capability and excellent cycling stability against mechanical bending are also demonstrated for the prepared EG-Li4Ti5O12 hybrid. Finally, full cells composed of EG-Li4Ti5O12 and EG-LiFePO4 hybrids show impressive cycling (98% capacity retention after 100 cycles at 1C) and rate performance (84% capacity retained at 2.5C). The straightforward co-assembly approach based on EG can be extended to other two-dimensional layered materials for constructing highly efficient flexible energy storage devices.

19.
J Biomed Inform ; 117: 103736, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33711547

RESUMO

The recent outbreak of COVID-19 has infected millions of people around the world, which is leading to the global emergency. In the event of the virus outbreak, it is crucial to get the carriers of the virus timely and precisely, then the animal origins can be isolated for further infection. Traditional identifications rely on fields and laboratory researches that lag the responses to emerging epidemic prevention. With the development of machine learning, the efficiency of predicting the viral hosts has been demonstrated by recent researchers. However, the problems of the limited annotated virus data and imbalanced hosts information restrict these approaches to obtain a better result. To assure the high reliability of predicting the animal origins on COVID-19, we extend transfer learning and ensemble learning to present a hybrid transfer learning model. When predicting the hosts of newly discovered virus, our model provides a novel solution to utilize the related virus domain as auxiliary to help building a robust model for target virus domain. The simulation results on several UCI benchmarks and viral genome datasets demonstrate that our model outperforms the general classical methods under the condition of limited target training sets and class-imbalance problems. By setting the coronavirus as target domain and other related virus as source domain, the feasibility of our approach is evaluated. Finally, we show the animal reservoirs prediction of the COVID-19 for further analysing.


Assuntos
COVID-19 , Reservatórios de Doenças , Aprendizado de Máquina , Animais , Surtos de Doenças , Humanos , Reprodutibilidade dos Testes , SARS-CoV-2
20.
Angew Chem Int Ed Engl ; 60(2): 896-903, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33000516

RESUMO

Among various charge-carrier ions for aqueous batteries, non-metal hydronium (H3 O+ ) with small ionic size and fast diffusion kinetics empowers H3 O+ -intercalation electrodes with high rate performance and fast-charging capability. However, pure H3 O+ charge carriers for inorganic electrode materials have only been observed in corrosive acidic electrolytes, rather than in mild neutral electrolytes. Herein, we report how selective H3 O+ intercalation in a neutral ZnCl2 electrolyte can be achieved for water-proton co-intercalated α-MoO3 (denoted WP-MoO3 ). H2 O molecules located between MoO3 interlayers block Zn2+ intercalation pathways while allowing smooth H3 O+ intercalation/diffusion through a Grotthuss proton-conduction mechanism. Compared to α-MoO3 with a Zn2+ -intercalation mechanism, WP-MoO3 delivers the substantially enhanced specific capacity (356.8 vs. 184.0 mA h g-1 ), rate capability (77.5 % vs. 42.2 % from 0.4 to 4.8 A g-1 ), and cycling stability (83 % vs. 13 % over 1000 cycles). This work demonstrates the possibility of modulating electrochemical intercalating ions by interlayer engineering, to construct high-rate and long-life electrodes for aqueous batteries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa