Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Haematologica ; 109(2): 591-603, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37534514

RESUMO

The deletion of chromosome 17p (del(17p)) is considered a crucial prognostic factor at the time of diagnosis in patients with multiple myeloma (MM). However, the impact of del(17p) on survival at different clonal sizes at relapse, as well as the patterns of clonal evolution between diagnosis and relapse and their prognostic value, has not been well described. To address these issues, we analyzed the interphase fluorescence in situ hybridization (iFISH) results of 995 newly diagnosed MM (NDMM) patients and 293 patients with MM at their first relapse. Among these patients, 197 had paired iFISH data at diagnosis and first relapse. Our analysis of paired iFISH revealed that a minor clone of del(17p) at relapse but not at diagnosis was associated with poor prognosis in MM (hazard ratio for median overall survival 1.64 vs. 1.44). Fifty-six and 12 patients developed one or more new cytogenetic abnormalities at relapse, mainly del(17p) and gain/amp(1q), respectively. We classified the patients into six groups based on the change patterns in the clonal size of del(17p) between the two time points. Patients who did not have del(17p) during follow-up showed the best outcomes, whereas those who acquired del(17p) during their disease course, experienced compromised survival (median overall survival: 61.3 vs. 49.4 months; hazard ratio =1.64; 95% confidence interval: 1.06-2.56; P<0.05). In conclusion, our data confirmed the adverse impact of a minor clone of del(17p) at relapse and highlighted the importance of designing optimal therapeutic strategies to eliminate high-risk cytogenetic abnormalities (clinicaltrials gov. identifier: NCT04645199).


Assuntos
Mieloma Múltiplo , Humanos , Aberrações Cromossômicas , Hibridização in Situ Fluorescente , Mieloma Múltiplo/terapia , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia , Prognóstico
2.
Ann Hematol ; 103(4): 1305-1315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38049586

RESUMO

Prognostic significance of multiple immune antigens in multiple myeloma has been well established. However, a level of uncertainty remains regarding the intrinsic relationship between immunophenotypes and cytogenetic stability and precise risk stratification. To address these unresolved issues, we conducted a study involving 1389 patients enrolled in the National Longitudinal Cohort of Hematological Diseases in China (NCT04645199). Our results revealed that the correlation between antigen expression and cytogenetics is more prominent than cytopenia or organ dysfunction. Most immune antigens, apart from CD38, CD138, and CD81, exhibit significant associations with the incidence of at least one cytogenetic abnormality. In turn, we identified CD138-low/CD27-neg as specific adverse immunophenotypic profile, which remaining independent impact on progression-free survival (HR, 1.49; P = 0.007) and overall survival (HR, 1.77; P < 0.001) even in the context of cytogenetics. Importantly, CD138-low/CD27-neg profile was also associated with inferior survival after first relapse (P < 0.001). Moreover, the antigen expression profiles were not strictly similar when comparing diagnosis and relapse; in particular, the CD138-low/CD27-neg pattern was notably increased after disease progression (19.1 to 29.1%; P = 0.005). Overall, our study demonstrates that diverse immune profiles are strongly associated with cytogenetic stability, and a specific immunophenotype (CD138-low/CD27-neg) could effectively predict prognoses across different disease stages.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Prognóstico , Aberrações Cromossômicas , Análise Citogenética , Recidiva
3.
Blood ; 136(4): 468-479, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32187357

RESUMO

High protein load is a feature of multiple myeloma (MM), making the disease exquisitely sensitive to proteasome inhibitor (PIs). Despite the success of PIs in improving patient outcome, the majority of patients develop resistance leading to progressive disease; thus, the need to investigate the mechanisms driving the drug sensitivity vs resistance. With the well-recognized chaperone function of 14-3-3 proteins, we evaluated their role in affecting proteasome activity and sensitivity to PIs by correlating expression of individual 14-3-3 gene and their sensitivity to PIs (bortezomib and carfilzomib) across a large panel of MM cell lines. We observed a significant positive correlation between 14-3-3ε expression and PI response in addition to a role for 14-3-3ε in promoting translation initiation and protein synthesis in MM cells through binding and inhibition of the TSC1/TSC2 complex, as well as directly interacting with and promoting phosphorylation of mTORC1. 14-3-3ε depletion caused up to a 50% reduction in protein synthesis, including a decrease in the intracellular abundance and secretion of the light chains in MM cells, whereas 14-3-3ε overexpression or addback in knockout cells resulted in a marked upregulation of protein synthesis and protein load. Importantly, the correlation among 14-3-3ε expression, PI sensitivity, and protein load was observed in primary MM cells from 2 independent data sets, and its lower expression was associated with poor outcome in patients with MM receiving a bortezomib-based therapy. Altogether, these observations suggest that 14-3-3ε is a predictor of clinical outcome and may serve as a potential target to modulate PI sensitivity in MM.


Assuntos
Proteínas 14-3-3/metabolismo , Bortezomib/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mieloma Múltiplo , Proteínas de Neoplasias/metabolismo , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Feminino , Humanos , Masculino , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Células Tumorais Cultivadas
4.
BMC Cancer ; 17(1): 795, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29179704

RESUMO

BACKGROUND: As the important suppressor of P53, iASPP is found to be overexpressed in leukemia, and functions as oncogene that inhibited apoptosis of leukemia cells. Sertad1 is identified as one of the proteins that can bind with iASPP in our previous study by two-hybrid screen. METHODS: Co-immunoprecipitation and immunofluorescence were perfomed to identified the interaction between iASPP and Sertad1 protein. Westernblot and Real-time quantitative PCR were used to determine the expression and activation of proteins. Cell proliferation assays, cell cycle and cell apoptosis were examined by flow cytometric analysis. RESULTS: iASPP combined with Sertad1 in leukemic cell lines and the interaction occurred in the cytoplasm near nuclear membrane. iASPP could interact with Sertad1 through its Cyclin-A, PHD-bromo, C terminal domain, except for S domain. Overexpression of iASPP in leukemic cells resulted in the increased cell proliferation and resistance to apoptosis induced by chemotherapy drugs. While overexpression of iASPP and Sertad1 at the same time could slow down the cell proliferation, lead the cells more vulnerable to the chemotherapy drugs, the resistance to chemotherapeutic drug in iASPPhi leukemic cells was accompanied by Puma protein expression. Excess Sertad1 protein could tether iASPP protein in the cytoplasm, further reduced the binding between iASPP and P53 in the nucleus. CONCLUSIONS: Sertad1 could antagonize iASPP function by hindering its entrance into nuclei to interact with P53 in leukemic cells when iASPP was in the stage of overproduction.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Citoplasma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas Nucleares/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Transativadores/química , Fatores de Transcrição
5.
Ther Adv Med Oncol ; 16: 17588359231221340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38249329

RESUMO

Background: Deeper depth of response (DpR) after induction therapy, especially gain of negative minimal residual disease (MRD), has been linked to prolonged survival in multiple myeloma (MM). However, flow-MRD examination focuses on the numbers but not on the biological characteristics of residual plasma cells (PCs). Objectives: To explore whether the genetic features of residual tumor cells affect the survival time of patients with MM. Design: A retrospective cohort study. Methods: We investigated the clonality of cytogenetic abnormalities (CAs) of the residual PCs using interphase fluorescence in situ hybridization (iFISH) in the National Longitudinal Cohort of Hematological Diseases in China (NCT04645199). Here, a longitudinal cohort of 269 patients with patient-paired diagnostic and post-induction iFISH results was analyzed. Results: Persistent CAs after induction therapy were detected in about half of the patients (118/269, 43%), and patients with undetectable CAs showed significantly improved survival compared with those with genetically detectable MRD [median progression-free survival (mPFS): 59.7 versus 35.7 months, p < 0.001; median overall survival (mOS): 97.1 versus 68.8 months, p = 0.011]. In addition, different patterns of therapy-induced clonal evolution were observed by comparing the clonal structure of residual PCs with paired baseline samples. Patients who maintained at a high risk during follow-up had the worst survival (mPFS: 30.5 months; mOS: 54.4 months), while those who returned to lower risk or had iFISH- at both time points had the best survival (mPFS: 62.0 months, mOS: not reached). Conclusion: These findings highlighted the prognostic value of genetic testing in residual tumor cells, which may provide a deep understanding of clonal evolution and guide clinical therapeutic strategies.


Study using fluorescence in situ hybridization (iFISH) to investigate the clonality of cytogenetic abnormalities of the residual plasma cells in multiple myeloma Gain of negative minimal residual disease (MRD) has been linked to prolonged survival in cancer treatment. However, in multiple myeloma (MM), detection of MRD-negativity (MRD-) using multiparameter flow cytometry (MFC) only reflects the quantitative characteristics of residual plasma cells (PCs), while the biological and genetic features of MRD are neglected. To address this gap, our study has employed interphase fluorescence in situ hybridization (iFISH) to evaluate the clonality of cytogenetic abnormalities (CAs) of the bone marrow residual PCs after induction therapy, in combined with MRD detection by MFC to predict the prognosis of MM patients. A total of 396 patients from the database of National Longitudinal Cohort of Hematological Diseases in China (ClinicalTrials.gov identifiers: NCT04645199) were enrolled. Persistent CAs after induction therapy were detected in about half of the patients (118/269, 43%), and patients with undetectable CAs showed significantly improved survival compared with those without genetically detectable MRD. In addition, different patterns of therapy-induced clonal evolution were observed by comparing the clonal structure of residual PCs with paired baseline samples. And therapy-induced clonal evolution exerted a significant impact on patient outcomes. These findings highlighted the importance of genetic testing of residual tumor cells after induction therapy, which may represent a reliable complementary technique for flow-MRD detection and provide a further understanding of clonal evolution.

6.
Leukemia ; 38(6): 1299-1306, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38609496

RESUMO

Growing evidence suggests that gain or amplification [gain/amp(1q)] accumulates during disease progression of multiple myeloma (MM). Previous investigations have indicated that small gain/amp(1q) subclones present at the time of diagnosis may evolve into dominant clones upon MM relapse. However, the influence of a minor clone of gain/amp(1q) on MM survival, as well as the correlation between different clonal sizes of gain/amp(1q) and the chromosomal instability (CIN) of MM, remains poorly understood. In this study, we analyzed fluorescence in situ hybridization (FISH) results of 998 newly diagnosed MM (NDMM) patients. 513 patients were detected with gain/amp(1q) at diagnosis. Among these 513 patients, 55 had a minor clone (≤20%) of gain/amp(1q). Patients with a minor clone of gain/amp(1q) displayed similar survival outcomes compared to those without gain/amp(1q). Further analysis demonstrated patients with a minor clone of gain/amp(1q) exhibited a clonal architecture similar to those without gain/amp(1q). Lastly, our results showed a significant increase in the clonal size of the minor clone of gain/amp(1q), frequently observed in MM. These findings suggested that a minor clone of gain/amp(1q) might represent an earlier stage in the pathogenesis of gain/amp(1q) and propose a "two-step" process in the clonal size changes of gain/amp(1q) in MM.


Assuntos
Hibridização in Situ Fluorescente , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Mieloma Múltiplo/mortalidade , Hibridização in Situ Fluorescente/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Prognóstico , Cromossomos Humanos Par 1/genética , Adulto , Evolução Clonal/genética , Idoso de 80 Anos ou mais , Instabilidade Cromossômica , Aberrações Cromossômicas , Progressão da Doença
7.
Clin Cancer Res ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900040

RESUMO

PURPOSE: In multiple myeloma (MM), therapy-induced clonal evolution is associated with treatment resistance and is one of the most important hindrances toward a cure for MM. To further understand the molecular mechanisms controlling the clonal evolution of MM, we applied single-cell RNA-sequencing (scRNA-seq) to paired diagnostic and post-treatment bone marrow (BM) samples. EXPERIMENTAL DESIGN: scRNA-seq was performed on 38 BM samples from patients with monoclonal gammopathy of undetermined significance (MGUS) (n = 1), MM patients at diagnosis (n = 19), MM post-treatment (n = 17), and one healthy donor. The single-cell transcriptome data of malignant plasma cells and the surrounding immune microenvironment were analyzed. RESULTS: Profiling by scRNA-seq data revealed three primary trajectories of transcriptional evolution after treatment: clonal elimination in patients with undetectable minimal residual disease (MRD-), as well as clonal stabilization and clonal selection in detectable MRD (MRD+) patients. We noted a metabolic shift towards fatty acid oxidation in cycling-resistant plasma cells (PCs), while selective PCs favored the NF-κB pathway. Intriguingly, when comparing the genetic and transcriptional dynamics, we found a significant correlation between genetic and non-genetic factors in driving the clonal evolution. Furthermore, we identified variations in cellular interactions between malignant plasma cells and the tumor microenvironment (TME). Selective PCs showed the most robust cellular interactions with the TME. CONCLUSIONS: These data suggest that MM cells could rapidly adapt to induction treatment through transcriptional adaptation, metabolic adaptation, and specialized immune evasion. Targeting therapy-induced resistance mechanisms may help to avert refractory disease in multiple myeloma.

8.
J Med Chem ; 66(5): 3356-3371, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36826833

RESUMO

The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family, which includes JNK1-JNK3. Interestingly, JNK1 and JNK2 show opposing functions, with JNK2 activity favoring cell survival and JNK1 stimulating apoptosis. Isoform-selective small molecule inhibitors of JNK1 or JNK2 would be useful as pharmacological probes but have been difficult to develop due to the similarity of their ATP binding pockets. Here, we describe the discovery of a covalent inhibitor YL5084, the first such inhibitor that displays selectivity for JNK2 over JNK1. We demonstrated that YL5084 forms a covalent bond with Cys116 of JNK2, exhibits a 20-fold higher Kinact/KI compared to that of JNK1, and engages JNK2 in cells. However, YL5084 exhibited JNK2-independent antiproliferative effects in multiple myeloma cells, suggesting the existence of additional targets relevant in this context. Thus, although not fully optimized, YL5084 represents a useful chemical starting point for the future development of JNK2-selective chemical probes.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno , Proteína Quinase 9 Ativada por Mitógeno , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação
9.
Blood Cancer J ; 12(8): 118, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35973981

RESUMO

We here defined the impacts of γ-secretase inhibitors (GSIs) on T-cell-dependent BCMA-specific multiple myeloma (MM) cell lysis and immunomodulatory effects induced by bispecific antibodies (BisAbs). GSIs-induced membrane BCMA (mBCMA) accumulation reached near maximum within 4 h and sustained over 42h-study period on MM cell lines and patient MM cells. GSIs, i.e., 2 nM LY-411575 or 1 µM DAPT, robustly increased mBCMA densities on CD138+ but not CD3+ patient cells, concomitantly with minimum soluble/shed BCMA (sBCMA) in 1 day-culture supernatants. In ex vivo MM-T-cell co-cultures, GSIs overcame sBCMA-inhibited MM cell lysis and further enhanced autologous patient MM cell lysis induced by BCMAxCD3 BisAbs, accompanied by significantly enhanced cytolytic markers (CD107a, IFNγ, IL2, and TNFα) in patient T cells. In longer 7 day-co-cultures, LY-411575 minimally affected BCMAxCD3 BisAb (PL33)-induced transient expression of checkpoint (PD1, TIGIT, TIM3, LAG3) and co-stimulatory (41BB, CD28) proteins, as well as time-dependent increases in % effector memory/central memory subsets and CD8/CD4 ratios in patient T cells. Importantly, LY41157 rapidly cleared sBCMA from circulation of MM-bearing NSG mice reconstituted with human T cells and significantly enhanced anti-MM efficacy of PL33 with prolonged host survival. Taken together, these results further support ongoing combination BCMA-targeting immunotherapies with GSI clinical studies to improve patient outcome.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Secretases da Proteína Precursora do Amiloide , Animais , Anticorpos Biespecíficos/uso terapêutico , Antígeno de Maturação de Linfócitos B , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Linfócitos T
10.
EBioMedicine ; 78: 103950, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35344764

RESUMO

BACKGROUND: Multiple myeloma (MM) is still an incurable malignancy of plasma cells. Proteasome inhibitors (PIs) work as the backbone agent and have greatly improved the outcome in majority of newly diagnosed patients with myeloma. However, drug resistance remains the major obstacle causing treatment failure in clinical practice. Here, we investigated the effects of Indirubin-3'-monoxime (I3MO), one of the derivatives of Indirubin, in the treatment of MM. METHODS: MM patient primary samples and human cell lines were examined. I3MO effects on myeloma treatment and the underling molecular mechanisms were investigated via in vivo and in vitro study. FINDINGS: Our results demonstrated the anti-MM activity of I3MO in both drug- sensitive and -resistance MM cells. I3MO sensitizes MM cells to bortezomib-induced apoptosis. Mechanistically, I3MO acts as a multifaceted regulator of cell death, which induced DNA damage, cell cycle arrest, and abrogates NF-κB activation. I3MO efficiently down-regulated USP7 expression, promoted NEK2 degradation, and suppressed NF-κB signaling in MM. Our study reported that I3MO directly bound with and caused the down-regulation of PA28γ (PSME3), and PA200 (PSME4), the proteasome activators. Knockdown of PSME3 or PSME4 caused the inhibition of proteasome capacity and the overload of paraprotein, which sensitizes MM cells to bortezomib-mediated growth arrest. Clinical data demonstrated that PSME3 and PSME4 are over-expressed in relapsed/refractory MM (RRMM) and associated with inferior outcome. INTERPRETATION: Altogether, our study indicates that I3MO is agent triggering proteasome inhibition and represents a promising therapeutic strategy to improve patient outcome in MM. FUNDINGS: A full list of funding can be found in the acknowledgements.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Indóis , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , NF-kappa B/metabolismo , Quinases Relacionadas a NIMA , Oximas , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Peptidase 7 Específica de Ubiquitina
11.
IEEE Trans Neural Netw Learn Syst ; 32(10): 4627-4638, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33021942

RESUMO

We consider the problem of minimizing the sum of an average of a large number of smooth convex component functions and a possibly nonsmooth convex function that admits a simple proximal mapping. This class of problems arises frequently in machine learning, known as regularized empirical risk minimization (ERM). In this article, we propose mSRGTR-BB, a minibatch proximal stochastic recursive gradient algorithm, which employs a trust-region-like scheme to select stepsizes that are automatically computed by the Barzilai-Borwein method. We prove that mSRGTR-BB converges linearly in expectation for strongly and nonstrongly convex objective functions. With proper parameters, mSRGTR-BB enjoys a faster convergence rate than the state-of-the-art minibatch proximal variant of the semistochastic gradient method (mS2GD). Numerical experiments on standard data sets show that the performance of mSRGTR-BB is comparable to and sometimes even better than mS2GD with best-tuned stepsizes and is superior to some modern proximal stochastic gradient methods.

12.
Leukemia ; 35(3): 752-763, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32632095

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy remains limited to select centers that can carefully monitor adverse events. To broaden use of CAR T cells in community clinics and in a frontline setting, we developed a novel CD8+ CAR T-cell product, Descartes-08, with predictable pharmacokinetics for treatment of multiple myeloma. Descartes-08 is engineered by mRNA transfection to express anti-BCMA CAR for a defined length of time. Descartes-08 expresses anti-BCMA CAR for 1 week, limiting risk of uncontrolled proliferation; produce inflammatory cytokines in response to myeloma target cells; and are highly cytolytic against myeloma cells regardless of the presence of myeloma-protecting bone marrow stromal cells, exogenous a proliferation-inducing ligand, or drug resistance including IMiDs. The magnitude of cytolysis correlates with anti-BCMA CAR expression duration, indicating a temporal limit in activity. In the mouse model of aggressive disseminated human myeloma, Descartes-08 induces BCMA CAR-specific myeloma growth inhibition and significantly prolongs host survival (p < 0.0001). These preclinical data, coupled with an ongoing clinical trial of Descartes-08 in relapsed/refractory myeloma (NCT03448978) showing preliminary durable responses and a favorable therapeutic index, have provided the framework for a recently initiated trial of an optimized/humanized version of Descartes-08 (i.e., Descartes-11) in newly diagnosed myeloma patients with residual disease after induction therapy.


Assuntos
Antígeno de Maturação de Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva/métodos , Mieloma Múltiplo/terapia , RNA Mensageiro/genética , Receptores de Antígenos Quiméricos/imunologia , Animais , Apoptose , Antígeno de Maturação de Linfócitos B/genética , Proliferação de Células , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Clin Cancer Res ; 27(19): 5376-5388, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301753

RESUMO

PURPOSE: Efforts are required to improve the potency and durability of CD38- and BCMA-based immunotherapies in human multiple myeloma. We here delineated the molecular and cellular mechanisms underlying novel immunomodulatory effects triggered by BCMA pyrrolobenzodiazepine (PBD) antibody drug conjugate (ADC) MEDI2228 which can augment efficacy of these immunotherapies. EXPERIMENTAL DESIGN: MEDI2228-induced transcriptional and protein changes were investigated to define significantly impacted genes and signaling cascades in multiple myeloma cells. Mechanisms whereby MEDI2228 combination therapies can enhance cytotoxicity or overcome drug resistance in multiple myeloma cell lines and patient multiple myeloma cells were defined using in vitro models of tumor in the bone marrow (BM) microenvironment, as well as in human natural killer (NK)-reconstituted NOD/SCID gamma (NSG) mice bearing MM1S tumors. RESULTS: MEDI2228 enriched IFN I signaling and enhanced expression of IFN-stimulated genes in multiple myeloma cell lines following the induction of DNA damage-ATM/ATR-CHK1/2 pathways. It activated cGAS-STING-TBK1-IRF3 and STAT1-IRF1-signaling cascades and increased CD38 expression in multiple myeloma cells but did not increase CD38 expression in BCMA-negative NK effector cells. It overcame CD38 downregulation on multiple myeloma cells triggered by IL6 and patient BM stromal cell-culture supernatant via activation of STAT1-IRF1, even in immunomodulatory drug (IMiD)- and bortezomib-resistant multiple myeloma cells. In vitro and in vivo upregulation of NKG2D ligands and CD38 in MEDI2228-treated multiple myeloma cells was further associated with synergistic daratumumab (Dara) CD38 MoAb-triggered NK-mediated cytotoxicity of both cell lines and autologous drug-resistant patient multiple myeloma cells. CONCLUSIONS: These results provide the basis for clinical evaluation of combination MEDI2228 with Dara to further improve patient outcome in multiple myeloma.


Assuntos
Imunoconjugados , Mieloma Múltiplo , ADP-Ribosil Ciclase 1 , Animais , Anticorpos Monoclonais , Antígeno de Maturação de Linfócitos B , Linhagem Celular Tumoral , Humanos , Imunidade , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Microambiente Tumoral
14.
Cancers (Basel) ; 12(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516895

RESUMO

The treatment of multiple myeloma (MM) has entered into a new era of immunotherapy. Novel immunotherapies will significantly improve patient outcome via simultaneously targeting malignant plasma cell (PC) and reversing immunocompromised bone marrow (BM) microenvironment. B-cell maturation antigen (BCMA), selectively expressed in PCs and a key receptor for A proliferation-inducing ligand (APRIL), is highly expressed in MM cells from patients at all stages. The APRIL/BCMA signal cascades promote the survival and drug resistance of MM cells and further modulate immunosuppressive BM milieu. Impressively, anti-BCMA immunotherapeutic reagents, including chimeric antigen receptor (CAR), antibody-drug conjugate (ADC) and bispecific T cell engager (BiTE) have all shown high response rates in their first clinical trials in relapse and refractory patients with very limited treatment options. These results rapidly inspired numerous development of next-generation anti-BCMA biotherapeutics, i.e., bispecific molecule, bispecific or trispecific antibodies, a novel form of CAR T/NK cells and T Cell Antigen Coupler (TAC) receptors, antibody-coupled T cell receptor (ACTR) as well as a cancer vaccine. We here highlight seminal preclinical and clinical studies on novel BCMA-based immunotherapies as effective monotherapy and discuss their potential in combination with current anti-MM and novel checkpoint drugs in earlier disease stages to further achieve durable responses in patients.

15.
Blood Adv ; 4(17): 4195-4207, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32898244

RESUMO

We investigated here the novel immunomodulation and anti-multiple myeloma (MM) function of T cells engaged by the bispecific T-cell engager molecule AMG 701, and further examined the impact of AMG 701 in combination with immunomodulatory drugs (IMiDs; lenalidomide and pomalidomide). AMG 701 potently induced T-cell-dependent cellular cytotoxicity (TDCC) against MM cells expressing B-cell maturation antigen, including autologous cells from patients with relapsed and refractory MM (RRMM) (half maximal effective concentration, <46.6 pM). Besides inducing T-cell proliferation and cytolytic activity, AMG 701 also promoted differentiation of patient T cells to central memory, effector memory, and stem cell-like memory (scm) phenotypes, more so in CD8 vs CD4 T subsets, resulting in increased CD8/CD4 ratios in 7-day ex vivo cocultures. IMiDs and AMG 701 synergistically induced TDCC against MM cell lines and autologous RRMM patient cells, even in the presence of immunosuppressive bone marrow stromal cells or osteoclasts. IMiDs further upregulated AMG 701-induced patient T-cell differentiation toward memory phenotypes, associated with increased CD8/CD4 ratios, increased Tscm, and decreased interleukin 10-positive T and T regulatory cells (CD25highFOXP3high), which may downregulate T effector cells. Importantly, the combination of AMG 701 with lenalidomide induced sustained inhibition of MM cell growth in SCID mice reconstituted with human T cells; tumor regrowth was eventually observed in cohorts treated with either agent alone (P < .001). These results strongly support AMG 701 clinical studies as monotherapy in patients with RRMM (NCT03287908) and the combination with IMiDs to improve patient outcomes in MM.


Assuntos
Mieloma Múltiplo , Preparações Farmacêuticas , Animais , Humanos , Imunomodulação , Lenalidomida , Camundongos , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Talidomida/análogos & derivados
16.
Leukemia ; 34(8): 2150-2162, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32060401

RESUMO

To target mechanisms critical for multiple myeloma (MM) plasma cell adaptations to genomic instabilities and further sustain MM cell killing, we here specifically trigger DNA damage response (DDR) in MM cells by a novel BCMA antibody-drug conjugate (ADC) delivering the DNA cross-linking PBD dimer tesirine, MEDI2228. MEDI2228, more effectively than its anti-tubulin MMAF-ADC homolog, induces cytotoxicity against MM cells regardless of drug resistance, BCMA levels, p53 status, and the protection conferred by bone marrow stromal cells and IL-6. Distinctly, prior to apoptosis, MEDI2228 activates DDRs in MM cells via phosphorylation of ATM/ATR kinases, CHK1/2, CDK1/2, and H2AX, associated with expression of DDR-related genes. Significantly, MEDI2228 synergizes with DDR inhibitors (DDRi s) targeting ATM/ATR/WEE1 checkpoints to induce MM cell lethality. Moreover, suboptimal doses of MEDI2228 and bortezomib (btz) synergistically trigger apoptosis of even drug-resistant MM cells partly via modulation of RAD51 and accumulation of impaired DNA. Such combination further induces superior in vivo efficacy than monotherapy via increased nuclear γH2AX-expressing foci, irreversible DNA damages,  and tumor cell death, leading to significantly prolonged host survival. These results indicate leveraging MEDI2228 with DDRi s or btz as novel combination strategies, further supporting ongoing clinical development of MEDI2228 in patients with relapsed and refractory MM.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Antígeno de Maturação de Linfócitos B/imunologia , Bortezomib/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Imunoconjugados/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Benzodiazepinas/administração & dosagem , Linhagem Celular Tumoral , Dano ao DNA , Sinergismo Farmacológico , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Pirróis/administração & dosagem
17.
Clin Lymphoma Myeloma Leuk ; 20(10): e652-e659, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32624447

RESUMO

BACKGROUND: Primary plasma cell leukemia (PPCL) is a rare and aggressive plasma cell disorder. The use of novel agents, together with autologous stem cell transplantation, has improved survival outcome in PPCL. However, the prognosis is still very poor, and the optimal treatment remains an unmet clinical need. PATIENTS AND METHODS: We studied the efficacy and prognostic impact of novel agents in 46 patients with PPCL patients at the Blood Diseases Hospital in China. We examined the impact of clinical and laboratory features, as well as therapies (bortezomib- and/or immunomodulatory drug-based therapies, chemotherapy) on survival and extent of clinical response, including progression-free survival and overall survival (OS). Progression-free survival and OS were assessed by the Kaplan-Meier method, and survival distributions were compared by log-rank test. RESULTS: In our cohort of 46 PPCL patients, the median age at the time of diagnosis was 54 years. Overall response rate was 54% (25/46). The median (95% confidence interval) progression-free survival time was 6 (0-12.5) months, and OS time was 14 (4.6-23.4) months. The OS time was significantly longer in patients treated with bortezomib-based versus non-bortezomib-based therapies (median [95% confidence interval], 19 [9-28.9] vs. 5 [4-24] months; P = .019). CONCLUSION: This large single-center study of PPCL supports the use of bortezomib-based therapies as frontline treatment in PPCL patients.


Assuntos
Leucemia Plasmocitária/diagnóstico , Adulto , Idoso , China , Feminino , Humanos , Leucemia Plasmocitária/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida , Resultado do Tratamento
18.
Mol Cancer Res ; 18(7): 1063-1073, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32312841

RESUMO

Multiple myeloma remains incurable due to the persistence of a minor population of multiple myeloma cells that exhibit drug resistance, which leads to relapsed and/or refractory multiple myeloma. Elucidating the mechanism underlying drug resistance and developing an effective treatment are critical for clinical management of multiple myeloma. Here we showed that promoting expression of the gene for polycomb-like protein 3 (PHF19) induced multiple myeloma cell growth and multidrug resistance in vitro and in vivo. PHF19 was overexpressed in high-risk and drug-resistant primary cells from patients. High levels of PHF19 were correlated with inferior survival of patients with multiple myeloma, in the Total Therapy 2 cohort and in the Intergroup Francophone du Myeloma (IFM) cohort. Enhancing PHF19 expression levels increased Bcl-xL, Mcl-1, and HIF-1a expression in multiple myeloma cells. PHF19 also bound directly with EZH2 and promoted the phosphorylation of EZH2 through PDK1/AKT signaling. miR-15a is a small noncoding RNA that targeted the 3'UTR of PHF19. We found that downregulation of miR-15a led to high levels of PHF19 in multiple myeloma cells. These findings revealed that PHF19 served a crucial role in multiple myeloma proliferation and drug resistance and suggested that the miR-15a/PHF19/EZH2 pathway made a pivotal contribution to multiple myeloma pathogenesis, offering a promising approach to multiple myeloma treatment. IMPLICATIONS: Our findings identify that PHF19 mediates EZH2 phosphorylation as a mechanism of myeloma cell drug resistance, providing a rationale to explore therapeutic potential of targeting PHF19 in relapsed or refractory patients with multiple myeloma.


Assuntos
Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , MicroRNAs/genética , Mieloma Múltiplo/patologia , Fatores de Transcrição/genética , Regulação para Cima , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Transplante de Neoplasias , Fosforilação , Prognóstico , Transdução de Sinais , Análise de Sobrevida , Fatores de Transcrição/metabolismo
19.
Blood Cancer J ; 10(11): 110, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33149123

RESUMO

Therapeutically targeting CD138, a define multiple myeloma (MM) antigen, is not yet approved for patients. We here developed and determined the preclinical efficacy of VIS832, a novel therapeutic monoclonal antibody (MoAb) with differentiated CD138 target binding to BB4 that is anti-CD138 MoAb scaffold for indatuximab ravtansine (BT062). VIS832 demonstrated enhanced CD138-binding avidity and significantly improved potency to kill MM cell lines and autologous patient MM cells regardless of resistance to current standard-of-care therapies, via robust antibody-dependent cellular cytotoxicity and phagocytosis mediated by NK and macrophage effector cells, respectively. Specifically, CD38-targeting daratumumab-resistant MM cells were highly susceptible to VIS832 which, unlike daratumumab, spares NK cells. Superior maximal cytolysis of VIS832 vs. daratumumab corresponded to higher CD138 vs. CD38 levels in MM cells. Furthermore, VIS832 acted synergistically with lenalidomide or bortezomib to deplete MM cells. Importantly, VIS832 at a sub-optimal dose inhibited disseminated MM1S tumors in vivo as monotherapy (P < 0.0001), and rapidly eradicated myeloma burden in all mice concomitantly receiving bortezomib, with 100% host survival. Taken together, these data strongly support clinical development of VIS832, alone and in combination, for the therapeutic treatment of MM in relapsed and refractory patients while pointing to its potential therapeutic use earlier in disease intervention.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Bortezomib/farmacologia , Imunoconjugados/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Sindecana-1/antagonistas & inibidores , Animais , Antineoplásicos Imunológicos/imunologia , Bortezomib/agonistas , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Maitansina/agonistas , Maitansina/análogos & derivados , Maitansina/farmacologia , Camundongos , Camundongos SCID , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/imunologia , Sindecana-1/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Leukemia ; 33(2): 426-438, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30135465

RESUMO

We investigate here how APRIL impacts immune regulatory T cells and directly contributes to the immunosuppressive multiple myeloma (MM) bone marrow (BM) microenvironment. First, APRIL receptor TACI expression is significantly higher in regulatory T cells (Tregs) than conventional T cells (Tcons) from the same patient, confirmed by upregulated Treg markers, i.e., Foxp3, CTLA-4. APRIL significantly stimulates proliferation and survival of Tregs, whereas neutralizing anti-APRIL monoclonal antibodies (mAbs) inhibit these effects. Besides TACI-dependent induction of cell cycle progression and anti-apoptosis genes, APRIL specifically augments Foxp3, IL-10, TGFß1, and PD-L1 in Tregs to further enhance Treg-inhibited Tcon proliferation. APRIL further increases MM cell-driven Treg (iTreg) via TACI-dependent proliferation associated with upregulated IL-10, TGFß1, and CD15s in iTreg, which further inhibits Tcons. Osteoclasts producing APRIL and PD-L1 significantly block Tcon expansion by iTreg generation, which is overcome by combined treatment with anti-APRIL and anti-PD1/PD-L1 mAbs. Finally, APRIL increases IL-10-producing B regulatory cells (Bregs) via TACI on BM Bregs of MM patients. Taken together, these results define novel APRIL actions via TACI on Tregs and Bregs to promote MM cell survival, providing the rationale for targeting APRIL/TACI system to alleviate the immunosuppressive BM milieu and improve patient outcome in MM.


Assuntos
Tolerância Imunológica/imunologia , Terapia de Imunossupressão , Mieloma Múltiplo/imunologia , Osteoclastos/imunologia , Linfócitos T Reguladores/imunologia , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Anticorpos Monoclonais/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Humanos , Imunossupressores/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Transdução de Sinais , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa