Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
PLoS Comput Biol ; 18(10): e1010614, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36228003

RESUMO

Copy-number aberrations (CNAs) are genetic alterations that amplify or delete the number of copies of large genomic segments. Although they are ubiquitous in cancer and, thus, a critical area of current cancer research, CNA identification from DNA sequencing data is challenging because it requires partitioning of the genome into complex segments with the same copy-number states that may not be contiguous. Existing segmentation algorithms address these challenges either by leveraging the local information among neighboring genomic regions, or by globally grouping genomic regions that are affected by similar CNAs across the entire genome. However, both approaches have limitations: overclustering in the case of local segmentation, or the omission of clusters corresponding to focal CNAs in the case of global segmentation. Importantly, inaccurate segmentation will lead to inaccurate identification of CNAs. For this reason, most pan-cancer research studies rely on manual procedures of quality control and anomaly correction. To improve copy-number segmentation, we introduce CNAViz, a web-based tool that enables the user to simultaneously perform local and global segmentation, thus overcoming the limitations of each approach. Using simulated data, we demonstrate that by several metrics, CNAViz allows the user to obtain more accurate segmentation relative to existing local and global segmentation methods. Moreover, we analyze six bulk DNA sequencing samples from three breast cancer patients. By validating with parallel single-cell DNA sequencing data from the same samples, we show that by using CNAViz, our user was able to obtain more accurate segmentation and improved accuracy in downstream copy-number calling.


Assuntos
Neoplasias da Mama , Neoplasias , Humanos , Feminino , Variações do Número de Cópias de DNA/genética , Neoplasias/genética , Algoritmos , Análise de Sequência de DNA , DNA de Neoplasias , Neoplasias da Mama/genética
2.
Bioinformatics ; 36(Suppl_1): i186-i193, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32657385

RESUMO

MOTIVATION: Recent single-cell DNA sequencing technologies enable whole-genome sequencing of hundreds to thousands of individual cells. However, these technologies have ultra-low sequencing coverage (<0.5× per cell) which has limited their use to the analysis of large copy-number aberrations (CNAs) in individual cells. While CNAs are useful markers in cancer studies, single-nucleotide mutations are equally important, both in cancer studies and in other applications. However, ultra-low coverage sequencing yields single-nucleotide mutation data that are too sparse for current single-cell analysis methods. RESULTS: We introduce SBMClone, a method to infer clusters of cells, or clones, that share groups of somatic single-nucleotide mutations. SBMClone uses a stochastic block model to overcome sparsity in ultra-low coverage single-cell sequencing data, and we show that SBMClone accurately infers the true clonal composition on simulated datasets with coverage at low as 0.2×. We applied SBMClone to single-cell whole-genome sequencing data from two breast cancer patients obtained using two different sequencing technologies. On the first patient, sequenced using the 10X Genomics CNV solution with sequencing coverage ≈0.03×, SBMClone recovers the major clonal composition when incorporating a small amount of additional information. On the second patient, where pre- and post-treatment tumor samples were sequenced using DOP-PCR with sequencing coverage ≈0.5×, SBMClone shows that tumor cells are present in the post-treatment sample, contrary to published analysis of this dataset. AVAILABILITY AND IMPLEMENTATION: SBMClone is available on the GitHub repository https://github.com/raphael-group/SBMClone. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software , Algoritmos , Células Clonais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Sequenciamento Completo do Genoma
3.
J Environ Manage ; 236: 581-590, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771677

RESUMO

In this work, phenol removal from aqueous solutions by Pleurotus sajor-caju PS-2001 phenol oxidases was assessed under different conditions. In stirred-tank reactor (STR), 77, 82, 92 and 36% of removal were attained when initial concentrations of 1.0, 2.0, 3.0 and 4.0 mmol L-1 phenol, respectively, were used. Among the different enzymes produced by this fungus, phenol removal seems to be related to the activity of laccases that attained maximum values between 33 and 91 U mL-1 in STR. With an internal-loop airlift reactor (ILAR), phenol concentrations of 1.0, 2.0, 3.0, 4.0 and 5.0 mmol L-1 were evaluated, and removal of 70, 76, 82, 77 and 82%, respectively, were observed. In ILAR, however, superior maximum titres of laccases were quantified (80-285 U mL-1). Crude enzyme broths have also been tested for phenol removal from 3.0 mmol L-1 aqueous solutions, the best result (55% of removal) being obtained at pH 3.2 and 30 °C, without agitation, using 60 U mL-1 laccases. According to the data presented, phenol can be efficiently removed from liquid media in submerged cultures of P. sajor-caju PS-2001 even when carried out in a simple pneumatic reactor, whereas significantly less amount of the pollutant is degraded when a crude enzyme broth is used.


Assuntos
Pleurotus , Lacase , Monofenol Mono-Oxigenase , Fenol , Fenóis
4.
BMC Bioinformatics ; 19(1): 252, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970002

RESUMO

BACKGROUND: Haplotype assembly is the process of assigning the different alleles of the variants covered by mapped sequencing reads to the two haplotypes of the genome of a human individual. Long reads, which are nowadays cheaper to produce and more widely available than ever before, have been used to reduce the fragmentation of the assembled haplotypes since their ability to span several variants along the genome. These long reads are also characterized by a high error rate, an issue which may be mitigated, however, with larger sets of reads, when this error rate is uniform across genome positions. Unfortunately, current state-of-the-art dynamic programming approaches designed for long reads deal only with limited coverages. RESULTS: Here, we propose a new method for assembling haplotypes which combines and extends the features of previous approaches to deal with long reads and higher coverages. In particular, our algorithm is able to dynamically adapt the estimated number of errors at each variant site, while minimizing the total number of error corrections necessary for finding a feasible solution. This allows our method to significantly reduce the required computational resources, allowing to consider datasets composed of higher coverages. The algorithm has been implemented in a freely available tool, HapCHAT: Haplotype Assembly Coverage Handling by Adapting Thresholds. An experimental analysis on sequencing reads with up to 60 × coverage reveals improvements in accuracy and recall achieved by considering a higher coverage with lower runtimes. CONCLUSIONS: Our method leverages the long-range information of sequencing reads that allows to obtain assembled haplotypes fragmented in a lower number of unphased haplotype blocks. At the same time, our method is also able to deal with higher coverages to better correct the errors in the original reads and to obtain more accurate haplotypes as a result. AVAILABILITY: HapCHAT is available at http://hapchat.algolab.eu under the GNU Public License (GPL).


Assuntos
Haplótipos/genética , Análise de Sequência de DNA/métodos , Algoritmos , Humanos
5.
Bioinformatics ; 32(11): 1610-7, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26315913

RESUMO

MOTIVATION: Haplotype assembly is the computational problem of reconstructing haplotypes in diploid organisms and is of fundamental importance for characterizing the effects of single-nucleotide polymorphisms on the expression of phenotypic traits. Haplotype assembly highly benefits from the advent of 'future-generation' sequencing technologies and their capability to produce long reads at increasing coverage. Existing methods are not able to deal with such data in a fully satisfactory way, either because accuracy or performances degrade as read length and sequencing coverage increase or because they are based on restrictive assumptions. RESULTS: By exploiting a feature of future-generation technologies-the uniform distribution of sequencing errors-we designed an exact algorithm, called HapCol, that is exponential in the maximum number of corrections for each single-nucleotide polymorphism position and that minimizes the overall error-correction score. We performed an experimental analysis, comparing HapCol with the current state-of-the-art combinatorial methods both on real and simulated data. On a standard benchmark of real data, we show that HapCol is competitive with state-of-the-art methods, improving the accuracy and the number of phased positions. Furthermore, experiments on realistically simulated datasets revealed that HapCol requires significantly less computing resources, especially memory. Thanks to its computational efficiency, HapCol can overcome the limits of previous approaches, allowing to phase datasets with higher coverage and without the traditional all-heterozygous assumption. AVAILABILITY AND IMPLEMENTATION: Our source code is available under the terms of the GNU General Public License at http://hapcol.algolab.eu/ CONTACT: bonizzoni@disco.unimib.it SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Haplótipos , Algoritmos , Diploide , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Software
6.
Nat Protoc ; 19(1): 159-183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38017136

RESUMO

Intratumor heterogeneity provides the fuel for the evolution and selection of subclonal tumor cell populations. However, accurate inference of tumor subclonal architecture and reconstruction of tumor evolutionary histories from bulk DNA sequencing data remains challenging. Frequently, sequencing and alignment artifacts are not fully filtered out from cancer somatic mutations, and errors in the identification of copy number alterations or complex evolutionary events (e.g., mutation losses) affect the estimated cellular prevalence of mutations. Together, such errors propagate into the analysis of mutation clustering and phylogenetic reconstruction. In this Protocol, we present a new computational framework, CONIPHER (COrrecting Noise In PHylogenetic Evaluation and Reconstruction), that accurately infers subclonal structure and phylogenetic relationships from multisample tumor sequencing, accounting for both copy number alterations and mutation errors. CONIPHER has been used to reconstruct subclonal architecture and tumor phylogeny from multisample tumors with high-depth whole-exome sequencing from the TRACERx421 dataset, as well as matched primary-metastatic cases. CONIPHER outperforms similar methods on simulated datasets, and in particular scales to a large number of tumor samples and clones, while completing in under 1.5 h on average. CONIPHER enables automated phylogenetic analysis that can be effectively applied to large sequencing datasets generated with different technologies. CONIPHER can be run with a basic knowledge of bioinformatics and R and bash scripting languages.


Assuntos
Algoritmos , Neoplasias , Humanos , Filogenia , Neoplasias/genética , Neoplasias/patologia , Biologia Computacional/métodos , Análise de Sequência de DNA , Mutação
7.
Genome Biol ; 25(1): 130, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773520

RESUMO

Bulk DNA sequencing of multiple samples from the same tumor is becoming common, yet most methods to infer copy-number aberrations (CNAs) from this data analyze individual samples independently. We introduce HATCHet2, an algorithm to identify haplotype- and clone-specific CNAs simultaneously from multiple bulk samples. HATCHet2 extends the earlier HATCHet method by improving identification of focal CNAs and introducing a novel statistic, the minor haplotype B-allele frequency (mhBAF), that enables identification of mirrored-subclonal CNAs. We demonstrate HATCHet2's improved accuracy using simulations and a single-cell sequencing dataset. HATCHet2 analysis of 10 prostate cancer patients reveals previously unreported mirrored-subclonal CNAs affecting cancer genes.


Assuntos
Algoritmos , Variações do Número de Cópias de DNA , Haplótipos , Neoplasias da Próstata , Humanos , Neoplasias da Próstata/genética , Masculino , Análise de Sequência de DNA/métodos , Neoplasias/genética , Frequência do Gene , Análise de Célula Única
8.
Nat Commun ; 15(1): 4871, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871738

RESUMO

The phenomenon of mixed/heterogenous treatment responses to cancer therapies within an individual patient presents a challenging clinical scenario. Furthermore, the molecular basis of mixed intra-patient tumor responses remains unclear. Here, we show that patients with metastatic lung adenocarcinoma harbouring co-mutations of EGFR and TP53, are more likely to have mixed intra-patient tumor responses to EGFR tyrosine kinase inhibition (TKI), compared to those with an EGFR mutation alone. The combined presence of whole genome doubling (WGD) and TP53 co-mutations leads to increased genome instability and genomic copy number aberrations in genes implicated in EGFR TKI resistance. Using mouse models and an in vitro isogenic p53-mutant model system, we provide evidence that WGD provides diverse routes to drug resistance by increasing the probability of acquiring copy-number gains or losses relative to non-WGD cells. These data provide a molecular basis for mixed tumor responses to targeted therapy, within an individual patient, with implications for therapeutic strategies.


Assuntos
Instabilidade Cromossômica , Receptores ErbB , Neoplasias Pulmonares , Mutação , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Camundongos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Terapia de Alvo Molecular/métodos , Feminino , Variações do Número de Cópias de DNA , Masculino
9.
BMC Bioinformatics ; 14 Suppl 15: S3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24564182

RESUMO

BACKGROUND: The inversion distance, that is the distance between two unichromosomal genomes with the same content allowing only inversions of DNA segments, can be computed thanks to a pioneering approach of Hannenhalli and Pevzner in 1995. In 2000, El-Mabrouk extended the inversion model to allow the comparison of unichromosomal genomes with unequal contents, thus insertions and deletions of DNA segments besides inversions. However, an exact algorithm was presented only for the case in which we have insertions alone and no deletion (or vice versa), while a heuristic was provided for the symmetric case, that allows both insertions and deletions and is called the inversion-indel distance. In 2005, Yancopoulos, Attie and Friedberg started a new branch of research by introducing the generic double cut and join (DCJ) operation, that can represent several genome rearrangements (including inversions). Among others, the DCJ model gave rise to two important results. First, it has been shown that the inversion distance can be computed in a simpler way with the help of the DCJ operation. Second, the DCJ operation originated the DCJ-indel distance, that allows the comparison of genomes with unequal contents, considering DCJ, insertions and deletions, and can be computed in linear time. RESULTS: In the present work we put these two results together to solve an open problem, showing that, when the graph that represents the relation between the two compared genomes has no bad components, the inversion-indel distance is equal to the DCJ-indel distance. We also give a lower and an upper bound for the inversion-indel distance in the presence of bad components.


Assuntos
Modelos Genéticos , Algoritmos , Inversão Cromossômica , Genoma , Mutação INDEL
10.
Trends Cancer ; 9(6): 490-502, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059687

RESUMO

Metastasis is a complex process and the leading cause of cancer-related death globally. Recent studies have demonstrated that genomic sequencing data from paired primary and metastatic tumours can be used to trace the evolutionary origins of cells responsible for metastasis. This approach has yielded new insights into the genomic alterations that engender metastatic potential, and the mechanisms by which cancer spreads. Given that the reliability of these approaches is contingent upon how representative the samples are of primary and metastatic tumour heterogeneity, we review insights from studies that have reconstructed the evolution of metastasis within the context of their cohorts and designs. We discuss the role of research autopsies in achieving the comprehensive sampling necessary to advance the current understanding of metastasis.


Assuntos
Neoplasias , Humanos , Autopsia , Reprodutibilidade dos Testes , Neoplasias/genética
11.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37502835

RESUMO

Multi-region DNA sequencing of primary tumors and metastases from individual patients helps identify somatic aberrations driving cancer development. However, most methods to infer copy-number aberrations (CNAs) analyze individual samples. We introduce HATCHet2 to identify haplotype- and clone-specific CNAs simultaneously from multiple bulk samples. HATCHet2 introduces a novel statistic, the mirrored haplotype B-allele frequency (mhBAF), to identify mirrored-subclonal CNAs having different numbers of copies of parental haplotypes in different tumor clones. HATCHet2 also has high accuracy in identifying focal CNAs and extends the earlier HATCHet method in several directions. We demonstrate HATCHet2's improved accuracy using simulations and a single-cell sequencing dataset. HATCHet2 analysis of 50 prostate cancer samples from 10 patients reveals previously-unreported mirrored-subclonal CNAs affecting cancer genes.

12.
Cancer Res Commun ; 3(4): 564-575, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066022

RESUMO

Osteosarcoma is an aggressive malignancy characterized by high genomic complexity. Identification of few recurrent mutations in protein coding genes suggests that somatic copy-number aberrations (SCNA) are the genetic drivers of disease. Models around genomic instability conflict-it is unclear whether osteosarcomas result from pervasive ongoing clonal evolution with continuous optimization of the fitness landscape or an early catastrophic event followed by stable maintenance of an abnormal genome. We address this question by investigating SCNAs in >12,000 tumor cells obtained from human osteosarcomas using single-cell DNA sequencing, with a degree of precision and accuracy not possible when inferring single-cell states using bulk sequencing. Using the CHISEL algorithm, we inferred allele- and haplotype-specific SCNAs from this whole-genome single-cell DNA sequencing data. Surprisingly, despite extensive structural complexity, these tumors exhibit a high degree of cell-cell homogeneity with little subclonal diversification. Longitudinal analysis of patient samples obtained at distant therapeutic timepoints (diagnosis, relapse) demonstrated remarkable conservation of SCNA profiles over tumor evolution. Phylogenetic analysis suggests that the majority of SCNAs were acquired early in the oncogenic process, with relatively few structure-altering events arising in response to therapy or during adaptation to growth in metastatic tissues. These data further support the emerging hypothesis that early catastrophic events, rather than sustained genomic instability, give rise to structural complexity, which is then preserved over long periods of tumor developmental time. Significance: Chromosomally complex tumors are often described as genomically unstable. However, determining whether complexity arises from remote time-limited events that give rise to structural alterations or a progressive accumulation of structural events in persistently unstable tumors has implications for diagnosis, biomarker assessment, mechanisms of treatment resistance, and represents a conceptual advance in our understanding of intratumoral heterogeneity and tumor evolution.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Filogenia , Variações do Número de Cópias de DNA/genética , Recidiva Local de Neoplasia , Osteossarcoma/genética , Instabilidade Genômica/genética , Neoplasias Ósseas/genética
13.
J Immunother Cancer ; 11(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37914385

RESUMO

BACKGROUND: Checkpoint inhibitor (CPI) immunotherapies have provided durable clinical responses across a range of solid tumor types for some patients with cancer. Nonetheless, response rates to CPI vary greatly between cancer types. Resolving intratumor transcriptomic changes induced by CPI may improve our understanding of the mechanisms of sensitivity and resistance. METHODS: We assembled a cohort of longitudinal pre-therapy and on-therapy samples from 174 patients treated with CPI across six cancer types by leveraging transcriptomic sequencing data from five studies. RESULTS: Meta-analyses of published RNA markers revealed an on-therapy pattern of immune reinvigoration in patients with breast cancer, which was not discernible pre-therapy, providing biological insight into the impact of CPI on the breast cancer immune microenvironment. We identified 98 breast cancer-specific correlates of CPI response, including 13 genes which are known IO targets, such as toll-like receptors TLR1, TLR4, and TLR8, that could hold potential as combination targets for patients with breast cancer receiving CPI treatment. Furthermore, we demonstrate that a subset of response genes identified in breast cancer are already highly expressed pre-therapy in melanoma, and additionally we establish divergent RNA dynamics between breast cancer and melanoma following CPI treatment, which may suggest distinct immune microenvironments between the two cancer types. CONCLUSIONS: Overall, delineating longitudinal RNA dynamics following CPI therapy sheds light on the mechanisms underlying diverging response trajectories, and identifies putative targets for combination therapy.


Assuntos
Neoplasias da Mama , Melanoma , Humanos , Feminino , Melanoma/tratamento farmacológico , Imunoterapia/efeitos adversos , Terapia Combinada , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Microambiente Tumoral/genética
14.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36711976

RESUMO

Multiple large-scale tumor genomic profiling efforts have been undertaken in osteosarcoma, however, little is known about the spatial and temporal intratumor heterogeneity and how it may drive treatment resistance. We performed whole-genome sequencing of 37 tumor samples from eight patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. We identified subclonal copy number alterations in all but one patient. We observed that in five patients, a subclonal copy number clone from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clone in 6 out of 7 patients with more than one clone. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy number clones. Our study sheds light on intratumor heterogeneity and the potential drivers of treatment resistance in osteosarcoma.

15.
Cancer Res ; 83(22): 3796-3812, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37812025

RESUMO

Multiple large-scale genomic profiling efforts have been undertaken in osteosarcoma to define the genomic drivers of tumorigenesis, therapeutic response, and disease recurrence. The spatial and temporal intratumor heterogeneity could also play a role in promoting tumor growth and treatment resistance. We conducted longitudinal whole-genome sequencing of 37 tumor samples from 8 patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. Subclonal copy-number alterations were identified in all patients except one. In 5 patients, subclones from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clones in 6 of 7 patients with multiple clones. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy-number clones. A chromosomal duplication timing analysis revealed that complex genomic rearrangements typically occurred prior to diagnosis, supporting a macroevolutionary model of evolution, where a large number of genomic aberrations are acquired over a short period of time followed by clonal selection, as opposed to ongoing evolution. A mutational signature analysis of recurrent tumors revealed that homologous repair deficiency (HRD)-related SBS3 increases at each time point in patients with recurrent disease, suggesting that HRD continues to be an active mutagenic process after diagnosis. Overall, by examining the clonal relationships between temporally and spatially separated samples from patients with relapsed/refractory osteosarcoma, this study sheds light on the intratumor heterogeneity and potential drivers of treatment resistance in this disease. SIGNIFICANCE: The chemoresistant population in recurrent osteosarcoma is subclonal at diagnosis, emerges at the time of primary resection due to selective pressure from neoadjuvant chemotherapy, and is characterized by unique oncogenic amplifications.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Osteossarcoma/genética , Sequenciamento Completo do Genoma , Genômica , Neoplasias Ósseas/genética , Recidiva , Variações do Número de Cópias de DNA , Mutação
16.
Nat Med ; 29(4): 833-845, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37045996

RESUMO

Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and 'tumor spread through air spaces' were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Recidiva Local de Neoplasia/patologia , Adenocarcinoma de Pulmão/genética , Progressão da Doença , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
17.
Algorithms Mol Biol ; 17(1): 3, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35282838

RESUMO

BACKGROUND: Every tumor is composed of heterogeneous clones, each corresponding to a distinct subpopulation of cells that accumulated different types of somatic mutations, ranging from single-nucleotide variants (SNVs) to copy-number aberrations (CNAs). As the analysis of this intra-tumor heterogeneity has important clinical applications, several computational methods have been introduced to identify clones from DNA sequencing data. However, due to technological and methodological limitations, current analyses are restricted to identifying tumor clones only based on either SNVs or CNAs, preventing a comprehensive characterization of a tumor's clonal composition. RESULTS: To overcome these challenges, we formulate the identification of clones in terms of both SNVs and CNAs as a integration problem while accounting for uncertainty in the input SNV and CNA proportions. We thus characterize the computational complexity of this problem and we introduce PACTION (PArsimonious Clone Tree integratION), an algorithm that solves the problem using a mixed integer linear programming formulation. On simulated data, we show that tumor clones can be identified reliably, especially when further taking into account the ancestral relationships that can be inferred from the input SNVs and CNAs. On 49 tumor samples from 10 prostate cancer patients, our integration approach provides a higher resolution view of tumor evolution than previous studies. CONCLUSION: PACTION is an accurate and fast method that reconstructs clonal architecture of cancer tumors by integrating SNV and CNA clones inferred using existing methods.

18.
Cancer Cell ; 40(5): 458-478, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35487215

RESUMO

The translational challenges in the field of precision oncology are in part related to the biological complexity and diversity of this disease. Technological advances in genomics have facilitated large sequencing efforts and discoveries that have further supported this notion. In this review, we reflect on the impact of these discoveries on our understanding of several concepts: cancer initiation, cancer prevention, early detection, adjuvant therapy and minimal residual disease monitoring, cancer drug resistance, and cancer evolution in metastasis. We discuss key areas of focus for improving cancer outcomes, from biological insights to clinical application, and suggest where the development of these technologies will lead us. Finally, we discuss practical challenges to the wider adoption of molecular profiling in the clinic and the need for robust translational infrastructure.


Assuntos
Neoplasias , Genômica , Humanos , Oncologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Medicina de Precisão , Proteômica
19.
Nat Biotechnol ; 39(2): 207-214, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879467

RESUMO

Single-cell barcoding technologies enable genome sequencing of thousands of individual cells in parallel, but with extremely low sequencing coverage (<0.05×) per cell. While the total copy number of large multi-megabase segments can be derived from such data, important allele-specific mutations-such as copy-neutral loss of heterozygosity (LOH) in cancer-are missed. We introduce copy-number haplotype inference in single cells using evolutionary links (CHISEL), a method to infer allele- and haplotype-specific copy numbers in single cells and subpopulations of cells by aggregating sparse signal across hundreds or thousands of individual cells. We applied CHISEL to ten single-cell sequencing datasets of ~2,000 cells from two patients with breast cancer. We identified extensive allele-specific copy-number aberrations (CNAs) in these samples, including copy-neutral LOHs, whole-genome duplications (WGDs) and mirrored-subclonal CNAs. These allele-specific CNAs affect genomic regions containing well-known breast-cancer genes. We also refined the reconstruction of tumor evolution, timing allele-specific CNAs before and after WGDs, identifying low-frequency subpopulations distinguished by unique CNAs and uncovering evidence of convergent evolution.


Assuntos
Algoritmos , Alelos , Evolução Molecular , Dosagem de Genes , Haplótipos/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA/genética , DNA de Neoplasias/genética , Feminino , Heterogeneidade Genética , Humanos , Análise de Célula Única
20.
Cell Syst ; 12(10): 1004-1018.e10, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416171

RESUMO

The cancer cell fraction (CCF), or proportion of cancerous cells in a tumor containing a single-nucleotide variant (SNV), is a fundamental statistic used to quantify tumor heterogeneity and evolution. Existing CCF estimation methods from bulk DNA sequencing data assume that every cell with an SNV contains the same number of copies of the SNV. This assumption is unrealistic in tumors with copy-number aberrations that alter SNV multiplicities. Furthermore, the CCF does not account for SNV losses due to copy-number aberrations, confounding downstream phylogenetic analyses. We introduce DeCiFer, an algorithm that overcomes these limitations by clustering SNVs using a novel statistic, the descendant cell fraction (DCF). The DCF quantifies both the prevalence of an SNV at the present time and its past evolutionary history using an evolutionary model that allows mutation losses. We show that DeCiFer yields more parsimonious reconstructions of tumor evolution than previously reported for 49 prostate cancer samples.


Assuntos
Neoplasias , Polimorfismo de Nucleotídeo Único , Algoritmos , Humanos , Masculino , Neoplasias/genética , Neoplasias/patologia , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa