Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Electrophoresis ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837242

RESUMO

Electric field-driven microfluidics, known as electrofluidics, is a novel attractive analytical tool when it is integrated with low-cost textile substrate. Textile-based electrofluidics, primarily explored on yarn substrates, is in its early stages, with few studies on 3D structures. Further, textile structures have rarely been used in cellular analysis as a low-cost alternative. Herein, we investigated novel 3D textile structures and develop optimal electrophoretic designs and conditions that are favourable for direct 3D cell culture integration, developing an integrated cell culture textile-based electrofluidic platform that was optimised to balance electrokinetic performance and cell viability requirements. Significantly, there were contrasting electrolyte compositional conditions that were required to satisfy cell viability and electrophoretic mobility requiring the development of and electrolyte that satisfied the minimum requirements of both these components within the one platform. Human dermal fibroblast cell cultures were successfully integrated with gelatine methacryloyl (GelMA) hydrogel-coated electrofluidic platform and studied under different electric fields using 5 mM TRIS/HEPES/300 mM glucose. Higher analyte mobility was observed on 2.5% GelMA-coated textile which also facilitated excellent cell attachment, viability and proliferation. Cell viability also increased by decreasing the magnitude and time duration of applied electric field with good cell viability at field of up to 20 V cm-1.

2.
Electrophoresis ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837441

RESUMO

The integration of microfluidics with electric field control, commonly referred to as electrofluidics, has led to new opportunities for biomedical analysis. The requirement for closed microcapillary channels in microfluidics, typically formed via complex microlithographic fabrication approaches, limits the direct accessibility to the separation processes during conventional electrofluidic devices. Textile structures provide an alternative and low-cost approach to overcome these limitations via providing open and surface-accessible capillary channels. Herein, we investigate the potential of different 3D textile structures for electrofluidics. In this study, 12 polyester yarns were braided around nylon monofilament cores of different diameters to produce functional 3D core-shell textile structures. Capillary electrophoresis performances of these 3D core-shell textile structures both before and after removing the nylon core were evaluated in terms of mobility and bandwidth of a fluorescence marker compound. It was shown that the fibre arrangement and density govern the inherent capillary formation within these textile structures which also impacts upon the solute analyte mobility and separation bandwidth during electrophoretic studies. Core-shell textile structures with a 0.47 mm nylon core exhibited the highest fluorescein mobility and presented a narrower separation bandwidth. This optimal textile structure was readily converted to different geometries via a simple heat-setting of the central nylon core. This approach can be used to fabricate an array of miniaturized devices that possess many of the basic functionalities required in electrofluidics while maintaining open surface access that is otherwise impractical in classical approaches.

3.
Mol Pharm ; 20(7): 3403-3411, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37226701

RESUMO

Effective control of post-operative inflammation after tissue repair remains a clinical challenge. A tissue repair patch that could appropriately integrate into the surrounding tissue and control inflammatory responses would improve tissue healing. A collagen-based hybrid tissue repair patch has been developed in this work for the local delivery of an anti-inflammatory drug. Dexamethasone (DEX) was encapsulated into PLGA microspheres and then co-electrocompacted into a collagen membrane. Using a simple process, multiple drugs can be loaded into and released from this hybrid composite material simultaneously, and the ratio between each drug is controllable. Anti-inflammatory DEX and the anti-epileptic phenytoin (PHT) were co-encapsulated and released to validate the dual drug delivery ability of this versatile composite material. Furthermore, the Young's modulus of this drug-loaded collagen patch was increased to 20 KPa using a biocompatible riboflavin (vitamin B2)-induced UV light cross-linking strategy. This versatile composite material has a wide range of potential applications which deserve exploration in further research.


Assuntos
Anti-Inflamatórios , Dexametasona , Humanos , Preparações Farmacêuticas , Colágeno , Inflamação , Riboflavina , Microesferas
4.
Mar Drugs ; 20(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35736169

RESUMO

Collagens from a wide array of animals have been explored for use in tissue engineering in an effort to replicate the native extracellular environment of the body. Marine-derived biomaterials offer promise over their conventional mammalian counterparts due to lower risk of disease transfer as well as being compatible with more religious and ethical groups within society. Here, collagen type I derived from a marine source (Macruronus novaezelandiae, Blue Grenadier) is compared with the more established porcine collagen type I and its potential in tissue engineering examined. Both collagens were methacrylated, to allow for UV crosslinking during extrusion 3D printing. The materials were shown to be highly cytocompatible with L929 fibroblasts. The mechanical properties of the marine-derived collagen were generally lower than those of the porcine-derived collagen; however, the Young's modulus for both collagens was shown to be tunable over a wide range. The marine-derived collagen was seen to be a potential biomaterial in tissue engineering; however, this may be limited due to its lower thermal stability at which point it degrades to gelatin.


Assuntos
Bioimpressão , Animais , Materiais Biocompatíveis , Colágeno , Colágeno Tipo I , Gelatina , Hidrogéis , Mamíferos , Suínos , Engenharia Tecidual , Alicerces Teciduais
5.
Nanotechnology ; 31(37): 375708, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32460265

RESUMO

The piezoelectricity of the biocompatible and biodegradable polymer polylactic acid (PLA) was investigated as a potential magnetoelectric (ME) nanocomposite for biomedical applications. A key focus was to quantify the piezoelectric properties of single PLA fibers while tuning their polymer degradability through the addition of faster degrading polymer, poly (DL-lactide-co-glycolide) (PLGA), which is not a piezoelectric polymer. Piezoresponse Force Microscopy (PFM) showed that electrospun PLA fibers gave a piezoelectric response of 186 ± 28 pm. For comparison both PLA/PLGA (75/25) and PLA/PLGA (50/50) fibers gave significantly lower piezoelectric responses of 89 ± 12 pm and 50 ± 9.1 pm, respectively. For the highest content PLGA fibers, PLA/PLGA (25/75), only very few fibers exhibited a low response of 28 pm while most showed no response. Overall, an increasing PLGA content caused a decrease in the piezoelectric response, thus an expected trade-off existed between the biodegradability (i.e. PLA to PLGA content ratio) versus piezoelectricity. The findings were considered significant due to the existence of piezoelectricity in a tuneable biodegradable material that has potential to impart piezoelectric induced effects on biointeractions with the surrounding biological environment or drug interactions with the polymer to control the rate of drug release. In such applications, there is an opportunity to magnetically control the piezoelectricity and henceforth PLA/CoFe2O4 ME nanocomposite fibers with 5% and 10% of CoFe2O4 nanoparticles were also investigated. Both 5% and 10% PLA/CoFe2O4 nanocomposites gave lower piezoelectric responses compared to the PLA presumably due to the disturbance of polymer chains and dipole moments by the magnetic nanoparticles, in addition to effects from the possible inhomogeneous distribution of CoFe2O4 nanoparticles.

6.
Molecules ; 25(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041216

RESUMO

Liposomes are extensively used in drug delivery, while alginates are widely used in tissue engineering. However, liposomes are usually thermally unstable and drug-leaking when in liquids, while the drug carriers made of alginates show low loading capacities when used for drug delivery. Herein, we developed a type of thermo-responsible liposome-alginate composite hydrogel (TSPMAH) by grafting thermo-responsive liposomes onto alginates by using Ca2+ mediated bonding between the phosphatidic serine (PS) in the liposome membrane and the alginate. The temperature-sensitivity of the liposomes was actualized by using phospholipids comprising dipalmitoylphosphatidylcholine (DPPC) and PS and the liposomes were prepared by a thin-film dispersion method. The TSPMAH was then successfully prepared by bridge-linking the microcapsules onto the alginate hydrogel via PS-Ca2+-Carboxyl-alginate interaction. Characterizations of the TSPMAH were carried out using scanning electron microscopy, transform infrared spectroscopy, and laser scanning confocal microscopy, respectively. Their rheological property was also characterized by using a rheometer. Cytotoxicity evaluations of the TSPMAH showed that the composite hydrogel was biocompatible, safe, and non-toxic. Further, loading and thermos-inducible release of model drugs encapsulated by the TSPMAH as a drug carrier system was also studied by making protamine-siRNA complex-carrying TSPMAH drug carriers. Our results indicated that the TSPMAH described herein has great potentials to be further developed into an intelligent drug delivery system.


Assuntos
Alginatos/química , Hidrogéis/síntese química , Fosfolipídeos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Cálcio/química , Cápsulas , Estabilidade de Medicamentos , Hidrogéis/química , Lipossomos , Fosfatidilcolinas/química , Termodinâmica
7.
Soft Matter ; 14(35): 7228-7236, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30132499

RESUMO

Using a customized ultrasound setup we investigate the feasibility of using a contactless approach to study the bulk mechanical properties of swollen hydrogels. The study involved two different hydrogels, gelatin methacrylate (GelMa) and green algae extract methacrylate (GAEM), which were prepared to provide materials with varying modulus and different swelling properties. Two approaches have been developed. In the first case, ultrasound was compared to Young's modulus measured by indentation. It was found that can be linearly related to indentation modulus values only when the hydrogel swelling ratio is taken into account. In the second approach, an exponential dependency between swelled thickness and indentation modulus was found. This is representative for each hydrogel and purification method in addition to being independent of the conditions used within the toughness range explored. The results of this study indicate that a simple thickness measurement via the proposed approach can provide a direct relationship to Young's modulus upon calibration.


Assuntos
Hidrogéis , Teste de Materiais/métodos , Fenômenos Mecânicos , Metacrilatos/química , Ondas Ultrassônicas
8.
Nanotechnology ; 28(6): 065707, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28059063

RESUMO

The coupling of magnetic and electric properties in polymer-based magnetoelectric composites offers new opportunities to develop contactless electrodes, effectively without electrical connections, for less-invasive integration into devices such as energy harvesters, sensors, wearable and implantable electrodes. Understanding the macroscale-to-nanoscale conversion of the properties is important, as nanostructured and nanoscale magnetoelectric structures are increasingly fabricated. However, whilst the magnetoelectric effect at the macroscale is well established both theoretically and experimentally, it remains unclear how this effect translates to the nanoscale, or vice versa. Here, PVDF/Fe3O4 polymer-based composite nanofibers are fabricated using electrospinning to investigate their piezoelectric and magnetoelectric properties at the single nanofiber level.

9.
Sensors (Basel) ; 17(4)2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420196

RESUMO

The demands for electrochemical sensor materials with high strength and durability in physiological conditions continue to grow and novel approaches are being enabled by the advent of new electromaterials and novel fabrication technologies. Herein, we demonstrate a probe-style electrochemical sensor using highly flexible and conductive multi-walled carbon nanotubes (MWNT) yarns. The MWNT yarn-based sensors can be fabricated onto micro Pt-wire with a controlled diameter varying from 100 to 300 µm, and then further modified with Nafion via a dip-coating approach. The fabricated micro-sized sensors were characterized by electron microscopy, Raman, FTIR, electrical, and electrochemical measurements. For the first time, the MWNT/Nafion yarn-based probe sensors have been assembled and assessed for high-performance dopamine sensing, showing a significant improvement in both sensitivity and selectivity in dopamine detection in presence of ascorbic acid and uric acid. It offers the potential to be further developed as implantable probe sensors.


Assuntos
Nanotubos de Carbono , Ácido Ascórbico , Dopamina , Ácido Úrico
10.
Curr Opin Organ Transplant ; 21(5): 467-75, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27517507

RESUMO

PURPOSE OF REVIEW: Rapid advances in bioprinting have attracted the attention of the clinical world. The advent of printable, cytocompatible materials and appropriate hardware provides an unprecedented ability to design and create 3D structures throughout which living cells and bioactive components are strategically distributed. Here, we review those advances and present how they can be used to create new structures for more effective islet cell transplantation. RECENT FINDINGS: There is a need for improvements in the delivery vehicle for transplantable islet cells. Significant progress has been made in 3D printing of multicellular structures and vascularized structures and multiple bioactive molecules. Strategies for extending these recent findings to islet transplantation are discussed. More importantly, the first promising step, 3D printing human islets has recently been demonstrated. SUMMARY: The advent of 3D bioprinting provides unprecedented opportunities for islet transplantation. Highlighting the capabilities of 3D bioprinting should also encourage clinicians to consider other areas appropriate for its use.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Bioimpressão/métodos , Transplante das Ilhotas Pancreáticas/métodos , Humanos
11.
3D Print Addit Manuf ; 11(2): 447-459, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689898

RESUMO

In the field of tissue engineering and regenerative medicine, developing cytocompatible 3D conductive scaffolds that mimic the native extracellular matrix is crucial for the engineering of excitable cells and tissues. In this study, a custom cryogenic extrusion 3D printer was developed, which afforded control over both the ink and printing surface temperatures. Using this approach, aqueous inks were printed into well-defined layers with high precision. A conductive hydrogel ink was developed from chitosan (CS) and edge-functionalised expanded graphene (EFXG). Different EFXG:CS ratios (between 60:40 and 80:20) were evaluated to determine both conductivity and printability. Using the novel customized cryogenic 3D printer, conductive structures of between 2 and 20 layers were produced, with feature sizes as small as 200 µm. The printed structures are mechanically robust and are electrically conducting. The highest Young's modulus and conductivity in a hydrated state were 2.6 MPa and ∼45 S/m, respectively. Cytocompatibility experiments reveal that the developed material supports NSC-34 mouse motor neuron-like cells in terms of viability, attachment, and proliferation. The distinctive mechanical and electrical properties of the 3D-printed structures would make them good candidates for the engineering of 3D-structured excitable cells. Moreover, this novel printing setup can be used to print other hydrogel-based inks with high precision and resolution.

12.
Macromol Biosci ; 23(12): e2300220, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37589999

RESUMO

The development of biomimetic structures with integrated extracellular matrix (ECM) components represents a promising approach to biomaterial fabrication. Here, an artificial ECM, comprising the structural protein collagen I and elastin (ELN), as well as the glycosaminoglycan hyaluronan (HA), is reported. Specifically, collagen and ELN are electrochemically aligned to mimic the compositional characteristics of the dermal matrix. HA is incorporated into the electro-compacted collagen-ELN matrices via adsorption and chemical immobilization, to give a final composition of collagen/ELN/HA of 7:2:1. This produces a final collagen/ELN/hyaluronic acid scaffold (CEH) that recapitulates the compositional feature of the native skin ECM. This study analyzes the effect of CEH composition on the cultivation of human dermal fibroblast cells (HDFs) and immortalized human keratinocytes (HaCaTs). It is shown that the CEH scaffold supports dermal regeneration by promoting HDFs proliferation, ECM deposition, and differentiation into myofibroblasts. The CEH scaffolds are also shown to support epidermis growth by supporting HaCaTs proliferation, differentiation, and stratification. A double-layered epidermal-dermal structure is constructed on the CEH scaffold, further demonstrating its ability in supporting skin cell function and skin regeneration.


Assuntos
Ácido Hialurônico , Pele , Humanos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Pele/metabolismo , Matriz Extracelular/química , Colágeno/química , Elastina/farmacologia , Fibroblastos
13.
J Biomed Mater Res B Appl Biomater ; 111(3): 526-537, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36269163

RESUMO

Hydrogel materials are promising candidates in cartilage tissue engineering as they provide a 3D porous environment for cell proliferation and the development of new cartilage tissue. Both the mechanical and transport properties of hydrogel scaffolds influence the ability of encapsulated cells to produce neocartilage. In photocrosslinkable hydrogels, both of these material properties can be tuned by changing the crosslinking density. However, the interdependent nature of the structural, physical and biological properties of photocrosslinkable hydrogels means that optimizing composition is typically a complicated process, involving sequential and/or iterative steps of physiochemical and biological characterization. The combinational nature of the variables indicates that an exhaustive analysis of all reasonable concentration ranges would be impractical. Herein, response surface methodology (RSM) was used to efficiently optimize the composition of a hybrid of gelatin-methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) with respect to both mechanical and transport properties. RSM was employed to investigate the effect of GelMA, HAMA, and photoinitiator concentration on the shear modulus and diffusion coefficient of the hydrogel membrane. Two mathematical models were fitted to the experimental data and used to predict the optimum hydrogel composition. Finally, the optimal composition was tested and compared with the predicted values.


Assuntos
Gelatina , Hidrogéis , Hidrogéis/química , Gelatina/química , Ácido Hialurônico , Metacrilatos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
14.
J Biomed Mater Res A ; 111(8): 1151-1160, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36651651

RESUMO

Bioengineered corneal substitutes offer a solution to the shortage of donor corneal tissue worldwide. As one of the major structural components of the cornea, collagen has shown great potential for tissue-engineered cornea substitutes. Herein, free-standing collagen membranes fabricated using electro-compaction were assessed in corneal bioengineering application by comparing them with nonelectro-compacted collagen (NECC). The well-organized and biomimetic fibril structure resulted in a significant improvement in mechanical properties. A 10-fold increase in tensile and compressive modulus was recorded when compared with NECC membranes. In addition to comparable transparency in the visible light range, the glucose permeability of the electro-compacted collagen (ECC) membrane is higher than that of the native human cornea. Human corneal epithelial cells adhere and proliferate well on the ECC membrane, with a large cell contact area observed. The as-described ECC has appropriate structural, topographic, mechanical, optical, glucose permeable, and cell support properties to provide a platform for a bioengineered cornea; including the outer corneal epithelium and potentially deeper corneal tissues.


Assuntos
Epitélio Corneano , Humanos , Engenharia Tecidual/métodos , Córnea , Colágeno/química , Glucose
15.
ACS Appl Bio Mater ; 5(11): 5041-5056, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260917

RESUMO

Electrochemistry has become a powerful strategy to modulate cellular behavior and biological activity by manipulating electrical signals. Subsequent electrical stimulus-responsive conducting polymers (CPs) have advanced traditional wired electrochemical stimulation (ES) systems and developed wireless cell stimulation systems due to their electroconductivity, biocompatibility, stability, and flexibility. Bipolar electrochemistry (BPE), i.e., wireless electrochemistry, offers an effective pathway to modify wired ES systems into a desirable contactless mode, turning out a potential technique to offer fundamental insights into neural cell stimulation and neural network formation. This review commences with a brief discussion of the BPE technique and also the advantages of a bipolar electrochemical stimulation (BPES) system compared to traditional wired ES systems and other wireless ES systems. Then, the BPES system is elucidated through four aspects: the benefits of BPES, the key factors to establish BPES platforms for cell stimulation, the limits/barriers to overcome for current rigid materials in particular metals-based systems, and a brief overview of the concept proved by CPs-based systems. Furthermore, how to refine the existing BPES system from materials/devices modification that combine CP compositions with 3D fabrication/bioprinting technologies is elaborately discussed as well. Finally, the review ends together with future research directions, picturing the potential of BPES system in biomedical applications.


Assuntos
Polímeros , Polímeros/química , Eletroquímica
16.
Data Brief ; 43: 108393, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35781980

RESUMO

Data in this article is associated with our research article "Enhanced wireless cell stimulation using soft and improved bipolar electroactive conducting polymer templates" Qin et al. (2022). Primarily, the present article shows the data of PPy-PMAS/FTO, PPy-PMAS-collagen/FTO and PPy-PMAS-DS-collagen/FTO in conventional electrochemical process and bipolar electrochemical process along with in situ spectrometry for comprehensive supplement and comparison to help with better developing modified conducting polymers based bipolar electrochemistry. Secondly, the presented the complete dataset useful for modelling the soft and improved bipolar electroactive conducting polymers focusing on wireless cell (animal and human) stimulation, which are reported in the main article. All data reported were analysed using Origin 2019b 64Bit.

17.
Polymers (Basel) ; 14(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566947

RESUMO

As the most abundant protein in the extracellular matrix, collagen has become widely studied in the fields of tissue engineering and regenerative medicine. Of the various collagen types, collagen type I is the most commonly utilised in laboratory studies. In tissues, collagen type I forms into fibrils that provide an extended fibrillar network. In tissue engineering and regenerative medicine, little emphasis has been placed on the nature of the network that is formed. Various factors could affect the network structure, including the method used to extract collagen from native tissue, since this may remove the telopeptides, and the nature and extent of any chemical modifications and crosslinking moieties. The structure of any fibril network affects cellular proliferation and differentiation, as well as the overall modulus of hydrogels. In this study, the network-forming properties of two distinct forms of collagen (telo- and atelo-collagen) and their methacrylated derivatives were compared. The presence of the telopeptides facilitated fibril formation in the unmodified samples, but this benefit was substantially reduced by subsequent methacrylation, leading to a loss in the native self-assembly potential. Furthermore, the impact of the methacrylation of the collagen, which enables rapid crosslinking and makes it suitable for use in 3D printing, was investigated. The crosslinking of the methacrylated samples (both telo- and atelo-) was seen to improve the fibril-like network compared to the non-crosslinked samples. This contrasted with the samples of methacrylated gelatin, which showed little, if any, fibrillar or ordered network structure, regardless of whether they were crosslinked.

18.
Polymers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745911

RESUMO

The adoption of additive manufacturing (AM) techniques into the medical space has revolutionised tissue engineering. Depending upon the tissue type, specific AM approaches are capable of closely matching the physical and biological tissue attributes, to guide tissue regeneration. For hard tissue such as bone, powder bed fusion (PBF) techniques have significant potential, as they are capable of fabricating materials that can match the mechanical requirements necessary to maintain bone functionality and support regeneration. This review focuses on the PBF techniques that utilize laser sintering for creating scaffolds for bone tissue engineering (BTE) applications. Optimal scaffold requirements are explained, ranging from material biocompatibility and bioactivity, to generating specific architectures to recapitulate the porosity, interconnectivity, and mechanical properties of native human bone. The main objective of the review is to outline the most common materials processed using PBF in the context of BTE; initially outlining the most common polymers, including polyamide, polycaprolactone, polyethylene, and polyetheretherketone. Subsequent sections investigate the use of metals and ceramics in similar systems for BTE applications. The last section explores how composite materials can be used. Within each material section, the benefits and shortcomings are outlined, including their mechanical and biological performance, as well as associated printing parameters. The framework provided can be applied to the development of new, novel materials or laser-based approaches to ultimately generate bone tissue analogues or for guiding bone regeneration.

19.
Acta Biomater ; 123: 286-297, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476829

RESUMO

Wounds impact millions of patients every year and represent a serious cause of morbidity and mortality worldwide, yet current treatment outcomes are far from ideal. Therapies based on delivery of multiple growth factors offer a promising approach for optimal wound management; however, their high production cost, low stability, and lack of effective delivery system limits their application in the clinic. Platelet lysate is a suitable, abundant and cost-effective source of growth factors that play an important role in the healing cascade. The aim of this current work is to develop an extrusion-based bioink consisting of platelet lysate (PL) and gelatin methacryloyl (GelMA) (PLGMA) for the fabrication of a multifunctional 3D printed dermal equivalent. This bioink meets the essential requirements of printability in terms of rheological properties and shape fidelity. Moreover, its mechanical properties can be readily tuned to achieve stiffness that is equivalent to native skin tissue. Biologically relevant factors were successfully released in a sustainable manner for up to two weeks of study. The bioavailability of those factors was demonstrated by high cell viability, good cell attachment and improved proliferation of printed dermal fibroblasts. Furthermore, growth factors upregulated ECM synthesis and deposition by dermal fibroblasts after two weeks of culture.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Gelatina , Humanos , Impressão Tridimensional , Pele
20.
Biofabrication ; 14(1)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638119

RESUMO

The development of 3D bio printing technology has contributed to protocols for the repair and regeneration of tissues in recent years. However, it is still a great challenge to fabricate structures that mimic the complexity of native tissue, including both the biomechanics and microscale internal structure. In this study, a catechol functionalized ink system was developed to produce tough and elastic scaffolds with built-in micro channels that simulate the vascular structure. And a skin model was designed to evaluate the cytocompatibility of the scaffolds. The mechanical support stemmed from the double network based on catechol-hyaluronic acid (HACA) and alginate, the micro channels were generated using sacrificial gelatin. HACA/alginate and gelatin were firstly printed using a 3D extrusion printer. Thrombin-free fibrinogen were then mixed with human dermal fibroblasts and introduced to the printed scaffolds to induce gelation. An immortal human keratinocyte cell line was introduced on top of the cellular construct to mimic the full thickness skin structure. The printed scaffolds demonstrated high elasticity and supported the formation of a double-layered cell-laden skin like structure. The results suggest the 3D printing platform developed here provides a platform for skin regeneration and could be explored further to engineer functional skin tissue by incorporation of other types of cells.


Assuntos
Bioimpressão , Alginatos/química , Bioimpressão/métodos , Catecóis , Fibrina , Gelatina/química , Humanos , Hidrogéis/química , Tinta , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa