Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(16): 7087-7098, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651173

RESUMO

Aerobic anoxygenic phototrophic bacteria (AAPB) contribute profoundly to the global carbon cycle. However, most AAPB in marine environments are uncultured and at low abundance, hampering the recognition of their functions and molecular mechanisms. In this study, we developed a new culture-independent method to identify and sort AAPB using single-cell Raman/fluorescence spectroscopy. Characteristic Raman and fluorescent bands specific to bacteriochlorophyll a (Bchl a) in AAPB were determined by comparing multiple known AAPB with non-AAPB isolates. Using these spectroscopic biomarkers, AAPB in coastal seawater, pelagic seawater, and hydrothermal sediment samples were screened, sorted, and sequenced. 16S rRNA gene analysis and functional gene annotations of sorted cells revealed novel AAPB members and functional genes, including one species belonging to the genus Sphingomonas, two genera affiliated to classes Betaproteobacteria and Gammaproteobacteria, and function genes bchCDIX, pucC2, and pufL related to Bchl a biosynthesis and photosynthetic reaction center assembly. Metagenome-assembled genomes (MAGs) of sorted cells from pelagic seawater and deep-sea hydrothermal sediment belonged to Erythrobacter sanguineus that was considered as an AAPB and genus Sphingomonas, respectively. Moreover, multiple photosynthesis-related genes were annotated in both MAGs, and comparative genomic analysis revealed several exclusive genes involved in amino acid and inorganic ion metabolism and transport. This study employed a new single-cell spectroscopy method to detect AAPB, not only broadening the taxonomic and genetic contents of AAPB in marine environments but also revealing their genetic mechanisms at the single-genomic level.


Assuntos
Metagenômica , Água do Mar , Metagenômica/métodos , Água do Mar/microbiologia , RNA Ribossômico 16S/genética , Análise Espectral Raman , Filogenia , Análise de Célula Única
2.
Sheng Li Xue Bao ; 65(1): 39-46, 2013 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-23426512

RESUMO

The aim of present study was to explore the vasodilatation mechanism of angiotensin II (AngII) at the molecular level by investigating the effect of AngII on large-conductance Ca²âº-activated potassium channels (BK(Ca)) in human mesenteric artery smooth muscle cells. The effect of AngII on BK(Ca) was observed by using patch clamp single channel recording technique and amphotericin-perforated whole-cell recording technique. AngII type 1 receptor (AT1R) and AngII type 2 receptor (AT2R) mRNA expression in human mesenteric artery was detected by RT-PCR. In cell-attached patch (Vm = +40 mV), AngII (100 nmol/L) had no significant effect on BK(Ca). After pretreatment with Valsartan (a specific inhibitor of AT1R, 10 µmol/L), 25, 100 and 250 nmol/L AngII stimulated BK(Ca) activity significantly in a dose response manner. After pretreatment of Valsartan, AngII (100 nmol/L) enhanced BK(Ca) open probability (NP(O)) from 0.010 ± 0.003 to 0.039 ± 0.015, decreased the mean close time (T(C)) of BK(Ca) markedly from (2 729.5 ± 808.6) ms to (487.7 ± 182.5) ms (n = 11, P < 0.05) , but AngII had no significant influences on the amplitude (Amp) and the mean open time (T(O)) of BK(Ca). Further PD123,319 (a specific inhibitor of AT2R) treatment prevented the stimulatory effect of AngII: PD123,319 decreased the NP(O) of BK(Ca) from 0.016 ± 0.003 to 0.004 ± 0.001 (n = 5, P < 0.05), but had no significant influences on Amp, T(O) and T(C) of BK(Ca). In addition, after pretreatment with Valsartan and PD123,319, AngII (100 nmol/L) had no significant effect on BK(Ca). In the amphotericin-perforated whole-cell patch-clamp configuration, after pretreatment with Valsartan, the current density of BK(Ca) at the voltage of -60 - +30 mV had no significant changes before and after adding 100 nmol/L AngII, but the current density of BK(Ca) at the voltage of +40 mV, +50 mV and +60 mV increased significantly after adding 100 nmol/L AngII, from (9.03 ± 2.23) pA/pF, (12.88 ± 2.55) pA/pF and (17.26 ± 2.84) pA/pF to (12.47 ± 2.22) pA/pF, (18.71 ± 2.51) pA/pF and (27.21 ± 3.12) pA/pF (n = 6, P < 0.05), respectively. Using RT-PCR, the AT1R mRNA and AT2R mRNA from isolated human mesenteric artery were detected. So we can draw a conclusion, AngII can stimulate BK(Ca) activity in human mesenteric artery smooth muscle cells after pretreatment with Valsartan, which is possibly mediated by AT2R.


Assuntos
Angiotensina II/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Vasodilatação , Humanos , Artérias Mesentéricas/citologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Técnicas de Patch-Clamp , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Tetrazóis/farmacologia , Valina/análogos & derivados , Valina/farmacologia , Valsartana
3.
Mar Genomics ; 70: 101045, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37245381

RESUMO

Carbon fixation by chemoautotrophic microorganisms in the dark ocean makes a large contribution to oceanic primary production and the global carbon cycle. In contrast to the Calvin cycle-dominated carbon-fixing pathway in the marine euphotic zone, carbon-fixing pathways and their hosts in deep-sea areas are diverse. In this study, four deep-sea sediment samples close to hydrothermal vents in the southwestern Indian Ocean were collected and processed using metagenomic analysis to investigate carbon fixation potential. Functional annotations revealed that all six carbon-fixing pathways had genes to varied degrees present in the samples. The reductive tricarboxylic acid cycle and Calvin cycle genes occurred in all samples, in contrast to the Wood-Ljungdahl pathway, which previous studies found mainly in the hydrothermal area. The annotations also elucidated the chemoautotrophic microbial members associated with the six carbon-fixing pathways, and the majority of them containing key carbon fixation genes belonged to the phyla Pseudomonadota and Desulfobacterota. The binned metagenome-assembled genomes revealed that key genes for the Calvin cycle and the 3-hydroxypropionate/4-hydroxybutyrate cycle were also found in the order Rhodothermales and the family Hyphomicrobiaceae. By identifying the carbon metabolic pathways and microbial populations in the hydrothermal fields of the southwest Indian Ocean, our study sheds light on complex biogeochemical processes in deep-sea environments and lays the foundation for further in-depth investigations of carbon fixation processes in deep-sea ecosystems.


Assuntos
Fontes Hidrotermais , Metagenoma , Oceano Índico , Ecossistema , Carbono , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa