Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurooncol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769169

RESUMO

BACKGROUND: Although cavitating ultrasonic aspirators are commonly used in neurosurgical procedures, the suitability of ultrasonic aspirator-derived tumor material for diagnostic procedures is still controversial. Here, we explore the feasibility of using ultrasonic aspirator-resected tumor tissue to classify otherwise discarded sample material by fast DNA methylation-based analysis using low pass nanopore whole genome sequencing. METHODS: Ultrasonic aspirator-derived specimens from pediatric patients undergoing brain tumor resection were subjected to low-pass nanopore whole genome sequencing. DNA methylation-based classification using a neural network classifier and copy number variation analysis were performed. Tumor purity was estimated from copy number profiles. Results were compared to microarray (EPIC)-based routine neuropathological histomorphological and molecular evaluation. RESULTS: 19 samples with confirmed neuropathological diagnosis were evaluated. All samples were successfully sequenced and passed quality control for further analysis. DNA and sequencing characteristics from ultrasonic aspirator-derived specimens were comparable to routinely processed tumor tissue. Classification of both methods was concordant regarding methylation class in 17/19 (89%) cases. Application of a platform-specific threshold for nanopore-based classification ensured a specificity of 100%, whereas sensitivity was 79%. Copy number variation profiles were generated for all cases and matched EPIC results in 18/19 (95%) samples, even allowing the identification of diagnostically or therapeutically relevant genomic alterations. CONCLUSION: Methylation-based classification of pediatric CNS tumors based on ultrasonic aspirator-reduced and otherwise discarded tissue is feasible using time- and cost-efficient nanopore sequencing.

2.
Neuropathol Appl Neurobiol ; 49(1): e12856, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36269599

RESUMO

BACKGROUND: DNA methylation-based classification of cancer provides a comprehensive molecular approach to diagnose tumours. In fact, DNA methylation profiling of human brain tumours already profoundly impacts clinical neuro-oncology. However, current implementation using hybridisation microarrays is time consuming and costly. We recently reported on shallow nanopore whole-genome sequencing for rapid and cost-effective generation of genome-wide 5-methylcytosine profiles as input to supervised classification. Here, we demonstrate that this approach allows us to discriminate a wide spectrum of primary brain tumours. RESULTS: Using public reference data of 82 distinct tumour entities, we performed nanopore genome sequencing on 382 tissue samples covering 46 brain tumour (sub)types. Using bootstrap sampling in a cohort of 55 cases, we found that a minimum set of 1000 random CpG features is sufficient for high-confidence classification by ad hoc random forests. We implemented score recalibration as a confidence measure for interpretation in a clinical context and empirically determined a platform-specific threshold in a randomly sampled discovery cohort (N = 185). Applying this cut-off to an independent validation series (n = 184) yielded 148 classifiable cases (sensitivity 80.4%) and demonstrated 100% specificity. Cross-lab validation demonstrated robustness with concordant results across four laboratories in 10/11 (90.9%) cases. In a prospective benchmarking (N = 15), the median time to results was 21.1 h. CONCLUSIONS: In conclusion, nanopore sequencing allows robust and rapid methylation-based classification across the full spectrum of brain tumours. Platform-specific confidence scores facilitate clinical implementation for which prospective evaluation is warranted and ongoing.


Assuntos
Neoplasias Encefálicas , Sequenciamento por Nanoporos , Humanos , Metilação de DNA , Neoplasias Encefálicas/patologia , Genoma
3.
J Cell Mol Med ; 24(1): 431-440, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31660694

RESUMO

The cardiac protection of mesenchymal stem cell (MSC) transplantation for myocardial infarction (MI) is largely hampered by low cell survival. Haem oxygenase 1 (HO-1) plays a critical role in regulation of cell survival under many stress conditions. This study aimed to investigate whether pre-treatment with haemin, a potent HO-1 inducer, would promote the survival of MSCs under serum deprivation and hypoxia (SD/H) and enhance the cardioprotective effects of MSCs in MI. Bone marrow (BM)-MSCs were pretreated with or without haemin and then exposed to SD/H. The mitochondrial morphology of MSCs was determined by MitoTracker staining. BM-MSCs and haemin-pretreated BM-MSCs were transplanted into the peri-infarct region in MI mice. SD/H induced mitochondrial fragmentation, as shown by increased mitochondrial fission and apoptosis of BM-MSCs. Pre-treatment with haemin greatly inhibited SD/H-induced mitochondrial fragmentation and apoptosis of BM-MSCs. These effects were partially abrogated by knocking down HO-1. At 4 weeks after transplantation, compared with BM-MSCs, haemin-pretreated BM-MSCs had greatly improved the heart function of mice with MI. These cardioprotective effects were associated with increased cell survival, decreased cardiomyocytes apoptosis and enhanced angiogenesis. Collectively, our study identifies haemin as a regulator of MSC survival and suggests a novel strategy for improving MSC-based therapy for MI.


Assuntos
Cardiotônicos/farmacologia , Hemina/farmacologia , Células-Tronco Mesenquimais/citologia , Dinâmica Mitocondrial/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura Livres de Soro , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Modelos Biológicos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos
4.
Phys Rev Lett ; 123(24): 247205, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922861

RESUMO

Spin nematics break spin-rotational symmetry while maintaining time-reversal symmetry, analogous to liquid crystal nematics that break spatial rotational symmetry while maintaining translational symmetry. Although several candidate spin nematics have been proposed, the identification and characterization of such a state remain challenging because the spin-nematic order parameter does not couple directly to experimental probes. KFe_{0.8}Ag_{1.2}Te_{2} (K_{5}Fe_{4}Ag_{6}Te_{10}, KFAT) is a local-moment magnet consisting of well-separated 2×2 Fe clusters, and in its ground state the clusters order magnetically, breaking both spin-rotational and time-reversal symmetries. Using uniform magnetic susceptibility and neutron scattering measurements, we find a small strain induces sizable spin anisotropy in the paramagnetic state of KFAT, manifestly breaking spin-rotational symmetry while retaining time-reversal symmetry, resulting in a strain-induced spin-nematic state in which the 2×2 clusters act as the spin analog of molecules in a liquid crystal nematic. The strain-induced spin anisotropy in KFAT allows us to probe its nematic susceptibility, revealing a divergentlike increase upon cooling, indicating the ordered ground state is driven by a spin-orbital entangled nematic order parameter.

5.
Cell Commun Signal ; 17(1): 48, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118022

RESUMO

BACKGROUND: Glioma is the most commonly diagnosed malignant and aggressive brain cancer in adults. Traditional researches mainly explored the expression profile of glioma at cell-population level, but ignored the heterogeneity and interactions of among glioma cells. METHODS: Here, we firstly analyzed the single-cell RNA-seq (scRNA-seq) data of 6341 glioma cells using manifold learning and identified neoplastic and healthy cells infiltrating in tumor microenvironment. We systematically revealed cell-to-cell interactions inside gliomas based on corresponding scRNA-seq and TCGA RNA-seq data. RESULTS: A total of 16 significantly correlated autocrine ligand-receptor signal pairs inside neoplastic cells were identified based on the scRNA-seq and TCGA data of glioma. Furthermore, we explored the intercellular communications between cancer stem-like cells (CSCs) and macrophages, and identified 66 ligand-receptor pairs, some of which could significantly affect prognostic outcomes. An efficient machine learning model was constructed to accurately predict the prognosis of glioma patients based on the ligand-receptor interactions. CONCLUSION: Collectively, our study not only reveals functionally important cell-to-cell interactions inside glioma, but also detects potentially prognostic markers for predicting the survival of glioma patients.


Assuntos
Comunicação Autócrina , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Transcriptoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , Humanos , Aprendizado de Máquina , Células-Tronco Neoplásicas/metabolismo
6.
Mol Pharm ; 16(4): 1444-1455, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30811206

RESUMO

Puerarin (PU) has emerged as a promising herb-derived anti-Parkinsonism compound. However, the undesirable water solubility as well as the unwanted bioavailability of PU limit its application. Therefore, this study aimed to develop and characterize PU nanocrystals (PU-NCs) with enhanced oral bioavailability and improved brain accumulation for the treatment of Parkinson's disease (PD). The fabricated PU-NCs were approximately spherical, with a mean size of 83.05 ± 1.96 nm, a PDI of 0.047 ± 0.009, a drug loading of 72.7%, and a rapid dissolution rate in vitro. Molecular dynamics simulation of PU and Pluronic F68 demonstrated the interaction energy and binding energy of -88.1 kJ/mol and -40.201 ± 0.685 kJ/mol, respectively, indicating a spontaneous binding with van der Waals interactions. In addition, the cellular uptake and permeability of PU-NCs were significantly enhanced as compared to PU alone ( p < 0.01). Moreover, PU-NCs exerted a significant neuroprotective effect against the cellular damage induced by the 1-methyl-4-phenylpyridinium ion (MPP+). Besides, PU-NCs demonstrated no obvious toxic effects on zebrafish, as evidenced by the unaltered morphology, hatching, survival rate, body length, and heart rate. Fluorescence resonance energy transfer (FRET) imaging revealed that intact nanocrystals were found in the intestine and brain of adult zebrafish gavaged with DiO/DiI/PU-NCs. Increased values of Cmax and AUC0- t were observed in the plasma of rats following oral administration of PU-NCs compared to PU suspension. Likewise, brain accumulation of PU-NCs was higher than that of PU suspension. Furthermore, PU-NCs attenuated dopamine depletion, ameliorated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral deficits, and enhanced the levels of dopamine and its metabolites. Taken altogether, this study provides evidence that PU-NCs could be exploited as a potential oral delivery system to treat PD, by improving the poor bioavailability of PU and enhancing their delivery into the brain.


Assuntos
Antiparkinsonianos/administração & dosagem , Encéfalo/efeitos dos fármacos , Isoflavonas/administração & dosagem , Nanopartículas/química , Fármacos Neuroprotetores/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Vasodilatadores/administração & dosagem , Administração Oral , Animais , Antiparkinsonianos/farmacologia , Disponibilidade Biológica , Encéfalo/metabolismo , Dopaminérgicos/toxicidade , Portadores de Fármacos/química , Isoflavonas/farmacologia , Intoxicação por MPTP/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ratos , Ratos Sprague-Dawley , Vasodilatadores/farmacologia , Peixe-Zebra
7.
Mediators Inflamm ; 2019: 9483647, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31011288

RESUMO

CD4+ T-cells play crucial roles in the injured heart. However, the way in which different CD4+ T subtypes function in the myocardial infarction/reperfusion (MI/R) heart is still poorly understood. We aimed to detect the dynamic profile of distinct CD4+ subpopulation-associated cytokines/chemokines by relying on a closed-chest acute murine MI/R model. The protein levels of 26 CD4+ T-cell-associated cytokines/chemokines were detected in the heart tissues and serum of mice at day 7 and day 14 post-MI/R or sham surgery. The mRNA levels of IL-4, IL-6, IL-13, IL-27, MIP-1ß, MCP-3, and GRO-α were measured in blood mononuclear cells. The protein levels of IL-4, IL-6, IL-13, IL-27, MIP-1ß, MCP-3, and GRO-α increased in both injured heart tissues and serum, while IFN-γ, IL-12P70, IL-2, IL-1ß, IL-18, TNF-α, IL-5, IL-9, IL-17A, IL-23, IL-10, eotaxin, MIP-1α, RANTES, MCP-1, and MIP-2 increased only in MI/R heart tissues in the day 7 and day 14 groups compared to the sham group. In serum, the IFN-γ, IL-23, and IL-10 levels were downregulated in the MI/R model at both day 7 and day 14 compared to the sham. Compared with the protein expressions in injured heart tissues at day 7, IFN-γ, IL-12P70, IL-2, IL-18, TNF-α, IL-6, IL-4, IL-5, IL-9, IL-17A, IL-23, IL-27, IL-10, eotaxin, IP-10, RANTES, MCP-1, MCP-3, and GRO-α were reduced, while IL-1ß and MIP-2 were elevated at day 14. IL-13 and MIP-1ß showed higher levels in the MI/R serum at day 14 than at day 7. mRNA levels of IL-4, IL-6, IL-13, and IL-27 were increased in the day 7 group compared to the sham, while MIP-1ß, MCP-3, and GRO-α mRNA levels showed no significant difference between the MI/R and sham groups in blood mononuclear cells. Multiple CD4+ T-cell-associated cytokines/chemokines were upregulated in the MI/R hearts at the chronic stage. These results provided important evidence necessary for developing future immunomodulatory therapies after MI/R.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Quimiocina CCL3/sangue , Quimiocina CCL3/metabolismo , Interleucina-10/sangue , Interleucina-10/metabolismo , Interleucina-13/sangue , Interleucina-13/metabolismo , Interleucina-4/sangue , Interleucina-4/metabolismo , Interleucina-6/sangue , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Infarto do Miocárdio/sangue , Traumatismo por Reperfusão Miocárdica/sangue
8.
Appl Opt ; 55(30): 8541-8549, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27828133

RESUMO

The large absolute photonic bandgaps of two-dimensional (2D) anisotropic magnetic plasma photonic crystals with hexagonal and square lattices are obtained by introducing tellurium dielectric rods using the modified plane wave expansion method. Equations for calculating the band structures in the irreducible part of the first Brillouin zone are theoretically deduced. The modulation properties indicate that the location and bandwidth of the absolute photonic bandgaps (PBGs) could be tuned by filling factor, plasma frequency, and magnetic field. The effective tunable ranges and critical values of these parameters are found. These results could be helpful in designing 2D anisotropic PPCs with large absolute PBGs.

9.
Opt Express ; 22(22): 27606-16, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25401905

RESUMO

The linear and nonlinear optical properties of TbCa4O(BO3)3 (abbreviated as TbCOB) single crystals were investigated for the first time. The refractive indices of TbCOB at several wavelengths were measured by using the minimum deviation method and the parameters of Sellmeier's dispersion equation were determined from the experimental data. The complete set of six second-order nonlinear optical (NLO) coefficients of TbCOB single crystals were obtained using the Maker fringe (FM) technique, with the largest d32 being on the order of 1.65 pm/V. Moreover, the phase-matching (PM) configurations of second-order harmonic generation (SHG) in the principal planes were calculated, and the largest effective NLO coefficient is deff = 0.86 pm/V along (22.56°, 180°) PM direction. The SHG conversion efficiency from 1064 nm to 532 nm of 8 mm long crystal samples without AR coating along this direction was achieved 57.1% at 28.2 mW input power, and it has a small walk-off angle of 13.8 mrad. In addition, the comparison and discussion with GdCOB and YCOB were carried out.

10.
Front Cell Dev Biol ; 11: 1091047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875765

RESUMO

Feature identification and manual inspection is currently still an integral part of biological data analysis in single-cell sequencing. Features such as expressed genes and open chromatin status are selectively studied in specific contexts, cell states or experimental conditions. While conventional analysis methods construct a relatively static view on gene candidates, artificial neural networks have been used to model their interactions after hierarchical gene regulatory networks. However, it is challenging to identify consistent features in this modeling process due to the inherently stochastic nature of these methods. Therefore, we propose using ensembles of autoencoders and subsequent rank aggregation to extract consensus features in a less biased manner. Here, we performed sequencing data analyses of different modalities either independently or simultaneously as well as with other analysis tools. Our resVAE ensemble method can successfully complement and find additional unbiased biological insights with minimal data processing or feature selection steps while giving a measurement of confidence, especially for models using stochastic or approximation algorithms. In addition, our method can also work with overlapping clustering identity assignment suitable for transitionary cell types or cell fates in comparison to most conventional tools.

11.
Front Immunol ; 13: 796542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664001

RESUMO

Danggui-Shaoyao-San (DSS) has a long history of being used as a traditional medicine (TCM) and has been reported to show therapeutic effects in alleviating the symptoms of cognitive impairment. The purpose of this study was to investigate whether DSS treatment attenuates cognitive impairment via the microbiota-gut-brain axis in scopolamine-induced amnesia. In this work, we first performed the Morris water maze (MWM) test and novel object recognition (NOR) test to evaluate the memory function of treated C57BL/6N mice. Then we evaluated 16S rRNA for gut microbiota analysis, as well as assessment of blood-brain barrier function and intestinal barrier function and lipid metabolism analysis on tissues from different groups. We hypothesised that DSS may affect brain function and behavior through the gut-brain axis in a bidirectional interplay with both top-down and bottom-up regulation. Furthermore, in order to confirm whether intestinal flora plays a crucial role in scopolamine-induced amnesia, C57BL/6N mice were treated with fecal microbial transplantation (FMT), and then behavioral tests were performed. The mice's feces were simultaneously evaluated by 16S rRNA analysis. The result supported that the FMT-induced improvement in cognitive function highlights the role of the gut microbiota-brain axis to mediate cognitive function and behavior. Besides theses works, more findings indicated that DSS altered lipid metabolism by activating LXR-PPAR-γ and repaired mucosal barrier dysfunction assessed with a broad range of techniques, which attenuated cognitive impairment via the microbiota-gut-brain axis.


Assuntos
Disfunção Cognitiva , Microbiota , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Animais , Eixo Encéfalo-Intestino , Disfunção Cognitiva/tratamento farmacológico , Medicamentos de Ervas Chinesas , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S , Escopolamina/efeitos adversos
12.
Int J Nanomedicine ; 17: 6413-6425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545221

RESUMO

Background: Breast cancer (BC) has the highest global prevalence among all malignancies in women and the second highest prevalence in the overall population. Paclitaxel (PTX), a tricyclic diterpenoid, is effective against BC. However, its poor solubility in water and the allergenicity of its dissolution medium limited its clinical application. Methods: In this work, we established a multifunctional graphene oxide (GO) tumor-targeting drug delivery system using nanosized graphene oxide (nGO) modified with D-tocopherol polyethylene glycol succinate (TPGS) and arginine-glycine-aspartic acid (RGD) for PTX loading. Results: The obtained RGD-TPGS-nGO-PTX was 310.20±19.86 nm in size; the polydispersity index (PDI) and zeta potential were 0.21±0.020 and -23.42 mV, respectively. The mean drug loading capacity of RGD-TPGS-nGO-PTX was 48.78%. RGD-TPGS-nGO-PTX showed satisfactory biocompatibility and biosafety and had no significant toxic effects on zebrafish embryos. Importantly, it exerted excellent cytotoxicity against MDA-MB-231 cells, reversed multi-drug resistance (MDR) in MCF-7/ADR cells, and showed significant anti-tumor efficacy in tumor-bearing nude mice. Conclusion: These findings strongly suggested that the multifunctional GO tumor-targeting drug delivery system RGD-TPGS-nGO-PTX could be used in clinical settings to improve PTX delivery, reverse MDR and increase the therapeutic efficacy of BC treatment.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Antineoplásicos/farmacologia , Camundongos Nus , Peixe-Zebra , Micelas , Paclitaxel/farmacologia , Sistemas de Liberação de Medicamentos , Vitamina E/farmacologia , Oligopeptídeos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Polietilenoglicóis/farmacologia , Neoplasias/tratamento farmacológico
13.
Pharmaceutics ; 14(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015354

RESUMO

Parkinson's disease (PD) is a serious neurodegenerative disease wherein the progressive destruction of dopaminergic neurons results in a series of related movement disorders. Effective oral delivery of anti-Parkinson's drugs is challenging owing to the blood-brain barrier (BBB) and the limited plasma exposure. However, polymeric nanoparticles possess great potential to enhance oral bioavailability, thus improving drug accumulation within the brain. In this work, biodegradable poly(ethylene glycol)-b-poly(trimethylene carbonate) (PEG-PTMC) nanoparticles (PPNPs) were developed to deliver Ginkgolide B (GB) as a potent treatment for PD, aiming to enhance its accumulation within both the blood and the brain. The resultant GB-PPNPs were able to facilitate sustained GB release for 48 h and to protect against 1-methyl-4-phenylpyridine (MPP+)-induced neuronal cytotoxicity without causing any toxic damage. Subsequent pharmacokinetic studies revealed that GB-PPNPs accumulated at significantly higher concentrations in the plasma and brain relative to free GB. Oral GB-PPNP treatment was also linked to desirable outcomes in an animal model of PD, as evidenced by improvements in locomotor activity, levels of dopamine and its metabolites, and tyrosine hydroxylase activity. Together, these data suggest that PPNPs may represent promising tools for the effective remediation of PD and other central nervous system disorders.

14.
J Hazard Mater ; 417: 126056, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992917

RESUMO

Constructing versatile materials with self-detoxification properties are highly desired for emergency destruction of chemical warfare agents (CWAs). Herein, we first reported in-situ fabrication of ZnIn2S4/UiO-66-NH2 nanocomposites (ZnInS/UiO) and their application in catalytic detoxification of two CWA simulants. For nerve agent simulant dimethyl 4-nitrophenyl phosphate (DMNP), the optimal ZnInS/UiO-23.9 displayed 5.9 times increase in hydrolysis rate having the turnover frequency (TOF) of 0.0586 s-1 under simulated solar light (SSL), which is superior to the reported UiO-based catalysts. Photo-assisted enhancement in DMNP detoxification was due to photothermal effect of ZnInS and close interfacial contact in ZnInS/UiO heterostructures, facilitating instantaneous heat transfer from ZnInS to UiO catalytic sites. As for mustard gas surrogate 2-chloroethyl ethyl sulfide (CEES), under SSL irradiation for 15 min, ZnInS/UiO-23.9 can eliminate 96.7% of CEES in droplet experiment, being 4.17 and 3.24 times of ZnInS and UiO accordingly. It was ascribed to spatial separation of photoinduced electron-hole pairs and photothermally-assisted charge transfer in ZnInS/UiO composites, improving catalytic activity for CEES detoxification. Besides, the detected products suggested that CEES conversion underwent reductive dechlorination, radical reactions and hydrolysis. This study can be extended to other multifunctional catalysts based on metal-organic frameworks and provides new opportunities for photoassisted enhanced detoxification of CWAs.


Assuntos
Substâncias para a Guerra Química , Estruturas Metalorgânicas , Nanocompostos , Agentes Neurotóxicos , Catálise
15.
Genome Med ; 13(1): 132, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407882

RESUMO

BACKGROUND: Gene copy number variations (CNVs) contribute to genetic diversity and disease prevalence across populations. Substantial efforts have been made to decipher the relationship between CNVs and pathogenesis but with limited success. RESULTS: We have developed a novel computational framework X-CNV ( www.unimd.org/XCNV ), to predict the pathogenicity of CNVs by integrating more than 30 informative features such as allele frequency (AF), CNV length, CNV type, and some deleterious scores. Notably, over 14 million CNVs across various ethnic groups, covering nearly 93% of the human genome, were unified to calculate the AF. X-CNV, which yielded area under curve (AUC) values of 0.96 and 0.94 in training and validation sets, was demonstrated to outperform other available tools in terms of CNV pathogenicity prediction. A meta-voting prediction (MVP) score was developed to quantitively measure the pathogenic effect, which is based on the probabilistic value generated from the XGBoost algorithm. The proposed MVP score demonstrated a high discriminative power in determining pathogenetic CNVs for inherited traits/diseases in different ethnic groups. CONCLUSIONS: The ability of the X-CNV framework to quantitatively prioritize functional, deleterious, and disease-causing CNV on a genome-wide basis outperformed current CNV-annotation tools and will have broad utility in population genetics, disease-association studies, and diagnostic screening.


Assuntos
Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Software , Algoritmos , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Aprendizado de Máquina , Curva ROC , Navegador , Fluxo de Trabalho
16.
Lancet Reg Health West Pac ; 9: 100110, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34379708

RESUMO

BACKGROUND: A universally applicable approach that provides standard HALE measurements for different regions has yet to be developed because of the difficulties of health information collection. In this study, we developed a natural language processing (NLP) based HALE estimation approach by using individual-level electronic medical records (EMRs), which made it possible to calculate HALE timely in different temporal or spatial granularities. METHODS: We performed diagnostic concept extraction and normalisation on 13•99 million EMRs with NLP to estimate the prevalence of 254 diseases in WHO Global Burden of Disease Study (GBD). Then, we calculated HALE in Chongqing, 2017, by using the life table technique and Sullivan's method, and analysed the contribution of diseases to the expected years "lost" due to disability (DLE). FINDINGS: Our method identified a life expectancy at birth (LE0) of 77•9 years and health-adjusted life expectancy at birth (HALE0) of 71•7 years for the general Chongqing population of 2017. In particular, the male LE0 and HALE0 were 76•3 years and 68•9 years, respectively, while the female LE0 and HALE0 were 80•0 years and 74•4 years, respectively. Cerebrovascular diseases, cancers, and injuries were the top three deterioration factors, which reduced HALE by 2•67, 2•15, and 1•19 years, respectively. INTERPRETATION: The results demonstrated the feasibility and effectiveness of EMRs-based HALE estimation. Moreover, the method allowed for a potentially transferable framework that facilitated a more convenient comparison of cross-sectional and longitudinal studies on HALE between regions. In summary, this study provided insightful solutions to the global ageing and health problems that the world is facing. FUNDING: National Key R and D Program of China (2018YFC2000400).

17.
ACS Appl Mater Interfaces ; 12(34): 38333-38340, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32697904

RESUMO

Ternary metal halides with large exciton binding energy have recently gained considerable attention in the optoelectronic field due to their high photoluminescence quantum yield and large Stokes shift. Here, efficient scintillators are designed based on these advantageous properties. For the first time, bulk Cs3Cu2I5 is grown using a melt method other than the intensively reported solution growth, and behaved as an intrinsic scintillator, emitting bright blue (∼450 nm) light under X-ray and γ-ray irradiation. Successful Tl doping at Cs sites tune the emission band over the entire visible range (400-700 nm) due to the synergetic effects of self-trapped excitons (STEs) and Tl centers. Notably, after doping with 1% Tl+, the scintillation light yield of Cs3Cu2I5 increases by nearly three times to 51 000 ± 2000 ph/MeV (Cs-137, 662 keV). Cs3Cu2I5:Tl shows a higher energy resolution of 4.5% at 662 keV than that of NaI:Tl and an excellent nonproportionality (<3%) in the γ-ray energy range of 60-1275 keV. A model of energy relaxation in Cs3Cu2I5:Tl scintillators is proposed and discussed. In particular, it is the first Cu-based halide scintillator that has air stability, good stopping power, and the ability to grow large bulk single crystals for practical application. This work provides a strategy for tuning and broadening the spectral range of STE emitters, and bridges the lead-free halide derivatives with scintillators.

18.
Asian J Pharm Sci ; 15(4): 518-528, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32952674

RESUMO

Resveratrol (RES), a non-flavonoid polyphenol extracted from a wide variety of plants, exhibits neuroprotective activities against Parkinson's disease (PD). However, undesirable water solubility of RES reduces its oral bioavailability and demonstrates low efficacy in blood and brain, thus limiting its application. In present study, a nanocrystal formulation of RES (RES-NCs) was developed to enhance its oral bioavailability and delivery into brain for PD treatment. RES-NCs were fabricated with hydroxypropyl methylcellulose (HPMC) stabilizer via antisolvent precipitation approach. The obtained RES-NCs displayed the particle size of 222.54 ± 1.66 nm, the PDI of 0.125 ± 0.035, the zeta potential of -9.41 ± 0.37 mV, and a rapid in vitro dissolution rate. Molecular dynamics simulation of RES and HPMC revealed an interaction energy of -68.09 kJ/mol and a binding energy of -30.98 ± 0.388 kJ/mol, indicating that the spontaneous binding between the two molecules is through van der Waals forces. RES-NCs conferred enhanced cellular uptake as well as improved permeability relative to pure RES. In addition, RES-NCs were able to protect neurons against cytotoxicity induced by MPP+. Meanwhile, RES-NCs exerted no significant toxic effects on zebrafish embryos and larvae, and did not influence their survival and hatching rates. When orally administered to rats, RES-NCs exhibited more favorable pharmacokinetics than pure RES, with higher plasma and brain concentrations. More importantly, MPTP-induced PD mice showed notable improvements in behavior, attenuated dopamine deficiency, and elevated levels of dopamine and its metabolites after the treatment with RES-NCs. Furthermore, immunoblot analysis revealed that the neuroprotective role of RES-NCs may be at least partially mediated by Akt/Gsk3ß signaling pathway. Taken altogether, RES-NCs can serve as a potential treatment modality for PD, offering means of improving RES oral bioavailability and brain accumulation.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32076440

RESUMO

Gastric cancer, one of the most common types of cancers, develops over a series of consecutive histopathological stages. As such, the analysis and research of the gastric precancerous lesions (GPLs) play an important role in preventing the occurrence of gastric cancer. Ginsenoside Rg3 (Rg3), an herbal medicine, plays an important role in the prevention and treatment of various cancers. Studies have demonstrated a correlation between glycolysis and gastric cancer progression. Herein, the aim of the present study was to clarify the potential role for glycolysis pathogenesis in Rg3-treated GPL in Atp4a-/- mice. The GPL mice model showed chronic gastritis, intestinal metaplasia, and more atypical hyperplasia in gastric mucosa. According to the results of HE and AB-PAS staining, it could be confirmed that GPL mice were obviously reversed by Rg3. Additionally, the increased protein levels of PI3K, AKT, mTOR, HIF-1α, LDHA, and HK-II, which are crucial factors for evaluating GPL in the aspect of glycolysis pathogenesis in the model group, were downregulated by Rg3. Meanwhile, the miRNA-21 expression was decreased and upregulated by Rg3. Furthermore, the increased gene levels of Bcl-2 and caspase-3 were attenuated in Rg3-treated GPL mice. In conclusion, the findings of this study imply that abnormal glycolysis in GPL mice was relieved by Rg3 via regulation of the expressions of PI3K, AKT, mTOR, HIF-1α, LDHA, HK-II, and miRNA-21. Rg3 is an effective supplement for GPL treatment and can be harnessed to inhibit proliferation and induce apoptosis of GPL cells.

20.
Biosci Rep ; 40(2)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31904088

RESUMO

Parietal cells of the gastric mucosa contain a complex and extensive secretory membrane system that harbors gastric H+, K+-adenosine triphosphatase (ATPase), the enzyme primarily responsible for gastric lumen acidification. Here, we describe the characterization of mice deficient in the H+, K+-ATPase α subunit (Atp4a-/-) to determine the role of this protein in the biosynthesis of this membrane system and the biology of the gastric mucosa. Atp4a-/- mice were produced by gene targeting. Wild-type (WT) and Atp4a-/- mice, paired for age, were examined at 10, 12, 14 and 16 weeks for histopathology, and the expression of mucin 2 (MUC2), α-methylacyl-CoA racemase (AMACR), Ki-67 and p53 proteins was analyzed by immunohistochemistry. For further information, phosphoinositide 3-kinase (PI3K), phosphorylated-protein kinase B (p-AKT), mechanistic target of rapamycin (mTOR), hypoxia-inducible factor 1α (HIF-1α), lactate dehydrogenase A (LDHA) and sirtuin 6 (SIRT6) were detected by Western blotting. Compared with the WT mice, hypochlorhydric Atp4a-/- mice developed parietal cell atrophy and significant antral inflammation (lymphocyte infiltration) and intestinal metaplasia (IM) with elevated MUC2 expression. Areas of dysplasia in the Atp4a-/- mouse stomach showed increased AMACR and Ki-67 expression. Consistent with elevated antral proliferation, tissue isolated from Atp4a-/- mice showed elevated p53 expression. Next, we examined the mechanism by which the deficiency of the H+, K+-ATPase α subunit has an effect on the gastric mucosa. We found that the expression of phosphorylated-PI3K, p-AKT, phosphorylated-mTOR, HIF-1α, LDHA and SIRT6 was significantly higher in tissue from the Atp4a-/- mice compared with the WT mice (P<0.05). The H+, K+-ATPase α subunit is required for acid-secretory activity of parietal cells in vivo, the normal development and cellular homeostasis of the gastric mucosa, and attainment of the normal structure of the secretory membranes. Chronic achlorhydria and hypergastrinemia in aged Atp4a-/- mice produced progressive hyperplasia and mucolytic and IM, and activated the Warburg effect via PI3K/AKT/mTOR signaling.


Assuntos
Acloridria/enzimologia , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/deficiência , Células Parietais Gástricas/enzimologia , Lesões Pré-Cancerosas/enzimologia , Neoplasias Gástricas/enzimologia , Acloridria/genética , Acloridria/patologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Doença Crônica , Metabolismo Energético , ATPase Trocadora de Hidrogênio-Potássio/genética , Metaplasia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucina-2/metabolismo , Células Parietais Gástricas/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa