Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Macromol Rapid Commun ; 41(13): e2000129, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32346943

RESUMO

Transparent and stretchable electrodes (TSEs) are a key technology for the next generation of stretchable electronics and optoelectronics. Metallic nanofibers are widely used because of their good optoelectrical properties, but they demonstrate low stretchability. To enhance stretchability, fabricating in-plane buckled nanofibers with the aid of a prestrained substrate has become crucial in this research field. Here, a composite comprising shape memory polymer-TSE (SMP-TSE) using crosslinked polycyclooctene as a substrate, which shows wrinkle-free deformation and switchable optical transparency, is fabricated. Because of its considerable elongation without residual strain and the shape memory behavior of polycyclooctene, in-plane buckled nanofibers are formed effectively. For fabrication of SMP-TSE, continuous and thin metallic nanofiber that can maintain its structural integrity is required; therefore, electrospinning and an ultraviolet reduction process to create a free-standing, conductive, nanofiber network are used. Because of its in-plane buckled nanofibers, the electrode maintained its resistance during 3000 cycles of a bending test and 900 cycles of a tensile test. Furthermore, SMP-TSE is able to electrically control its temperature, optical transparency, elastic modulus, and shape memory behavior. Finally, the use of SMP-TSE in a smart display that can control its optical and mechanical properties is demonstrated.


Assuntos
Nanofibras , Materiais Inteligentes , Condutividade Elétrica , Eletrodos , Prata
2.
Langmuir ; 33(36): 9057-9065, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28806515

RESUMO

Electrically tunable colloidal photonic crystals (ETPCs) have been investigated because of several merits such as easy color tunability, no discoloration, and clear color. The coloration mechanism of ETPCs has been explained in terms of only the electric field. Herein, we report on a new mechanism: electric field plus redox reaction. Specifically, the coloration behavior of ETPCs was investigated under electrically conductive or insulated conditions using current-voltage, cyclic voltammetry, and zeta potential measurements, as well as scanning electron microscopy. Electrophoretic movement of ETPC particles toward the positive electrode was caused by the electric field due to the particles' negative surface charge. At the positive electrode, ETPC particles lost their electrons and formed a colloidal crystal structure. Finally, an ETPC transparent tube device was constructed to demonstrate the coloration mechanism.

3.
Nanotechnology ; 28(1): 015703, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27897138

RESUMO

Due to the outstanding mechanical properties of individual carbon nanotubes (CNTs) at the nanoscale, CNT yarns are expected to demonstrate high strength at the macroscale. In this study, a predictable model was developed to predict the tensile strength of twisted CNT yarns. First, the failure mechanism of twisted CNT yarns was investigated using in situ tensile tests and ex situ observations. It was revealed that CNT bundles, which are groups of CNTs that are tightly bound together, formed during tensile loading, leaving some voids around the bundles. Failure of the CNT yarns occurred as the CNT bundles were pulled out of the yarns. Two stresses that determined the tensile strength of the CNT yarns were identified: interfacial shear and frictional stresses originating from van der Waals interactions, and the lateral pressure generated by the twisted yarn structure. Molecular dynamics and yarn mechanics were used to calculate these two stresses. Finally, the tensile strength of CNT yarns was predicted and compared with experimental data, showing reasonable agreement.

4.
Nanotechnology ; 27(40): 405704, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27581367

RESUMO

The performance of carbon nanotube (CNT)-based devices strongly depends on the adhesion of CNTs to the substrate on which they were directly grown. We report on the bond strength of CNTs grown on a carbon fiber (T700SC Toray), measured via in situ pulling of individual CNTs inside a transmission electron microscope. The bond strength of an individual CNT, obtained from the measured pulling force and CNT cross-section, was very high (∼200 MPa), 8-10 times higher than that of an adhesion model assuming only van der Waals interactions (25 MPa), presumably due to carbon-carbon interactions between the CNT (its bottom atoms) and the carbon substrate.

5.
Nanotechnology ; 25(46): 465602, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25361215

RESUMO

This work reports the fabrication of double-tubular (or tube-in-tube) carbon nanofibers (CNFs). Tetra-layered nanofibers were manufactured using coaxial electrospinning with a concentric quadruple cylindrical nozzle system. Subsequent heat treatment eroded the first and third layers and converted the second and fourth layers into the carbonized structure, resulting in double-tubular CNFs. The morphologies and microstructures of the two tubes in the CNFs were investigated, revealing that the outer layer possessed denser and higher quality carbon crystals due to the coaxial electrospinning mechanism. Nanoparticles were readily incorporated between the two tubes in the double-tubular CNFs, providing a method for developing new multi-functional one dimensional materials.

6.
Heliyon ; 10(9): e30262, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38711660

RESUMO

Glass fibers (GFs) are commonly used as reinforcements for advanced polymer composites. To improve the interfacial shear properties and mechanical properties of GF-reinforced composites (GFRPs), carbon nanotubes (CNTs) are directly grafted onto GFs using chemical vapor deposition (CVD). However, this process requires high temperatures, which causes thermal degradation of GFs, deteriorating their mechanical properties. In this study, a low-temperature CNT-grafting process was investigated using a bimetallic catalyst introduced onto a GF fiber surface via precursor solutions. The mechanical properties of the CNT-grafted GFs fabricated at different CVD temperatures were evaluated; they consistently showed low tensile strengths at temperatures above 400 °C. Subsequently, various CNT-grafted GFRPs were manufactured, and their mechanical properties were characterized. Interestingly, the flexural strengths of the composites increased with maintained tensile strength, despite a deterioration of the CNT-grafted GF reinforcements due to the CVD process. This could be attributed to the improved interfacial shear strength (IFSS) of the CNT-grafted GFs at the fiber level, and the enhanced compressive strength and interlaminar shear strength (ILSS) of CNT-grafted GFRPs at the composite level. Considering the properties of GF through CVD processes, particularly in relation to temperature, and factors such as IFSS, ILSS, tensile, compressive and flexural properties of composite materials, grafting CNTs on GF via a CVD system demonstrated its highest optimality at 450 °C.

7.
Heliyon ; 10(1): e24121, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38283242

RESUMO

A new weaving technology using a modified z-binder interlacement system was designed to demonstrate its potential for the effective, continuous, efficient, and rapid manufacturing of various three-dimensional (3D) woven structures. First, three representative 3D woven preforms were fabricated. Then, epoxy resin was transferred to a preform. The manufactured 3D woven textile-reinforced composites were investigated using micro-CT analysis, tensile tests, and bending tests to study the effect of the z-binder interlacing on the structure. Furthermore, a design rule was established that could seamlessly create complex 3D woven structures with non-uniform heights in the z-direction, such as boxes, bowls, and pyramids, demonstrating that the seamless 3D woven preform of the complex shape can be fabricated with structural integrity.

8.
Heliyon ; 9(6): e16942, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37346361

RESUMO

The formability of steel-polymer sandwich composites was investigated using a new forming limit diagram (FLD) while considering delamination and fracture. The acoustic emission (AE) technique was used to observe delamination during the forming process. Several tests, including tensile and lap shear tests, were performed to identify the AE features of delamination. In addition, finite element simulations were carried out using the cohesive zone model to predict the delamination of steel-polymer sandwich composites. An FLD of the sandwich composite was also constructed using the finite element model. Finally, the effect of interfacial adhesion on the formability of sandwich composites was investigated, from which the optimal condition for interfacial adhesion (in terms of ensuring the formability of the sandwich composite) was obtained.

9.
Heliyon ; 9(6): e16945, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37332980

RESUMO

An antibacterial carbon fiber-reinforced plastics (CFRP) was manufactured based on a vitrimer containing imine groups. A liquid curing agent was prepared to include an imine group in the matrix, and was synthesized without a simple mixing reaction and any purification process. The vitrimer used as the matrix for CFRP was prepared by reacting a commercial epoxy with a synthesized curing agent. The structural and thermal properties of the vitrimer were determined by Fourier transform-infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, the temperature-dependent behavior of the vitrimer was characterized by stress relaxation, reshaping, and shape memory experiments. The mechanical properties of composites fabricated using vitrimer were fully analyzed by tensile, flexural, short-beam strength, and Izod impact tests and had mechanical properties similar to reference material. Moreover, both the vitrimer and the vitrimer composites showed excellent antibacterial activity against Staphylococcus aureus and Escherichia coil due to the imine group inside the vitrimer. Therefore, vitrimer composites have potential for applications requiring antimicrobial properties, such as medical devices.

10.
Phys Chem Chem Phys ; 14(40): 14041-8, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22990211

RESUMO

The formation of carbon nanotubes (CNTs) through precipitated carbons emerging from supersaturated metal catalysts is an established mechanism for their growth during the CVD process. Here, the CNT growth mode is determined by the interaction between the substrate and the catalyst nanoparticle, e.g., the tip-growth mode for the weak adhesion between them and the base-growth mode for the strong adhesion case. With microscopic evidence, this study reports another factor that governs the growth mode of CNTs on carbon-based substrates. Catalyst nanoparticles after only sputtering and annealing processes before the chemical vapor deposition (CVD) process are fully or partially wrapped with some graphitic layers, which are formed by carbons escaping from the carbon substrate. The formation of the wrapping graphitic layers is initiated by catalyst atoms diffusing into the carbon substrate during the catalyst sputtering process. The diffused catalyst atoms later coalesce into the nanoparticles, during which carbon atoms escape from the carbon substrate, forming the graphitic layers which wrap around the catalyst nanoparticles for energy minimization. Then, the carbon atoms generated from the catalytic reactions during the CVD process interact with the carbons in the graphitic layers wrapped around the catalyst nanoparticles, bringing about clear tip-growth of CNTs on carbon-based substrates and a stable interface (carbon-carbon bonding) between CNTs and carbon-based substrates.

11.
Polymers (Basel) ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808684

RESUMO

Polyacrylonitrile (PAN) fiber is the most widely used carbon fiber precursor, and methyl acrylate (MA) copolymer is widely used for research and commercial purposes. The properties of P (AN-MA) fibers improve increasingly as the molecular weight increases, but high-molecular-weight materials have some limitations with respect to the manufacturing process. In this study, P (AN-MA) precursor fibers of different molecular weights were prepared and analyzed to identify an efficient carbon fiber precursor manufacturing process. The effects of the molecular weight of P (AN-MA) on its crystallinity and void structure were examined, and precursor fiber content and process optimizations with respect to molecular weight were conducted. The mechanical properties of high-molecular-weight P (AN-MA) were good, but the internal structure of the high-molecular-weight material was not the best because of differences in molecular entanglement and mobility. The structural advantages of a relatively low molecular weight were confirmed. The findings of this study can help in the manufacturing of precursor fibers and carbon fibers with improved properties.

12.
Materials (Basel) ; 14(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209999

RESUMO

This study analyzed failure behavior using Ib-values obtained from acoustic emission (AE) signals. Carbon fiber/epoxy specimens were fabricated and tested under tensile loads, during which AE signals were collected. The dominant peak frequency exhibited a specific range according to fracture mode, depending on the fiber structures. Cross-ply specimens, with all fracture modes, were used and analyzed using b- and Ib-values. The b-values decreased over the specimens' entire lifetime. In contrast, the Ib-values decreased to 60% of the lifetime, and then increased because of the different fracture behaviors of matrix cracking and fiber fracture, demonstrating the usefulness of Ib-values over b-values. Finally, it was confirmed that abnormal conditions could be analyzed more quickly using failure modes classified by Ib-values, rather than using full AE data.

13.
Polymers (Basel) ; 13(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067909

RESUMO

Carbon fiber-reinforced shape memory polymer composites (CF-SMPCs) have been researched as a potential next-generation material for aerospace application, due to their lightweight and self-deployable properties. To this end, the mechanical properties of CF-SMPCs, including long-term durability, must be characterized in aerospace environments. In this study, the storage modulus of CF-SMPCs was investigated in a simulation of a low Earth orbit (LEO) environment involving three harsh conditions: high vacuum, and atomic oxygen (AO) and ultraviolet (UV) light exposure. CF-SMPCs in a LEO environment degrade over time due to temperature extremes and matrix erosion by AO. The opposite behavior was observed in our experiments, due to crosslinking induced by AO and UV light exposure in the LEO environment. The effects of the three harsh conditions on the properties of CF-SMPCs were characterized individually, using accelerated tests conducted at various temperatures in a space environment chamber, and were then combined using the time-temperature superposition principle. The long-term mechanical behavior of CF-SMPCs in the LEO environment was then predicted by the linear product of the shift factors obtained from the three accelerated tests. The results also indicated only a slight change in the shape memory performance of the CF-SMPCs.

14.
Polymers (Basel) ; 13(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067591

RESUMO

Polyacrylonitrile (PAN) fibers are typically used as precursor fibers for carbon fiber production, produced through wet-spinning processes. The drawing process of the spun fiber can be classified into dry and wet drawing processes. It is known that the drawing stability and stretching ratio differ depending on the drawing process; however, the elementary characteristics are approximately similar. In this study, the mechanical properties of PAN fibers have been examined based on these two drawing processes with the differences analyzed through the analysis of microstructures. Further, to examine the composition of the fiber, element analysis has been conducted, and thereafter, the microstructure of the fiber is examined through X-ray diffraction analysis. Finally, the characteristics of PAN fibers and its mechanical properties has been examined according to each drawing condition. There are differences in moisture content and microstructure according to the drawing process, and it affects the tensile behavior. The results obtained could have potential implications if the processes are combined, as it could result in a design for a stable and highly efficient drawing process.

15.
RSC Adv ; 12(1): 346-354, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35424511

RESUMO

Although there have been many studies addressing the dendrite growth issue of lithium (Li)-metal batteries (LMBs), the Li-metal anode has not yet been implemented in today's rechargeable batteries. There is a need to accelerate the practical use of LMBs by considering their cost-effectiveness, ecofriendliness, and scalability. Herein, a cost-effective and uniform protection layer was developed by simple heat treatment of a Post-it note. The carbonized Post-it protection layer, which consisted of electrochemically active carbon fibers and electrochemically inert CaCO3 particles, significantly contributed to stable plating and stripping behaviors. The resulting protected Li anode exhibited excellent electrochemical performance: extremely low polarization during cycling (<40 mV at a current density of 1 mA cm-2) and long lifespan (5000 cycles at 10 mA cm-2) of the symmetric cell, as well as excellent rate performance at 2C (125 mA h g-1) and long cyclability (cycling retention of 62.6% after 200 cycles) of the LiFePO4‖Li full cell. The paper-derived Li protection layer offer a facile and scalable approach to enhance LMB electrochemical performance.

16.
ACS Appl Mater Interfaces ; 13(30): 35664-35676, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34284586

RESUMO

Commercial lithium-ion batteries are vulnerable to fire accidents, mainly due to volatile and flammable liquid electrolytes. Although solid polymer electrolytes (SPEs) are considered promising alternatives with antiflammability and processability for roll-to-roll mass production, several requirements have not yet been fulfilled for a viable lithium polymer battery. Such requirements include ionic conductivity, electrochemical stability, and interfacial resistance. In this work, the ionic conductivity of the SPEs is optimized by controlling the molecular weight and structural morphology of the plasticizers as well as introducing propylene oxide (PO) groups. Electrochemical stability is also enhanced using ethylene oxide (EO)/PO copolymer electrolytes, making the SPEs compatible with high-Ni LiNixCoyMn1-x-yO2 cathodes. The in situ cross-linking method, in which a liquid precursor first wets the electrode and is then solidified by a subsequent thermal treatment, enables the SPEs to soak into the 60 µm thick electrode with a high loading density of more than 8 mg cm-2. Thus, interfacial resistance between the SPE and the electrode is minimized. By using the in situ cross-linked EO/PO copolymer electrolytes, we successfully demonstrate a 4 V class lithium polymer battery, which performs stable cycling with a marginal capacity fading even over 100 cycles.

17.
Nanotechnology ; 21(24): 245605, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20498522

RESUMO

A novel method is developed to fabricate a SnO(2) nanotube network by utilizing electrospinning and atomic layer deposition (ALD), and the network sensor is proven to exhibit excellent sensitivity to ethanol owing to its hollow, nanostructured character. The electrospun polyacrylonitrile (PAN) nanofibers of 100-200 nm diameter are used as a template after stabilization at 250 degrees C. An uniform and conformal SnO(2) coating on the nanofiber template is achieved by ALD using dibutyltindiacetate (DBTDA) as the Sn source at 100 degrees C and the wall thickness is precisely controlled by adjusting the number of ALD cycles. The calcination at 700 degrees C transforms the amorphous nanofibers into SnO(2) nanotubes composed of several nanometer-sized crystallites. The SnO(2) nanotube network sensor responds to ethanol, H(2), CO, NH(3) and NO(2) gases, but it exhibited an extremely high gas response to ethanol with a short response time (<5 s). The results demonstrate that the combination of electrospinning and ALD is a very effective and promising technique to fabricate long and uniform metal oxide nanotubes with the precise control of wall thickness, which can be applied to various applications such as gas sensors and lithium ion batteries.

18.
ACS Appl Mater Interfaces ; 12(21): 24231-24241, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32353230

RESUMO

Nanostructured flexible electrodes with biological compatibility and intimate electrochemical coupling provide attractive solutions for various emerging bioelectronics and biosensor applications. Here, we develop all-inkjet-printed flexible nanobio-devices with excellent electrochemical coupling by employing amphiphilic biomaterial, an M13 phage, numerical simulation of single-drop formulation, and rational formulations of nanobio-ink. Inkjet-printed nanonetwork-structured electrodes of single-walled carbon nanotubes and M13 phage show efficient electrochemical coupling and hydrostability. Additive printing of the nanobio-inks also allows for systematic control of the physical and chemical properties of patterned electrodes and devices. All-inkjet-printed electrochemical field-effect transistors successfully exhibit pH-sensitive electrical current modulation. Moreover, all-inkjet-printed electrochemical biosensors fabricated via sequential inkjet-printing of the nanobio-ink, electrolytes, and enzyme solutions enable direct electrical coupling within the printed electrodes and detect glucose concentrations at as low as 20 µM. Glucose levels in sweat are successfully measured, and the change in sweat glucose levels is shown to be highly correlated with blood glucose levels. Synergistic combination of additive fabrication by inkjet-printing with directed assembly of nanostructured electrodes by functional biomaterials could provide an efficient means of developing bioelectronic devices for personalized medicine, digital healthcare, and emerging biomimetic devices.


Assuntos
Bacteriófago M13/química , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Tinta , Nanotubos de Carbono/química , Tensoativos/química , Técnicas Biossensoriais/métodos , Glicemia/análise , Glicemia/química , Técnicas Eletroquímicas/métodos , Eletrodos , Glucose Oxidase/química , Humanos , Masculino , Polietilenoimina/química , Suor/química , Transistores Eletrônicos
19.
RSC Adv ; 9(35): 20248-20255, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35514722

RESUMO

Excellent mechanical, electrical, and thermal properties of graphene have been achieved at the macroscale by assembling individual graphene or graphene oxide (GO) particles. Wet-spinning is an efficient and well-established process that can provide GO assemblies in fiber form. The coagulation bath in the wet-spinning process has rarely been considered for the design of mechanically robust GO fibers (GOFs). In this study, locating the amidation reaction in the coagulation bath yielded mechanically improved GOFs. The imides 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide were used to form covalent amide bonds between GO flakes and chitosan, thereby reinforcing the GOFs. Evidence and effects of the amidation reaction were systematically examined. The tensile strength and breaking strain of the GOFs improved by 41.6% and 75.2%, respectively, and the toughness almost doubled because of the optimized crosslinking reaction. Our work demonstrated that using a coagulation bath is a facile way to enhance the mechanical properties of GOFs.

20.
J Biomech ; 41(15): 3202-12, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18804764

RESUMO

The mechanical behavior of a stent is one of the important factors involved in ensuring its opening within arterial conduits. This study aimed to develop a mechanical model for designing self-expandable stents fabricated using braiding technology. For this purpose, a finite element model was constructed by developing a preprocessing program for the three-dimensional geometrical modeling of the braiding structure inside stents, and validated for various stents with different braiding structures. The constituent wires (Nitinol) in the braided stents were assumed to be superelastic material and their mechanical behavior was incorporated into the finite element software through a user material subroutine (VUMAT in ABAQUS) employing a one-dimensional superelastic model. For the verification of the model, several braided stents were manufactured using an automated braiding machine and characterized focusing on their compressive behavior. It was observed that the braided stents showed a hysteresis between their loading and unloading behavior when a compressive load was applied to the braided tube. Through the finite element analysis, it was concluded that the current mechanical model can appropriately predict the mechanical behavior of braided stents including such hysteretic behavior, and that the hysteresis was caused by the slippage between the constituent wires and their superelastic property.


Assuntos
Prótese Vascular , Desenho Assistido por Computador , Análise de Falha de Equipamento/métodos , Modelos Teóricos , Desenho de Prótese/métodos , Stents , Simulação por Computador , Módulo de Elasticidade , Mecânica , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa