Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Brain ; 147(4): 1231-1246, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37812817

RESUMO

Dravet syndrome is an intractable developmental and epileptic encephalopathy caused by de novo variants in SCN1A resulting in haploinsufficiency of the voltage-gated sodium channel Nav1.1. We showed previously that administration of the antisense oligonucleotide STK-001, also called ASO-22, generated using targeted augmentation of nuclear gene output technology to prevent inclusion of the nonsense-mediated decay, or poison, exon 20N in human SCN1A, increased productive Scn1a transcript and Nav1.1 expression and reduced the incidence of electrographic seizures and sudden unexpected death in epilepsy in a mouse model of Dravet syndrome. Here, we investigated the mechanism of action of ASO-84, a surrogate for ASO-22 that also targets splicing of SCN1A exon 20N, in Scn1a+/- Dravet syndrome mouse brain. Scn1a +/- Dravet syndrome and wild-type mice received a single intracerebroventricular injection of antisense oligonucleotide or vehicle at postnatal Day 2. We examined the electrophysiological properties of cortical pyramidal neurons and parvalbumin-positive fast-spiking interneurons in brain slices at postnatal Days 21-25 and measured sodium currents in parvalbumin-positive interneurons acutely dissociated from postnatal Day 21-25 brain slices. We show that, in untreated Dravet syndrome mice, intrinsic cortical pyramidal neuron excitability was unchanged while cortical parvalbumin-positive interneurons showed biphasic excitability with initial hyperexcitability followed by hypoexcitability and depolarization block. Dravet syndrome parvalbumin-positive interneuron sodium current density was decreased compared to wild-type. GABAergic signalling to cortical pyramidal neurons was reduced in Dravet syndrome mice, suggesting decreased GABA release from interneurons. ASO-84 treatment restored action potential firing, sodium current density and GABAergic signalling in Dravet syndrome parvalbumin-positive interneurons. Our work suggests that interneuron excitability is selectively affected by ASO-84. This new work provides critical insights into the mechanism of action of this antisense oligonucleotide and supports the potential of antisense oligonucleotide-mediated upregulation of Nav1.1 as a successful strategy to treat Dravet syndrome.


Assuntos
Epilepsias Mioclônicas , Oligonucleotídeos Antissenso , Camundongos , Animais , Humanos , Oligonucleotídeos Antissenso/farmacologia , Parvalbuminas/metabolismo , Epilepsias Mioclônicas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Interneurônios/metabolismo , Ácido gama-Aminobutírico , Modelos Animais de Doenças
2.
J Neurophysiol ; 127(3): 607-622, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35080448

RESUMO

GNAO1 encodes Gαo, a heterotrimeric G protein α subunit in the Gi/o family. In this report, we used a Gnao1 mouse model "G203R" previously described as a "gain-of-function" Gnao1 mutant with movement abnormalities and enhanced seizure susceptibility. Here, we report an unexpected second mutation resulting in a loss-of-function Gαo protein, and describe alterations in central synaptic transmission. Whole cell patch clamp recordings from Purkinje cells (PCs) in acute cerebellar slices from Gnao1 mutant mice showed significantly lower frequencies of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) compared with WT mice. There was no significant change in sEPSCs or mEPSCs. Whereas mIPSC frequency was reduced, mIPSC amplitudes were not affected, suggesting a presynaptic mechanism of action. A modest decrease in the number of molecular layer interneurons was insufficient to explain the magnitude of IPSC suppression. Paradoxically, Gi/o inhibitors (pertussis toxin) enhanced the mutant-suppressed mIPSC frequency and eliminated the difference between WT and Gnao1 mice. Although GABAB receptor regulates mIPSCs, neither agonists nor antagonists of this receptor altered function in the mutant mouse PCs. This study is an electrophysiological investigation of the role of Gi/o protein in cerebellar synaptic transmission using an animal model with a loss-of-function Gi/o protein.NEW & NOTEWORTHY This report reveals the electrophysiological mechanisms of a movement disorder animal model with monoallelic Gnao1 loss. This study illustrates the role of Gαo protein in regulating GABA release in mouse cerebellum. This study could also facilitate the discovery of new drugs or drug repurposing for GNAO1-associated disorders. Moreover, since GNAO1 shares pathways with other genes related to movement disorders, developing drugs for the treatment of GNAO1-associated movement disorders could further the pharmacological intervention for other monogenic movement disorders.


Assuntos
Transtornos dos Movimentos , Células de Purkinje , Animais , Cerebelo/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Camundongos , Células de Purkinje/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
3.
Langmuir ; 37(44): 12802-12811, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34698494

RESUMO

Cu0.27Co2.73O4 nanooctahedrons enclosed by polar {111} planes have been prepared through the selective adsorption of Cl-. Hydrogenation has been successfully used to enhance the responses of the Cu0.27Co2.73O4 nanooctahedron sensors to acetone, ethanol, and n-butylamine. The enhancement of the response results from the increase in the number of 3-coordinated Co/Cu atoms (Co3c/Cu3c) at the (111) plane of Cu0.27Co2.73O4 through removing O-H groups and Cl- ions at the surface by hydrogenation. The Co3c/Cu3c atoms on the (111) plane of Cu0.27Co2.73O4 are considered to function as the gas response active centers. These Co3c/Cu3c active atoms have three functions: generating electrons, adsorbing oxygen from air, and catalyzing the sensing reactions. The hydrogenation polar surface approach can be applied to improve the performances of other sensing materials. Such sensing mechanisms of the Co3c/Cu3c unsaturated atoms as the active centers can be conducive to understanding the gas-sensing essence and the development of sensing materials with high performances.

4.
Brain ; 143(10): 3025-3040, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32968789

RESUMO

Missense variants in the SCN8A voltage-gated sodium channel gene are linked to early-infantile epileptic encephalopathy type 13, also known as SCN8A-related epilepsy. These patients exhibit a wide spectrum of intractable seizure types, severe developmental delay, movement disorders, and elevated risk of sudden unexpected death in epilepsy. The mechanisms by which SCN8A variants lead to epilepsy are poorly understood, although heterologous expression systems and mouse models have demonstrated altered sodium current properties. To investigate these mechanisms using a patient-specific model, we generated induced pluripotent stem cells from three patients with missense variants in SCN8A: p.R1872>L (Patient 1); p.V1592>L (Patient 2); and p.N1759>S (Patient 3). Using small molecule differentiation into excitatory neurons, induced pluripotent stem cell-derived neurons from all three patients displayed altered sodium currents. Patients 1 and 2 had elevated persistent current, while Patient 3 had increased resurgent current compared to controls. Neurons from all three patients displayed shorter axon initial segment lengths compared to controls. Further analyses focused on one of the patients with increased persistent sodium current (Patient 1) and the patient with increased resurgent current (Patient 3). Excitatory cortical neurons from both patients had prolonged action potential repolarization. Using doxycycline-inducible expression of the neuronal transcription factors neurogenin 1 and 2 to synchronize differentiation of induced excitatory cortical-like neurons, we investigated network activity and response to pharmacotherapies. Both small molecule differentiated and induced patient neurons displayed similar abnormalities in action potential repolarization. Patient induced neurons showed increased burstiness that was sensitive to phenytoin, currently a standard treatment for SCN8A-related epilepsy patients, or riluzole, an FDA-approved drug used in amyotrophic lateral sclerosis and known to block persistent and resurgent sodium currents, at pharmacologically relevant concentrations. Patch-clamp recordings showed that riluzole suppressed spontaneous firing and increased the action potential firing threshold of patient-derived neurons to more depolarized potentials. Two of the patients in this study were prescribed riluzole off-label. Patient 1 had a 50% reduction in seizure frequency. Patient 3 experienced an immediate and dramatic seizure reduction with months of seizure freedom. An additional patient with a SCN8A variant in domain IV of Nav1.6 (p.V1757>I) had a dramatic reduction in seizure frequency for several months after starting riluzole treatment, but then seizures recurred. Our results indicate that patient-specific neurons are useful for modelling SCN8A-related epilepsy and demonstrate SCN8A variant-specific mechanisms. Moreover, these findings suggest that patient-specific neuronal disease modelling offers a useful platform for discovering precision epilepsy therapies.


Assuntos
Epilepsia/genética , Epilepsia/fisiopatologia , Variação Genética/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Adolescente , Adulto , Criança , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade
5.
J Craniofac Surg ; 32(1): 179-183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33196618

RESUMO

BACKGROUND: With aging, the facial contour shows a double-concave deformity. Conventional facial contouring procedure, including face lifting and fat grafting, cannot yield a smooth facial contour line. This study was the first to propose a combination of reduction malarplasty and 2nd-stage autologous fat grafting so as to achieve the aesthetic goals of facial contour rejuvenation. METHODS: The study group comprised patients seeking facial contour rejuvenation from January 2017 to May 2018 (28 patients: 28 females and 0 males) at the Department of Plastic Surgery, Tian Tan Pu Hua Hospital. All of the cases underwent bilateral malarplasty with 2nd-stage autologous facial fat grafting. Radiologic and photographic documentation was completed preoperatively. The mean follow-up period was 12 months. Patients' pre-op photographs and 3 months follow-up pictures were blindly assessed. RESULTS: Most of the patients were satisfied with their results after 1-time fat grafting. Eleven patients demanded re-injection after the 1st fat grafting in temporal area, and 6 patients demanded 3rd time fat grafting in temporal area. Eleven patients demanded re-injection insubmalar area, and 8 patients demanded 3rd time fat grafting in submalar area. Meanwhile, 9 of those patients underwent fat grafting in other sites other than temporal and submalar region. The amount of fat injected was also recorded in this study. The appearance of double-concave deformity was greatly improved in all cases. Complications included infection (3.6%), hematoma (7.1%), and malar prominence relapse (7.1%), and so on. CONCLUSION: Reduction malarplasty combined with several times of fat grafting could effectively overcome the malar prominence and soft tissue deflation. Complications were minimal after these procedures. Therefore, this technique is useful to restore the youthful facial contour in Asian patients with aging double-concave deformity.


Assuntos
Procedimentos de Cirurgia Plástica , Ritidoplastia , Tecido Adiposo , Estética Dentária , Feminino , Humanos , Masculino , Rejuvenescimento
6.
J Neurophysiol ; 123(4): 1448-1459, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159428

RESUMO

Spinal motor neurons (MNs) are susceptible to glutamatergic excitotoxicity, an effect associated with lumbar MN degeneration in amyotrophic lateral sclerosis (ALS). MN susceptibility to environmental toxicant exposure, one prospective contributor to sporadic ALS, has not been systematically studied. The goal of this study was to test the ability of a well-known environmental neurotoxicant to induce hyperexcitability in mouse lumbar MNs. Methylmercury (MeHg) causes neurotoxicity through mechanisms involving elevated intracellular Ca2+ concentration ([Ca2+]i), a hallmark of excitotoxicity. We tested whether acute exposure to MeHg induces hyperexcitability in MNs by altering synaptic transmission, using whole cell patch-clamp recordings of lumbar spinal MNs in vitro. Acute MeHg exposure (20 µM) led to an increase in the frequency of both spontaneous excitatory postsynaptic currents (EPSCs) and miniature EPSCs. The frequency of inhibitory postsynaptic currents (IPSCs) was also increased by MeHg. Action potential firing rates, both spontaneous and evoked, were increased by MeHg, despite increases in both EPSCs and IPSCs, indicating a shift toward hyperexcitability. Also consistent with hyperexcitability, fluo 4-AM microfluorimetry indicated that MeHg exposure induced an increase in [Ca2+]i. Spinal cord hyperexcitability is partially mediated by Ca2+-permeable AMPA receptors, as MeHg-dependent increases in EPSCs were blocked by 1-napthyl spermine. Therefore, spinal MNs appear highly susceptible to MeHg exposure, leading to significant increases in spontaneous network excitability and disruption of normal function. Prolonged hyperexcitability could lead to eventual neurodegeneration and loss of motor function as observed in spinal cord after MeHg exposure in vivo and may contribute to MeHg-induced acceleration of ALS symptoms.NEW & NOTEWORTHY Spinal motor neurons (MN) are susceptible to glutamatergic excitotoxicity, an effect associated with lumbar MN degeneration in amyotrophic lateral sclerosis (ALS). This study investigated MN susceptibility to environmental toxicant exposure, one prospective contributor to sporadic ALS. Spinal MNs appear highly susceptible to methylmercury exposure, leading to significant increases in spontaneous network excitability and disruption of normal function. Prolonged hyperexcitability could lead to neurodegeneration and loss of motor function as observed in ALS spinal cord symptoms.


Assuntos
Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Neurônios Motores/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Esclerose Lateral Amiotrófica/induzido quimicamente , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Modelos Animais de Doenças , Exposição Ambiental , Camundongos
7.
Proc Natl Acad Sci U S A ; 114(9): 2383-2388, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193882

RESUMO

Patients with early infantile epileptic encephalopathy (EIEE) experience severe seizures and cognitive impairment and are at increased risk for sudden unexpected death in epilepsy (SUDEP). EIEE13 [Online Mendelian Inheritance in Man (OMIM) # 614558] is caused by de novo missense mutations in the voltage-gated sodium channel gene SCN8A Here, we investigated the neuronal phenotype of a mouse model expressing the gain-of-function SCN8A patient mutation, p.Asn1768Asp (Nav1.6-N1768D). Our results revealed regional and neuronal subtype specificity in the effects of the N1768D mutation. Acutely dissociated hippocampal neurons from Scn8aN1768D/+ mice showed increases in persistent sodium current (INa) density in CA1 pyramidal but not bipolar neurons. In CA3, INa,P was increased in both bipolar and pyramidal neurons. Measurement of action potential (AP) firing in Scn8aN1768D/+ pyramidal neurons in brain slices revealed early afterdepolarization (EAD)-like AP waveforms in CA1 but not in CA3 hippocampal or layer II/III neocortical neurons. The maximum spike frequency evoked by depolarizing current injections in Scn8aN1768D/+ CA1, but not CA3 or neocortical, pyramidal cells was significantly reduced compared with WT. Spontaneous firing was observed in subsets of neurons in CA1 and CA3, but not in the neocortex. The EAD-like waveforms of Scn8aN1768D/+ CA1 hippocampal neurons were blocked by tetrodotoxin, riluzole, and SN-6, implicating elevated persistent INa and reverse mode Na/Ca exchange in the mechanism of hyperexcitability. Our results demonstrate that Scn8a plays a vital role in neuronal excitability and provide insight into the mechanism and future treatment of epileptogenesis in EIEE13.


Assuntos
Região CA1 Hipocampal/metabolismo , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Células Piramidais/metabolismo , Espasmos Infantis/genética , Potenciais de Ação/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Compostos de Benzil/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/patologia , Modelos Animais de Doenças , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Neocórtex/patologia , Especificidade de Órgãos , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia , Riluzol/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Espasmos Infantis/metabolismo , Espasmos Infantis/fisiopatologia , Tetrodotoxina/farmacologia , Tiazolidinas/farmacologia
8.
Opt Express ; 27(8): 10873-10889, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052941

RESUMO

A novel approach named off-spindle-axis (OSA) spiral grinding for fabricating aspheric microlens array (AMLA) mold inserts for precision glass molding (PGM) is presented. In OSA spiral grinding, three translational motions of the grinding wheel are synchronized with the rotation of the workpiece to form a local spiral wheel path for individual lens-lets. With this approach, the form accuracy of lens-lets can be compensated within sub-micrometer by means of the on-machine measurement. The determination of wheel path and form error compensation via on-machine measurement are systematically studied. A tungsten carbide mold insert with four convex aspheric lens-lets is fabricated to evaluate the grinding performance. PGM experiments are performed to produce glass AMLA using the ground insert. The experimental results indicate that both the ground and molded AMLA with homogeneous quality are achieved. The form accuracy and surface roughness of both the mold insert and the molded AMLA were less than 0.3 µm in PV and 10 nm in Sa, respectively.

9.
Langmuir ; 33(35): 8671-8678, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28737405

RESUMO

Network structures assembled from α-Fe2O3 nanosheets with exposed {104} facets were successfully prepared by heating Fe(NO3)3 solution containing polyvinylpyrrolidone (PVP) in air. The α-Fe2O3 nanosheet-based network structures demonstrate significantly higher response to ethanol and triethylamine than α-Fe2O3 commercial powders. The excellent sensing performances can be ascribed to the exposed (104) facet terminated with Fe atoms. A concept of the unsaturated Fe atoms serving as the sensing reaction active sites is thus proposed, and the sensing reaction mechanism is described at the atomic and molecular level for the first time in detail. The concept of the surface metal atoms with dangling bonds serving as active sites can deepen understanding of the sensing and other catalytic reaction mechanisms and provides new insight into the design and fabrication of highly efficient sensing materials, catalysts, and photoelectronic devices.

10.
Inorg Chem ; 56(3): 1504-1510, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28094961

RESUMO

Hydrogenation is successfully employed to improve sensing performances of the gas sensors based on TiO2 nanosheets with exposed {001} facets for the first time. The hydrogenated TiO2 nanosheets show a significantly higher response toward ethanol, acetone, triethylamine, or formaldehyde than the samples without hydrogenation, and the response further increases with an increase of the hydrogenation temperature. The excellent sensing performances are ascribed to an increase of the density of unsaturated Ti5c atoms on the {001} surface resulting from the hydrogenation process. The unsaturated Ti5c atoms are considered to serve as sensing reaction active sites. They can generate noncontributing (free) electrons and adsorb oxygen molecules, and the detailed sensing mechanism is described at atomic and molecule level. The hydrogenated strategy may be employed to enhance the sensing performances of other metal oxide sensors and catalytic reaction activities of catalyst. The concept of the surface unsaturated metal atoms serving as sensing reaction active sites not only deepens the understanding of the sensing reaction and catalytic reaction mechanism but also provides new insights into the design of advanced gas sensing materials, catalysts, and photoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa