Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 168(6): 1053-1064.e15, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283061

RESUMO

Cytokines are classically thought to stimulate downstream signaling pathways through monotonic activation of receptors. We describe a severe anemia resulting from a homozygous mutation (R150Q) in the cytokine erythropoietin (EPO). Surprisingly, the EPO R150Q mutant shows only a mild reduction in affinity for its receptor but has altered binding kinetics. The EPO mutant is less effective at stimulating erythroid cell proliferation and differentiation, even at maximally potent concentrations. While the EPO mutant can stimulate effectors such as STAT5 to a similar extent as the wild-type ligand, there is reduced JAK2-mediated phosphorylation of select downstream targets. This impairment in downstream signaling mechanistically arises from altered receptor dimerization dynamics due to extracellular binding changes. These results demonstrate how variation in a single cytokine can lead to biased downstream signaling and can thereby cause human disease. Moreover, we have defined a distinct treatable form of anemia through mutation identification and functional studies.


Assuntos
Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patologia , Eritropoetina/genética , Mutação de Sentido Incorreto , Transdução de Sinais , Anemia de Diamond-Blackfan/terapia , Criança , Consanguinidade , Ativação Enzimática , Eritropoese , Eritropoetina/química , Feminino , Humanos , Janus Quinase 2/metabolismo , Cinética , Masculino , Receptores da Eritropoetina/química , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo
2.
Cell ; 134(6): 1066-78, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18805098

RESUMO

Nucleosome structural integrity underlies the regulation of DNA metabolism and transcription. Using a synthetic approach, a versatile library of 486 systematic histone H3 and H4 substitution and deletion mutants that probes the contribution of each residue to nucleosome function was generated in Saccharomyces cerevisiae. We probed fitness contributions of each residue to perturbations of chromosome integrity and transcription, mapping global patterns of chemical sensitivities and requirements for transcriptional silencing onto the nucleosome surface. Each histone mutant was tagged with unique molecular barcodes, facilitating identification of histone mutant pools through barcode amplification, labeling, and TAG microarray hybridization. Barcodes were used to score complex phenotypes such as competitive fitness in a chemostat, DNA repair proficiency, and synthetic genetic interactions, revealing new functions for distinct histone residues and new interdependencies among nucleosome components and their modifiers.


Assuntos
Histonas/genética , Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Cromossomos Fúngicos/metabolismo , Dano ao DNA , Reparo do DNA , Deleção de Genes , Biblioteca Gênica , Inativação Gênica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie
3.
Diabetes Obes Metab ; 24(9): 1869-1881, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35589615

RESUMO

AIMS: To determine the effect of glucagon-like peptide 1 receptor agonists (GLP-1RAs) on albuminuria in adult patients with type 2 diabetes mellitus (T2DM). METHODS: Medline Ovid, Scopus, Web of Science, EMCARE and CINAHL databases from database inception until 27 January 2022. Studies were eligible for inclusion if they were randomized controlled trials that involved treatment with a GLP-1RA in adult patients with T2DM and assessed the effect on albuminuria in each treatment arm. Data extraction was conducted independently by three individual reviewers. The PRISMA guidelines were followed regarding data extraction and quality assessment. Data were pooled using a random effects inverse variance model and all analysis was carried out with RevMan 5.4 software. The Jadad scoring tool was employed to assess the quality of evidence and risk of bias in the randomized controlled trials. RESULTS: The initial search revealed 2419 articles, of which 19 were included in this study. An additional three articles were identified from hand-searching references of included reviews. Therefore, in total, 22 articles comprising 39 714 patients were included. Meta-analysis suggested that use of GLP1-RAs was associated with a reduction in albuminuria in patients with T2DM (weighted mean difference -16.14%, 95% CI -18.42 to -13.86%; p < .0001) compared with controls. CONCLUSIONS: This meta-analysis indicates that GLP-1RAs are associated with a significant reduction in albuminuria in adult patients with T2DM when compared with placebo.


Assuntos
Diabetes Mellitus Tipo 2 , Albuminúria/complicações , Albuminúria/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Humanos , Hipoglicemiantes/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Am J Hum Genet ; 103(6): 930-947, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30503522

RESUMO

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure disorder that affects 7 out of 1,000,000 live births and has been associated with mutations in components of the ribosome. In order to characterize the genetic landscape of this heterogeneous disorder, we recruited a cohort of 472 individuals with a clinical diagnosis of DBA and performed whole-exome sequencing (WES). We identified relevant rare and predicted damaging mutations for 78% of individuals. The majority of mutations were singletons, absent from population databases, predicted to cause loss of function, and located in 1 of 19 previously reported ribosomal protein (RP)-encoding genes. Using exon coverage estimates, we identified and validated 31 deletions in RP genes. We also observed an enrichment for extended splice site mutations and validated their diverse effects using RNA sequencing in cell lines obtained from individuals with DBA. Leveraging the size of our cohort, we observed robust genotype-phenotype associations with congenital abnormalities and treatment outcomes. We further identified rare mutations in seven previously unreported RP genes that may cause DBA, as well as several distinct disorders that appear to phenocopy DBA, including nine individuals with biallelic CECR1 mutations that result in deficiency of ADA2. However, no new genes were identified at exome-wide significance, suggesting that there are no unidentified genes containing mutations readily identified by WES that explain >5% of DBA-affected case subjects. Overall, this report should inform not only clinical practice for DBA-affected individuals, but also the design and analysis of rare variant studies for heterogeneous Mendelian disorders.


Assuntos
Anemia de Diamond-Blackfan/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Exoma/genética , Éxons/genética , Feminino , Deleção de Genes , Estudos de Associação Genética/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Mutação/genética , Fenótipo , Proteínas Ribossômicas/genética , Ribossomos/genética , Análise de Sequência de RNA/métodos , Sequenciamento do Exoma/métodos
5.
Public Adm Dev ; 41(2): 91-98, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34230743

RESUMO

This field report explores how nonlocal grassroots organizations provided effective and quick responses during the initial stage of the COVID-19 outbreak in Wuhan and surrounding regions. Despite the lack of resources and local connections, they were able to overcome administrative failures and provide quick responses to the crisis. Built on a researcher-practitioner collaborative action research project, three strategies facilitating grassroots organizations' quick and effective responses are analyzed and discussed: putting pandemic relief as the strategic priority of their organizations, leveraging social media platforms to scale up existing organizational networks and foster cross-sector collaboration, and effective online trust-building. As COVID-19 unprecedently pushes nonprofits to transform how they deliver services and engage stakeholders, these findings have important policy and theoretical implications for an expanded view of how nonprofits may engage in disaster responses and how public and private funders may shift their funding strategies to cultivate such capacities of grassroots nonprofits.

6.
Clin Endocrinol (Oxf) ; 90(1): 47-55, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30346647

RESUMO

Gestational diabetes mellitus (GDM) is defined as glucose intolerance with onset or first diagnosis during pregnancy, but not to the level of being diagnostic for diabetes in a nonpregnant adult. In GDM, whole-body insulin-dependent glucose disposal decreases by 40%-60% which necessitates a 200%-250% increase in insulin secretion to maintain normoglycaemia. GDM develops when a pregnant woman does not produce sufficient insulin to compensate for the reduced glucose disposal. Fibroblast growth factor 21 (FGF21) is a hormone that is expressed predominantly in the liver, but also in other metabolically active tissues such as pancreas, skeletal muscle and adipose tissue. In animals, FGF21 lowers blood glucose levels and inhibits glucagon secretion. In humans, circulating FGF21 levels are increased in insulin-resistant morbidities such as obesity and type 2 diabetes mellitus (T2DM). An elevated FGF21 level is also an independent predictor of T2DM. GDM and T2DM are proposed to have similar underlying pathophysiologies, raising the question of whether a similar relationship exists between FGF21 and GDM as it does with T2DM. There are a limited number of studies investigating FGF21 levels in patients with GDM. Moreover, recent clinical trials investigating the therapeutic potential of FGF21 have highlighted a major gap in our understanding of the biology of FGF21. This review evaluates what is currently known about FGF21 and GDM and highlights important gaps that warrant further research.


Assuntos
Diabetes Gestacional/etiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Animais , Biomarcadores/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Gestacional/sangue , Feminino , Fatores de Crescimento de Fibroblastos/sangue , Humanos , Resistência à Insulina , Obesidade/sangue , Gravidez
8.
Blood ; 124(3): 437-40, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24735966

RESUMO

Pearson marrow pancreas syndrome (PS) is a multisystem disorder caused by mitochondrial DNA (mtDNA) deletions. Diamond-Blackfan anemia (DBA) is a congenital hypoproliferative anemia in which mutations in ribosomal protein genes and GATA1 have been implicated. Both syndromes share several features including early onset of severe anemia, variable nonhematologic manifestations, sporadic genetic occurrence, and occasional spontaneous hematologic improvement. Because of the overlapping features and relative rarity of PS, we hypothesized that some patients in whom the leading clinical diagnosis is DBA actually have PS. Here, we evaluated patient DNA samples submitted for DBA genetic studies and found that 8 (4.6%) of 173 genetically uncharacterized patients contained large mtDNA deletions. Only 2 (25%) of the patients had been diagnosed with PS on clinical grounds subsequent to sample submission. We conclude that PS can be overlooked, and that mtDNA deletion testing should be performed in the diagnostic evaluation of patients with congenital anemia.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , DNA Mitocondrial/genética , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Acil-CoA Desidrogenase de Cadeia Longa/genética , Criança , Pré-Escolar , Síndrome Congênita de Insuficiência da Medula Óssea , Análise Mutacional de DNA , Diagnóstico Diferencial , Humanos , Lactente , Mutação , Deleção de Sequência
9.
PLoS Comput Biol ; 9(11): e1003319, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24277996

RESUMO

Cleft formation during submandibular salivary gland branching morphogenesis is the critical step initiating the growth and development of the complex adult organ. Previous experimental studies indicated requirements for several epithelial cellular processes, such as proliferation, migration, cell-cell adhesion, cell-extracellular matrix (matrix) adhesion, and cellular contraction in cleft formation; however, the relative contribution of each of these processes is not fully understood since it is not possible to experimentally manipulate each factor independently. We present here a comprehensive analysis of several cellular parameters regulating cleft progression during branching morphogenesis in the epithelial tissue of an early embryonic salivary gland at a local scale using an on lattice Monte-Carlo simulation model, the Glazier-Graner-Hogeweg model. We utilized measurements from time-lapse images of mouse submandibular gland organ explants to construct a temporally and spatially relevant cell-based 2D model. Our model simulates the effect of cellular proliferation, actomyosin contractility, cell-cell and cell-matrix adhesions on cleft progression, and it was used to test specific hypotheses regarding the function of these parameters in branching morphogenesis. We use innovative features capturing several aspects of cleft morphology and quantitatively analyze clefts formed during functional modification of the cellular parameters. Our simulations predict that a low epithelial mitosis rate and moderate level of actomyosin contractility in the cleft cells promote cleft progression. Raising or lowering levels of contractility and mitosis rate resulted in non-progressive clefts. We also show that lowered cell-cell adhesion in the cleft region and increased cleft cell-matrix adhesions are required for cleft progression. Using a classifier-based analysis, the relative importance of these four contributing cellular factors for effective cleft progression was determined as follows: cleft cell contractility, cleft region cell-cell adhesion strength, epithelial cell mitosis rate, and cell-matrix adhesion strength.


Assuntos
Modelos Biológicos , Morfogênese/fisiologia , Glândula Submandibular/embriologia , Algoritmos , Animais , Adesão Celular , Embrião de Mamíferos , Feminino , Camundongos , Método de Monte Carlo
10.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38948837

RESUMO

A single arm trial (NCT007773097) and a double-blind, placebo controlled randomized trial ( NCT02134925 ) were conducted in individuals with a history of advanced colonic adenoma to test the safety and immunogenicity of the MUC1 tumor antigen vaccine and its potential to prevent new adenomas. These were the first two trials of a non-viral cancer vaccine administered in the absence of cancer. The vaccine was safe and strongly immunogenic in 43% (NCT007773097) and 25% ( NCT02134925 ) of participants. The lack of response in a significant number of participants suggested, for the first time, that even in a premalignant setting, the immune system may have already been exposed to some level of suppression previously reported only in cancer. Single-cell RNA-sequencing (scRNA-seq) on banked pre-vaccination peripheral blood mononuclear cells (PBMCs) from 16 immune responders and 16 non-responders identified specific cell types, genes, and pathways of a productive vaccine response. Responders had a significantly higher percentage of CD4+ naive T cells pre-vaccination, but a significantly lower percentage of CD8+ T effector memory (TEM) cells and CD16+ monocytes. Differential gene expression (DGE) and transcription factor inference analysis showed a higher level of expression of T cell activation genes, such as Fos and Jun, in CD4+ naive T cells, and pathway analysis showed enriched signaling activity in responders. Furthermore, Bayesian network analysis suggested that these genes were mechanistically connected to response. Our analyses identified several immune mechanisms and candidate biomarkers to be further validated as predictors of immune responses to a preventative cancer vaccine that could facilitate selection of individuals likely to benefit from a vaccine or be used to improve vaccine responses.

11.
Diagnostics (Basel) ; 14(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667502

RESUMO

Myxofibrosarcoma is a type of soft tissue sarcoma, predominantly characterized by a high propensity for local recurrence, albeit demonstrating a relatively diminished risk for distant metastasis. Its prevalence is notably higher in elderly patients. Here, we present a case of a 73-year-old woman diagnosed with Myxofibrosarcoma. She was subjected to a whole-body bone scan using 99mTc-methylene diphosphonate (MDP) to survey potential bony metastasis. It revealed marked MDP accumulation with peripheral soft tissue uptake in the right lateral chest region of this patient. This imaging phenotype could potentially be attributed to the augmented vascularity within the tumor, a finding that was prominently displayed in this particular case.

12.
Front Psychol ; 14: 1098568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993897

RESUMO

The study aimed to examine the cohesive tie effect on reading comprehension through the grammatical knowledge cognition process. The present meta-analysis examined the correlation between grammatical knowledge and reading comprehension based on empirical results published between 1998 and 2021. This study selected 86 studies with a total of 14,852 readers whose grades were grouped from primary school to university. The results showed that the overall correlation effect size between grammatical knowledge and reading comprehension was large, and the significant interaction effect of the grade group was confirmed through moderator analysis. The results suggested that the grammatical knowledge's function of the cohesive tie has a transfer effect across different text comprehension scripts.

13.
Sci Immunol ; 8(87): eadf6717, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713508

RESUMO

Human regulatory T cells (Tregs) are crucial regulators of tissue repair, autoimmune diseases, and cancer. However, it is challenging to inhibit the suppressive function of Tregs for cancer therapy without affecting immune homeostasis. Identifying pathways that may distinguish tumor-restricted Tregs is important, yet the transcriptional programs that control intratumoral Treg gene expression, and that are distinct from Tregs in healthy tissues, remain largely unknown. We profiled single-cell transcriptomes of CD4+ T cells in tumors and peripheral blood from patients with head and neck squamous cell carcinomas (HNSCC) and those in nontumor tonsil tissues and peripheral blood from healthy donors. We identified a subpopulation of activated Tregs expressing multiple tumor necrosis factor receptor (TNFR) genes (TNFR+ Tregs) that is highly enriched in the tumor microenvironment (TME) compared with nontumor tissue and the periphery. TNFR+ Tregs are associated with worse prognosis in HNSCC and across multiple solid tumor types. Mechanistically, the transcription factor BATF is a central component of a gene regulatory network that governs key aspects of TNFR+ Tregs. CRISPR-Cas9-mediated BATF knockout in human activated Tregs in conjunction with bulk RNA sequencing, immunophenotyping, and in vitro functional assays corroborated the central role of BATF in limiting excessive activation and promoting the survival of human activated Tregs. Last, we identified a suite of surface molecules reflective of the BATF-driven transcriptional network on intratumoral Tregs in patients with HNSCC. These findings uncover a primary transcriptional regulator of highly suppressive intratumoral Tregs, highlighting potential opportunities for therapeutic intervention in cancer without affecting immune homeostasis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Redes Reguladoras de Genes , Neoplasias de Cabeça e Pescoço , Humanos , Doenças Autoimunes , Fatores de Transcrição de Zíper de Leucina Básica/genética , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Linfócitos T Reguladores
14.
J Cardiovasc Dev Dis ; 9(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35877579

RESUMO

Cardiovascular diseases (CVDs) are a significant burden globally and are especially prevalent in obese and/or diabetic populations. Epicardial adipose tissue (EAT) surrounding the heart has been implicated in the development of CVDs as EAT can shift from a protective to a maladaptive phenotype in diseased states. In diabetic and obese patients, an elevated EAT mass both secretes pro-fibrotic/pro-inflammatory adipokines and forms intramyocardial fibrofatty infiltrates. This narrative review considers the proposed pathophysiological roles of EAT in CVDs. Diabetes is associated with a disordered energy utilization in the heart, which promotes intramyocardial fat and structural remodeling. Fibrofatty infiltrates are associated with abnormal cardiomyocyte calcium handling and repolarization, increasing the probability of afterdepolarizations. The inflammatory phenotype also promotes lateralization of connexin (Cx) proteins, undermining unidirectional conduction. These changes are associated with conduction heterogeneity, together creating a substrate for atrial fibrillation (AF). EAT is also strongly implicated in coronary artery disease (CAD); inflammatory adipokines from peri-vascular fat can modulate intra-luminal homeostasis through an "outside-to-inside" mechanism. EAT is also a significant source of sympathetic neurotransmitters, which promote progressive diastolic dysfunction with eventual cardiac failure. Further investigations on the behavior of EAT in diabetic/obese patients with CVD could help elucidate the pathogenesis and uncover potential therapeutic targets.

15.
J Phys Chem B ; 126(36): 6802-6810, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36001793

RESUMO

Binding to the host membrane is the initial infection step for animal viruses. Sendai virus (SeV), the model respirovirus studied here, utilizes sialic-acid-conjugated glycoproteins and glycolipids as receptors for binding. In a previous report studying single virus binding to supported lipid bilayers (SLBs), we found a puzzling mechanistic difference between the binding of SeV and influenza A virus (strain X31, IAVX31). Both viruses use similar receptors and exhibit similar cooperative binding behavior, but whereas IAVX31 binding was altered by SLB cholesterol concentration, which can stabilize receptor nanoclusters, SeV was not. Here, we propose that differences in viral size distributions can explain this discrepancy; viral size could alter the number of virus-receptor interactions in the contact area and, therefore, the sensitivity to receptor nanoclusters. To test this, we compared the dependence of SeV binding on SLB cholesterol concentration between size-filtered and unfiltered SeV. At high receptor density, the unfiltered virus showed little dependence, but the size-filtered virus exhibited a linear cholesterol dependence, similar to IAVX31. However, at low receptor densities, the unfiltered virus did exhibit a cholesterol dependence, indicating that receptor nanoclusters enhance viral binding only when the number of potential virus-receptor interactions is small enough. We also studied the influence of viral size and receptor nanoclusters on viral mobility following binding. Whereas differences in viral size greatly influenced mobility, the effect of receptor nanoclusters on mobility was small. Together, our results highlight the mechanistic salience of both the distribution of viral sizes and the lateral distribution of receptors in a viral infection.


Assuntos
Vírus da Influenza A , Vírus Sendai , Animais , Colesterol/metabolismo , Vírus da Influenza A/metabolismo , Bicamadas Lipídicas/metabolismo , Ligação Viral
16.
PLoS One ; 17(4): e0267412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476639

RESUMO

BACKGROUND: Diabetes foot ulcer (DFU) is a complication of diabetes mellitus. Accurate diagnosis of DFU severity through inflammatory markers will assist in reducing impact on quality of life. We aimed to ascertain the diagnostic test accuracy of commonly used inflammatory markers such as erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), procalcitonin (PCT), and white cell count (WCC) for the diagnosis and differentiation between DFU grades based on the International Working Group on the Diabetic Foot classification system. METHODS: This systematic review explored studies that investigated one or more of the above-listed index tests aiding in diagnosing infected DFU. This review was registered on PROSPERO database (ID = CRD42021255618) and searched 5 databases including an assessment of the references of included studies. Records were manually screened as per Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. A total of 16 studies were included which were assessed for quality using QUADAS-2 tool and meta-analysed using Meta-Disc v1.4. RESULTS: CRP had the greatest area under the curve (AUC) of 0.893 for diagnosing grade 2 DFU. This returned a pooled sensitivity and specificity of 77.4% (95% CI: 72% to 82%) and 84.3% (95% CI: 79% to 89%) respectively. In terms of diagnosing grade 3 DFU, procalcitonin had the highest AUC value of 0.844 when compared with other markers. The pooled sensitivity of PCT was calculated as 85.5% (95% CI: 79% to 90%) and specificity as 68.9% (95% CI: 63% to 75%). CONCLUSION: CRP and PCT are the best markers for diagnosing grade 2 and grade 3 DFU respectively. Other markers are also valuable when used in conjunction with clinical judgement. The findings accentuate the necessity of further research to establish standardised cut-off values for these inflammatory markers in diagnosing diabetic foot ulcers.


Assuntos
Diabetes Mellitus , Pé Diabético , Osteomielite , Biomarcadores , Proteína C-Reativa/metabolismo , Calcitonina , Pé Diabético/complicações , Pé Diabético/diagnóstico , Humanos , Osteomielite/diagnóstico , Pró-Calcitonina , Qualidade de Vida
17.
Artigo em Inglês | MEDLINE | ID: mdl-36778756

RESUMO

As the cost of high-throughput genomic sequencing technology declines, its application in clinical research becomes increasingly popular. The collected datasets often contain tens or hundreds of thousands of biological features that need to be mined to extract meaningful information. One area of particular interest is discovering underlying causal mechanisms of disease outcomes. Over the past few decades, causal discovery algorithms have been developed and expanded to infer such relationships. However, these algorithms suffer from the curse of dimensionality and multicollinearity. A recently introduced, non-orthogonal, general empirical Bayes approach to matrix factorization has been demonstrated to successfully infer latent factors with interpretable structures from observed variables. We hypothesize that applying this strategy to causal discovery algorithms can solve both the high dimensionality and collinearity problems, inherent to most biomedical datasets. We evaluate this strategy on simulated data and apply it to two real-world datasets. In a breast cancer dataset, we identified important survival-associated latent factors and biologically meaningful enriched pathways within factors related to important clinical features. In a SARS-CoV-2 dataset, we were able to predict whether a patient (1) had Covid-19 and (2) would enter the ICU. Furthermore, we were able to associate factors with known Covid-19 related biological pathways.

19.
Public Adm Rev ; 80(5): 866-873, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32836448

RESUMO

Zhejiang Province achieved one of the best records in containing the COVID-19 pandemic in China. What lessons can the world learn from it? What roles do community-based organizations play in this success story? Based on more than 100 interviews during and after the outbreak in Zhejiang, this article provides a road map of how community-based organizations were involved in the three distinct stages of Zhejiang's response to COVID-19. The authors recommend that public sector leaders (1) strategically leverage the strengths of community-based organizations at multiple stages of the COVID-19 response; (2) incentivize volunteers to participate in epidemic prevention and control; (3) provide data infrastructure and digital tracking platforms; and (4) build trust and long-term capacity of community-based organizations.

20.
J Bacteriol ; 191(4): 1152-61, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19060143

RESUMO

DNA double-strand breaks are particularly deleterious lesions that can lead to genomic instability and cell death. We investigated the SOS response to double-strand breaks in both Escherichia coli and Bacillus subtilis. In E. coli, double-strand breaks induced by ionizing radiation resulted in SOS induction in virtually every cell. E. coli strains incapable of SOS induction were sensitive to ionizing radiation. In striking contrast, we found that in B. subtilis both ionizing radiation and a site-specific double-strand break causes induction of prophage PBSX and SOS gene expression in only a small subpopulation of cells. These results show that double-strand breaks provoke global SOS induction in E. coli but not in B. subtilis. Remarkably, RecA-GFP focus formation was nearly identical following ionizing radiation challenge in both E. coli and B. subtilis, demonstrating that formation of RecA-GFP foci occurs in response to double-strand breaks but does not require or result in SOS induction in B. subtilis. Furthermore, we found that B. subtilis cells incapable of inducing SOS had near wild-type levels of survival in response to ionizing radiation. Moreover, B. subtilis RecN contributes to maintaining low levels of SOS induction during double-strand break repair. Thus, we found that the contribution of SOS induction to double-strand break repair differs substantially between E. coli and B. subtilis.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Quebras de DNA de Cadeia Dupla , Escherichia coli/genética , Escherichia coli/metabolismo , Resposta SOS em Genética/fisiologia , Bacillus subtilis/efeitos da radiação , Desoxirribonucleases de Sítio Específico do Tipo II , Escherichia coli/efeitos da radiação , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa