Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(24): e2300717, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919813

RESUMO

Regulating electronic structures of the active site by manipulating the local coordination is one of the advantageous means to improve photocatalytic hydrogen evolution (PHE) kinetics. Herein, the ZnIn2 S4 /Mo2 TiC2 Schottky junctions are designed to be constructed through the interfacial local coordination of In3+ with the electronegative O terminal group on Mo2 TiC2 based on the different work functions. Kelvin probe force microscopy and charge density difference reveal that an electronic unidirectional transport channel across the Schottky interface from ZnIn2 S4 to Mo2 TiC2 is established by the formed local nucleophilic/electrophilic region. The increased local electron density of Mo2 TiC2 inhibits the backflow of electrons, boosts the charge transfer and separation, and optimizes the hydrogen adsorption energy. Therefore, the ZnIn2 S4 /Mo2 TiC2 photocatalyst exhibits a superior PHE rate of 3.12 mmol g-1 h-1 under visible light, reaching 3.03 times that of the pristine ZnIn2 S4 . This work provides some insights and inspiration for preparing MXene-based Schottky catalysts to accelerate PHE kinetics.

2.
Phys Chem Chem Phys ; 25(19): 13728-13740, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37158387

RESUMO

The electrochemical hydrogen evolution reaction (HER) in alkaline media provides an environmentally friendly industrial application approach to replace traditional fossil energy. The search for efficient, low-cost, and durable active electrocatalysts is central to the development of this area. Transition metal carbides (MXenes) have been emerging as a new family of two-dimensional (2D) materials that have great potential in the HER. Herein, density functional theory calculations are performed to systematically explore the structural and electronic properties and alkaline HER performances of Mo-based MXenes, as well as the influence of species and the coordination environment of single atoms on the improvement of the electrocatalytic activity of Mo2Ti2C3O2. The results show that Mo-based MXenes (Mo2CO2, Mo2TiC2O2, and Mo2Ti2C3O2) exhibit excellent H binding ability, while slow water decomposition kinetics hinders their HER performance. Replacing the O-terminal of Mo2Ti2C3O2 with a Ru single-atom (RuS-Mo2Ti2C3O2) could promote the decomposition of water owing to the stronger electron-donating ability of the atomic state Ru. In addition, Ru could also improve the binding ability of the catalyst to H by adjusting the surface electron distribution. As a result, RuS-Mo2Ti2C3O2 exhibits excellent HER performance with a water decomposition potential barrier of 0.292 eV and a H adsorption Gibbs free energy of -0.041 eV. These explorations bring new prospects for single atoms supported on Mo-based MXenes in the alkaline hydrogen evolution reaction.

3.
Angew Chem Int Ed Engl ; 56(3): 816-820, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27966808

RESUMO

Efficient separation of photogenerated electrons and holes, and associated surface reactions, is a crucial aspect of efficient semiconductor photocatalytic systems employed for photocatalytic hydrogen production. A new CoOx /TiO2 /Pt photocatalyst produced by template-assisted atomic layer deposition is reported for photocatalytic hydrogen production on Pt and CoOx dual cocatalysts. Pt nanoclusters acting as electron collectors and active sites for the reduction reaction are deposited on the inner surface of porous TiO2 nanotubes, while CoOx nanoclusters acting as hole collectors and active sites for oxidation reaction are deposited on the outer surface of porous TiO2 nanotubes. A CoOx /TiO2 /Pt photocatalyst, comprising ultra-low concentrations of noble Pt (0.046 wt %) and CoOx (0.019 wt %) deposited simultaneously with one atomic layer deposition cycle, achieves remarkably high photocatalytic efficiency (275.9 µmol h-1 ), which is nearly five times as high as that of pristine TiO2 nanotubes (56.5 µmol h-1 ). The highly dispersed Pt and CoOx nanoclusters, porous structure of TiO2 nanotubes with large specific surface area, and the synergetic effect of the spatially separated Pt and CoOx dual cocatalysts contribute to the excellent photocatalytic activity.

4.
J Colloid Interface Sci ; 661: 46-58, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38295702

RESUMO

In the process of photocatalytic ammonia synthesis, efficient activation of nitrogen molecules constitutes a fundamental challenge. During the N2 activation, the close interdependence between the acceptance and donation of electron results in their mutual limitation, leading to high energy barrier for N2 activation and unsatisfactory photocatalytic performance. This work decoupled the electron acceptance and donation processes by constructing Fe-Bi dual active sites, resulting in enhancing N2 activation through the high electron trapping ability of Fe3+ and strong electron donating ability of Bi2+. The photocatalytic nitrogen reduction efficiency of 3%Fe/Bi2O2.33 (118.71 µmol gcat-1h-1) is 5.3 times that of Bi2O2.33 (22.41 µmol gcat-1h-1). In-situ Fourier transform infrared (In situ FTIR) spectroscopy and density functional theory (DFT) calculations manifest that Fe3+-Bi2+ dual active sites work together to promote nitrogen adsorption and activation, and the reaction path is more inclined toward alternate hydrogenation path. N2 adsorption and activation properties are optimized by heteronuclear bimetallic active sites, which offers a new way for the rational design of nitrogen-fixing photocatalysts.

5.
Dalton Trans ; 51(34): 13085-13093, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35975572

RESUMO

The scaling relations between nitrogen adsorption and NHx destabilization are key challenges to the widespread adoption of the photocatalytic synthesis of ammonia. In this work, a FeII-rich MIL-101(Fe) (MIL-101(FeII/FeIII)) was synthesized using a one-step solvent thermal method with ethylene glycol (EG) as a reducing agent, which can break the scaling relationship by photoinduced FeII (high nitrogen adsorption ability) and FeIII (high NHz destabilization ability) cycling. XPS was used to detect the change in iron valence state in the MIL-101(FeII/FeIII) material. The photocatalytic nitrogen fixation efficiency of MIL-101(FeII/FeIII) under visible light without any sacrificial agent was 466.8 µmol h-1 g-1, five times that of MIL-101(Fe). After photocatalytic experiments, MIL-101(FeII/FeIII) retained an unchanged FeII/FeIII rate, indicating that this FeII/FeIII cycling can be maintained. DFT modeling of the FeII-rich MOF material showed that a FeII1 FeIII2 system has a higher N2 activation capacity than a FeIII3 system. The catalytic mechanism was further proved by in situ infrared spectra and N15 isotopic tracers. Therefore, the improvement of photocatalytic activity was mainly attributed to the change in the nitrogen adsorption capacity during the photoinduced FeII/FeIII cycling.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa