Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 253(3): 292-303, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33166087

RESUMO

Loss of the tumor suppressor gene Pten in murine prostate recapitulates human carcinogenesis and causes stromal proliferation surrounding murine prostate intraepithelial neoplasia (mPIN), which is reactive to microinvasion. In turn, invasion has been shown to be regulated in part by de novo fatty acid synthesis in prostate cancer. We therefore investigated the effects of genetic ablation of Fasn on invasive potential in prostate-specific Pten knockout mice. Combined genetic ablation of Fasn and Pten reduced the weight and volume of all the prostate lobes when compared to single knockouts. The stromal reaction to microinvasion and the cell proliferation that typically occurs in Pten knockout were largely abolished by Fasn knockout. To verify that Fasn knockout indeed results in decreased invasive potential, we show that genetic ablation and pharmacologic inhibition of FASN in prostate cancer cells significantly inhibit cellular motility and invasion. Finally, combined loss of PTEN with FASN overexpression was associated with lethality as assessed in 660 prostate cancer patients with 14.2 years of median follow-up. Taken together, these findings show that de novo lipogenesis contributes to the aggressive phenotype induced by Pten loss in murine prostate and targeting Fasn may reduce the invasive potential of prostate cancer driven by Pten loss. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Ácido Graxo Sintase Tipo I/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Movimento Celular/genética , Ácido Graxo Sintase Tipo I/metabolismo , Humanos , Lipogênese/fisiologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Neoplasias da Próstata/patologia
2.
Proc Natl Acad Sci U S A ; 116(2): 631-640, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30578319

RESUMO

A hallmark of prostate cancer progression is dysregulation of lipid metabolism via overexpression of fatty acid synthase (FASN), a key enzyme in de novo fatty acid synthesis. Metastatic castration-resistant prostate cancer (mCRPC) develops resistance to inhibitors of androgen receptor (AR) signaling through a variety of mechanisms, including the emergence of the constitutively active AR variant V7 (AR-V7). Here, we developed an FASN inhibitor (IPI-9119) and demonstrated that selective FASN inhibition antagonizes CRPC growth through metabolic reprogramming and results in reduced protein expression and transcriptional activity of both full-length AR (AR-FL) and AR-V7. Activation of the reticulum endoplasmic stress response resulting in reduced protein synthesis was involved in IPI-9119-mediated inhibition of the AR pathway. In vivo, IPI-9119 reduced growth of AR-V7-driven CRPC xenografts and human mCRPC-derived organoids and enhanced the efficacy of enzalutamide in CRPC cells. In human mCRPC, both FASN and AR-FL were detected in 87% of metastases. AR-V7 was found in 39% of bone metastases and consistently coexpressed with FASN. In patients treated with enzalutamide and/or abiraterone FASN/AR-V7 double-positive metastases were found in 77% of cases. These findings provide a compelling rationale for the use of FASN inhibitors in mCRPCs, including those overexpressing AR-V7.


Assuntos
Lipogênese , Proteínas de Neoplasias/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Humanos , Masculino , Camundongos , Metástase Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer ; 123(21): 4130-4138, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28700821

RESUMO

BACKGROUND: Obese men are at higher risk of advanced prostate cancer and cancer-specific mortality; however, the biology underlying this association remains unclear. This study examined gene expression profiles of prostate tissue to identify biological processes differentially expressed by obesity status and lethal prostate cancer. METHODS: Gene expression profiling was performed on tumor (n = 402) and adjacent normal (n = 200) prostate tissue from participants in 2 prospective cohorts who had been diagnosed with prostate cancer from 1982 to 2005. Body mass index (BMI) was calculated from the questionnaire immediately preceding cancer diagnosis. Men were followed for metastases or prostate cancer-specific death (lethal disease) through 2011. Gene Ontology biological processes differentially expressed by BMI were identified using gene set enrichment analysis. Pathway scores were computed by averaging the signal intensities of member genes. Odds ratios (ORs) for lethal prostate cancer were estimated with logistic regression. RESULTS: Among 402 men, 48% were healthy weight, 31% were overweight, and 21% were very overweight/obese. Fifteen gene sets were enriched in tumor tissue, but not normal tissue, of very overweight/obese men versus healthy-weight men; 5 of these were related to chromatin modification and remodeling (false-discovery rate < 0.25). Patients with high tumor expression of chromatin-related genes had worse clinical characteristics (Gleason grade > 7, 41% vs 17%; P = 2 × 10-4 ) and an increased risk of lethal disease that was independent of grade and stage (OR, 5.26; 95% confidence interval, 2.37-12.25). CONCLUSIONS: This study improves our understanding of the biology of aggressive prostate cancer and identifies a potential mechanistic link between obesity and prostate cancer death that warrants further study. Cancer 2017;123:4130-4138. © 2017 American Cancer Society.


Assuntos
Cromatina/genética , Perfilação da Expressão Gênica , Obesidade/genética , Neoplasias da Próstata/genética , Idoso , Índice de Massa Corporal , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Obesidade/mortalidade , Razão de Chances , Sobrepeso/epidemiologia , Estudos Prospectivos , Próstata , Neoplasias da Próstata/mortalidade
4.
Biochim Biophys Acta ; 1831(10): 1518-32, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23562839

RESUMO

Prostate cancer (PCa) metabolism appears to be unique in comparison with other types of solid cancers. Normal prostate cells mainly rely on glucose oxidation to provide precursors for the synthesis and secretion of citrate, resulting in an incomplete Krebs cycle and minimal oxidative phosphorylation for energy production. In contrast, during transformation, PCa cells no longer secrete citrate and they reactivate the Krebs cycle as energy source. Moreover, primary PCas do not show increased aerobic glycolysis and therefore they are not efficiently detectable with (18)F-FDG-PET. However, increased de novo lipid synthesis, strictly intertwined with deregulation in classical oncogenes and oncosuppressors, is an early event of the disease. Up-regulation and increased activity of lipogenic enzymes (including fatty acid synthase and choline kinase) occurs throughout PCa carcinogenesis and correlates with worse prognosis and poor survival. Thus, lipid precursors such as acetate and choline have been successfully used as alternative tracers for PET imaging. Lipid synthesis intermediates and FA catabolism also emerged as important players in PCa maintenance. Finally, epidemiologic studies suggested that systemic metabolic disorders including obesity, metabolic syndrome, and diabetes as well as hypercaloric and fat-rich diets might increase the risk of PCa. However, how metabolic disorders contribute to PCa development and whether dietary lipids and de novo lipids synthesized intra-tumor are differentially metabolized still remains unclear. In this review, we examine the switch in lipid metabolism supporting the development and progression of PCa and we discuss how we can exploit its lipogenic nature for therapeutic and diagnostic purposes. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.


Assuntos
Metabolismo dos Lipídeos , Neoplasias da Próstata/metabolismo , Genes Supressores de Tumor , Humanos , Masculino , Oncogenes , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética
5.
Sci Signal ; 17(831): eadh1922, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593154

RESUMO

Androgen deprivation therapy (ADT) is the primary treatment for prostate cancer; however, resistance to ADT invariably develops, leading to castration-resistant prostate cancer (CRPC). Prostate cancer progression is marked by increased de novo synthesis of fatty acids due to overexpression of fatty acid synthase (FASN), making this enzyme a therapeutic target for prostate cancer. Inhibition of FASN results in increased intracellular amounts of ceramides and sphingomyelin, leading to DNA damage through the formation of DNA double-strand breaks and cell death. We found that combining a FASNi with the poly-ADP ribose polymerase (PARP) inhibitor olaparib, which induces cell death by blocking DNA damage repair, resulted in a more pronounced reduction in cell growth than that caused by either drug alone. Human CRPC organoids treated with a combination of PARP and FASNi were smaller, had decreased cell proliferation, and showed increased apoptosis and necrosis. Together, these data indicate that targeting FASN increases the therapeutic efficacy of PARP inhibitors by impairing DNA damage repair, suggesting that combination therapies should be explored for CRPC.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Antagonistas de Androgênios , Morte Celular/genética , Linhagem Celular Tumoral , Dano ao DNA , Lipídeos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo
6.
Cancer Res ; 84(11): 1834-1855, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831751

RESUMO

Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC-driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer. SIGNIFICANCE: Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742.


Assuntos
Dieta Hiperlipídica , Ácido Láctico , Obesidade , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-myc , Microambiente Tumoral , Masculino , Animais , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Humanos , Ácido Láctico/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Obesidade/metabolismo , Obesidade/patologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Macrófagos Associados a Tumor/metabolismo
7.
Proc Natl Acad Sci U S A ; 107(18): 8352-6, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20404174

RESUMO

Predicting drug response in cancer patients remains a major challenge in the clinic. We have perfected an ex vivo, reproducible, rapid and personalized culture method to investigate antitumoral pharmacological properties that preserves the original cancer microenvironment. Response to signal transduction inhibitors in cancer is determined not only by properties of the drug target but also by mutations in other signaling molecules and the tumor microenvironment. As a proof of concept, we, therefore, focused on the PI3K/Akt signaling pathway, because it plays a prominent role in cancer and its activity is affected by epithelial-stromal interactions. Our results show that this culture model preserves tissue 3D architecture, cell viability, pathway activity, and global gene-expression profiles up to 5 days ex vivo. In addition, we show pathway modulation in tumor cells resulting from pharmacologic intervention in ex vivo culture. This technology may have a significant impact on patient selection for clinical trials and in predicting response to small-molecule inhibitor therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/genética , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Biópsia , Forma Celular , Sobrevivência Celular , Perfilação da Expressão Gênica , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Técnicas de Cultura de Tecidos
8.
Cancers (Basel) ; 15(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37444583

RESUMO

Advanced prostate cancer represents the fifth leading cause of cancer death in men worldwide. Although androgen-receptor signaling is the major driver of the disease, evidence is accumulating that disease progression is supported by substantial metabolic changes. Alterations in de novo lipogenesis and fatty acid catabolism are consistently reported during prostate cancer development and progression in association with androgen-receptor signaling. Therefore, the term "lipogenic phenotype" is frequently used to describe the complex metabolic rewiring that occurs in prostate cancer. However, a new scenario has emerged in which lactate may play a major role. Alterations in oncogenes/tumor suppressors, androgen signaling, hypoxic conditions, and cells in the tumor microenvironment can promote aerobic glycolysis in prostate cancer cells and the release of lactate in the tumor microenvironment, favoring immune evasion and metastasis. As prostate cancer is composed of metabolically heterogenous cells, glycolytic prostate cancer cells or cancer-associated fibroblasts can also secrete lactate and create "symbiotic" interactions with oxidative prostate cancer cells via lactate shuttling to sustain disease progression. Here, we discuss the multifaceted role of lactate in prostate cancer progression, taking into account the influence of the systemic metabolic and gut microbiota. We call special attention to the clinical opportunities of imaging lactate accumulation for patient stratification and targeting lactate metabolism.

9.
Bioinform Adv ; 3(1): vbad053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424942

RESUMO

Summary: Computational analysis and interpretation of metabolomic profiling data remains a major challenge in translational research. Exploring metabolic biomarkers and dysregulated metabolic pathways associated with a patient phenotype could offer new opportunities for targeted therapeutic intervention. Metabolite clustering based on structural similarity has the potential to uncover common underpinnings of biological processes. To address this need, we have developed the MetChem package. MetChem is a quick and simple tool that allows to classify metabolites in structurally related modules, thus revealing their functional information. Availabilityand implementation: MetChem is freely available from the R archive CRAN (http://cran.r-project.org). The software is distributed under the GNU General Public License (version 3 or later).

10.
Mol Cancer Res ; 21(3): 253-260, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511902

RESUMO

Prostate cancer has a heterogeneous prognosis. Most previous studies have focused on the identification of prognostic biomarkers in the prostate cancer tumor. However, it is increasingly recognized that the tumor microenvironment contributes to prostate cancer aggressiveness and progression. We therefore examined whole transcriptome expression of the prostate stroma and associations with aggressive and lethal prostate cancer. We performed RNA sequencing (Illumina TruSeq Exome Capture) of 272 tumor-adjacent and 120 benign-adjacent macrodissected prostate stromal samples from 293 men with prostate cancer from the Health Professionals Follow-up Study and Physicians' Health Study. We performed differential expression analysis comparing gene expression and pathways by Gleason score and lethal outcome. We also tested a previously developed stromal gene signature of Gleason score in these datasets. Comparing high- with low-Gleason score cancers, 26 genes (P < 0.001) and 12 pathways (FDR < 0.20) were significantly differentially expressed in tumor-adjacent stroma, including pathways related to stroma composition remodeling and DNA repair, with 73 genes and 65 pathways significant in benign-adjacent stroma. Comparing lethal with nonlethal prostate cancer, 11 genes were differentially expressed in tumor-adjacent and 15 genes in benign-adjacent stroma, and pathways involved in inflammatory response were differentially enriched in both tumor and benign-adjacent stroma. In addition, our previously identified Gleason stromal gene signature was validated to be associated with Gleason score in these data. Implications: Our study uncovers stroma-specific genes and pathways that are differentially enriched with high Gleason score and lethal prostate cancer, demonstrating that the molecular investigation of the tumor microenvironment can provide additional information about prostate cancer prognosis.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Transcriptoma , Seguimentos , Neoplasias da Próstata/patologia , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Gradação de Tumores , Microambiente Tumoral/genética
11.
J Pathol ; 223(2): 283-94, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21125681

RESUMO

Cancer cells synthesize de novo large amounts of fatty acids and cholesterol, irrespective of the circulating lipid levels and benefit from this increased lipid synthesis in terms of growth advantage, self-survival and drug resistance. Key lipogenic alterations that commonly occur in prostate cancer include over-expression of the enzyme fatty acid synthase (FASN) and deregulation of the 5-AMP-activated protein kinase (AMPK). FASN is a key metabolic enzyme that catalyses the synthesis of palmitate from the condensation of malonyl-CoA and acetyl-CoA de novo and plays a central role in energy homeostasis, by converting excess carbon intake into fatty acids for storage. AMPK functions as a central metabolic switch that governs glucose and lipid metabolism. Recent interest has focused on the potential of targeting metabolic pathways that may be altered during prostate tumorigenesis and progression. Several small molecule inhibitors of FASN have now been described or in development for therapeutic use; in addition, drugs that directly or indirectly induce AMPK activation have potential benefit in prostate cancer prevention and treatment.


Assuntos
Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/uso terapêutico , Ativadores de Enzimas/uso terapêutico , Ácido Graxo Sintases/metabolismo , Humanos , Lipogênese/fisiologia , Masculino , Prognóstico , Neoplasias da Próstata/diagnóstico , Transdução de Sinais/fisiologia
12.
Nat Commun ; 13(1): 2559, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562350

RESUMO

c-MYC (MYC) is a major driver of prostate cancer tumorigenesis and progression. Although MYC is overexpressed in both early and metastatic disease and associated with poor survival, its impact on prostate transcriptional reprogramming remains elusive. We demonstrate that MYC overexpression significantly diminishes the androgen receptor (AR) transcriptional program (the set of genes directly targeted by the AR protein) in luminal prostate cells without altering AR expression. Analyses of clinical specimens reveal that concurrent low AR and high MYC transcriptional programs accelerate prostate cancer progression toward a metastatic, castration-resistant disease. Data integration of single-cell transcriptomics together with ChIP-seq uncover an increase in RNA polymerase II (Pol II) promoter-proximal pausing at AR-dependent genes following MYC overexpression without an accompanying deactivation of AR-bound enhancers. Altogether, our findings suggest that MYC overexpression antagonizes the canonical AR transcriptional program and contributes to prostate tumor initiation and progression by disrupting transcriptional pause release at AR-regulated genes.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Genes myc , Humanos , Masculino , Próstata/patologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
13.
Cancer Drug Resist ; 4(1): 143-162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35582011

RESUMO

Prostate cancer (PCa) is the second leading cause of cancer-related death in the US. Androgen receptor (AR) signaling is the driver of both PCa development and progression and, thus, the major target of current in-use therapies. However, despite the survival benefit of second-generation inhibitors of AR signaling in the metastatic setting, resistance mechanisms inevitably occur. Thus, novel strategies are required to circumvent resistance occurrence and thereby to improve PCa survival. Among the key cellular processes that are regulated by androgens, metabolic reprogramming stands out because of its intricate links with cancer cell biology. In this review, we discuss how cancer metabolism and lipid metabolism in particular are regulated by androgens and contribute to the acquisition of resistance to endocrine therapy. We describe the interplay between genetic alterations, metabolic vulnerabilities and castration resistance. Since PCa cells adapt their metabolism to excess nutrient supply to promote cancer progression, we review our current knowledge on the association between diet/obesity and resistance to anti-androgen therapies. We briefly describe the metabolic symbiosis between PCa cells and tumor microenvironment and how this crosstalk might contribute to PCa progression. We discuss how tackling PCa metabolic vulnerabilities represents a potential approach of synthetic lethality to endocrine therapies. Finally, we describe how the continuous advances in analytical technologies and metabolic imaging have led to the identification of potential new prognostic and predictive biomarkers, and non-invasive approaches to monitor therapy response.

14.
Front Oncol ; 11: 719865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386430

RESUMO

Advanced prostate cancer (PCa) represents the fifth cause of cancer death worldwide. Although survival has improved with second-generation androgen signaling and Parp inhibitors, the benefits are not long-lasting, and new therapeutic approaches are sorely needed. Lipids and their metabolism have recently reached the spotlight with accumulating evidence for their role as promoters of PCa development, progression, and metastasis. As a result, interest in targeting enzymes/transporters involved in lipid metabolism is rapidly growing. Moreover, the use of lipogenic signatures to predict prognosis and resistance to therapy has been recently explored with promising results. Despite the well-known association between obesity with PCa lethality, the underlying mechanistic role of diet/obesity-derived metabolites has only lately been unveiled. Furthermore, the role of lipids as energy source, building blocks, and signaling molecules in cancer cells has now been revisited and expanded in the context of the tumor microenvironment (TME), which is heavily influenced by the external environment and nutrient availability. Here, we describe how lipids, their enzymes, transporters, and modulators can promote PCa development and progression, and we emphasize the role of lipids in shaping TME. In a therapeutic perspective, we describe the ongoing efforts in targeting lipogenic hubs. Finally, we highlight studies supporting dietary modulation in the adjuvant setting with the purpose of achieving greater efficacy of the standard of care and of synthetic lethality. PCa progression is "a matter of fats", and the more we understand about the role of lipids as key players in this process, the better we can develop approaches to counteract their tumor promoter activity while preserving their beneficial properties.

15.
Small GTPases ; 12(4): 265-272, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33043786

RESUMO

Fatty acid synthase (FASN) is commonly overexpressed in prostate cancer and associated with tumour progression. FASN is responsible for de novo synthesis of the fatty acid palmitate; the building block for protein palmitoylation. A functional role for FASN in regulating cell proliferation is widely accepted. We recently reported that FASN activity can also mediate prostate cancer HGF-mediated cell motility. Moreover, we found that modulation of FASN expression specifically impacts on the palmitoylation of RhoU. Findings we will describe here. We now report that loss of FASN expression also impairs HGF-mediated cell dissociation responses. Taken together our results provide compelling evidence that FASN activity directly promotes cell migration and supports FASN as a potential therapeutic target in metastatic prostate cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Movimento Celular , Ácido Graxo Sintase Tipo I/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/farmacologia , Neoplasias da Próstata/patologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Ácido Graxo Sintase Tipo I/genética , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Células Tumorais Cultivadas
16.
Mol Cancer Res ; 19(3): 475-484, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33168599

RESUMO

Gleason score, a measure of prostate tumor differentiation, is the strongest predictor of lethal prostate cancer at the time of diagnosis. Metabolomic profiling of tumor and of patient serum could identify biomarkers of aggressive disease and lead to the development of a less-invasive assay to perform active surveillance monitoring. Metabolomic profiling of prostate tissue and serum samples was performed. Metabolite levels and metabolite sets were compared across Gleason scores. Machine learning algorithms were trained and tuned to predict transformation or differentiation status from metabolite data. A total of 135 metabolites were significantly different (P adjusted < 0.05) in tumor versus normal tissue, and pathway analysis identified one sugar metabolism pathway (P adjusted = 0.03). Machine learning identified profiles that predicted tumor versus normal tissue (AUC of 0.82 ± 0.08). In tumor tissue, 25 metabolites were associated with Gleason score (unadjusted P < 0.05), 4 increased in high grade while the remainder were enriched in low grade. While pyroglutamine and 1,5-anhydroglucitol were correlated (0.73 and 0.72, respectively) between tissue and serum from the same patient, no metabolites were consistently associated with Gleason score in serum. Previously reported as well as novel metabolites with differing abundance were identified across tumor tissue. However, a "metabolite signature" for Gleason score was not obtained. This may be due to study design and analytic challenges that future studies should consider. IMPLICATIONS: Metabolic profiling can distinguish benign and neoplastic tissues. A novel unsupervised machine learning method can be utilized to achieve this distinction.


Assuntos
Aprendizado de Máquina/normas , Metabolômica/métodos , Neoplasias da Próstata/genética , Feminino , Humanos , Masculino , Gradação de Tumores
17.
Cancer Res ; 81(7): 1704-1718, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33547161

RESUMO

The androgen receptor (AR) is the key oncogenic driver of prostate cancer, and despite implementation of novel AR targeting therapies, outcomes for metastatic disease remain dismal. There is an urgent need to better understand androgen-regulated cellular processes to more effectively target the AR dependence of prostate cancer cells through new therapeutic vulnerabilities. Transcriptomic studies have consistently identified lipid metabolism as a hallmark of enhanced AR signaling in prostate cancer, yet the relationship between AR and the lipidome remains undefined. Using mass spectrometry-based lipidomics, this study reveals increased fatty acyl chain length in phospholipids from prostate cancer cells and patient-derived explants as one of the most striking androgen-regulated changes to lipid metabolism. Potent and direct AR-mediated induction of ELOVL fatty acid elongase 5 (ELOVL5), an enzyme that catalyzes fatty acid elongation, was demonstrated in prostate cancer cells, xenografts, and clinical tumors. Assessment of mRNA and protein in large-scale data sets revealed ELOVL5 as the predominant ELOVL expressed and upregulated in prostate cancer compared with nonmalignant prostate. ELOVL5 depletion markedly altered mitochondrial morphology and function, leading to excess generation of reactive oxygen species and resulting in suppression of prostate cancer cell proliferation, 3D growth, and in vivo tumor growth and metastasis. Supplementation with the monounsaturated fatty acid cis-vaccenic acid, a direct product of ELOVL5 elongation, reversed the oxidative stress and associated cell proliferation and migration effects of ELOVL5 knockdown. Collectively, these results identify lipid elongation as a protumorigenic metabolic pathway in prostate cancer that is androgen-regulated, critical for metastasis, and targetable via ELOVL5. SIGNIFICANCE: This study identifies phospholipid elongation as a new metabolic target of androgen action that is critical for prostate tumor metastasis.


Assuntos
Elongases de Ácidos Graxos/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , RNA Interferente Pequeno/uso terapêutico , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/farmacologia , Receptores Androgênicos/fisiologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncogene ; 39(18): 3666-3679, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32139877

RESUMO

Fatty acid synthase (FASN) is commonly overexpressed in prostate cancer and associated with tumour progression. FASN is responsible for de novo synthesis of the fatty acid palmitate; the building block for protein palmitoylation. Recent work has suggested that alongside its established role in promoting cell proliferation FASN may also promote invasion. We now find depletion of FASN expression increases prostate cancer cell adhesiveness, impairs HGF-mediated cell migration and reduces 3D invasion. These changes in motility suggest that FASN can mediate actin cytoskeletal remodelling; a process known to be downstream of Rho family GTPases. Here, we demonstrate that modulation of FASN expression specifically impacts on the palmitoylation of the atypical GTPase RhoU. Impaired RhoU activity in FASN depleted cells leads to reduced adhesion turnover downstream of paxillin serine phosphorylation, which is rescued by addition of exogenous palmitate. Moreover, canonical Cdc42 expression is dependent on the palmitoylation status of RhoU. Thus we uncover a novel relationship between FASN, RhoU and Cdc42 that directly influences cell migration potential. These results provide compelling evidence that FASN activity directly promotes cell migration and supports FASN as a potential therapeutic target in metastatic prostate cancer.


Assuntos
Ácido Graxo Sintase Tipo I/genética , Lipogênese/genética , Neoplasias da Próstata/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Fosforilação/genética , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais/genética
19.
Mol Cell Oncol ; 6(3): 1595308, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31131311

RESUMO

Reprogrammed lipid metabolism and persistent androgen receptor signaling commonly mark aggressive prostate cancer. We describe that targeting de-novo lipogenesis deprives prostate cancer cells of substrates and fuel, while inhibiting androgen receptor signaling. Our study uncovers the interplay between lipogenesis and androgen receptor and proposes novel combinatorial therapeutic approaches.

20.
Mol Cancer Res ; 17(5): 1155-1165, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30745465

RESUMO

Diagnosis of prostate cancer is based on histologic evaluation of tumor architecture using a system known as the "Gleason score." This diagnostic paradigm, while the standard of care, is time-consuming, shows intraobserver variability, and provides no information about the altered metabolic pathways, which result in altered tissue architecture. Characterization of the molecular composition of prostate cancer and how it changes with respect to the Gleason score (GS) could enable a more objective and faster diagnosis. It may also aid in our understanding of disease onset and progression. In this work, we present mass spectrometry imaging for identification and mapping of lipids and metabolites in prostate tissue from patients with known prostate cancer with GS from 6 to 9. A gradient of changes in the intensity of various lipids was observed, which correlated with increasing GS. Interestingly, these changes were identified in both regions of high tumor cell density, and in regions of tissue that appeared histologically benign, possibly suggestive of precancerous metabolomic changes. A total of 31 lipids, including several phosphatidylcholines, phosphatidic acids, phosphatidylserines, phosphatidylinositols, and cardiolipins were detected with higher intensity in GS (4+3) compared with GS (3+4), suggesting they may be markers of prostate cancer aggression. Results obtained through mass spectrometry imaging studies were subsequently correlated with a fast, ambient mass spectrometry method for potential use as a clinical tool to support image-guided prostate biopsy. IMPLICATIONS: In this study, we suggest that metabolomic differences between prostate cancers with different Gleason scores can be detected by mass spectrometry imaging.


Assuntos
Biomarcadores Tumorais/metabolismo , Metabolômica/métodos , Neoplasias da Próstata/patologia , Progressão da Doença , Humanos , Biópsia Guiada por Imagem , Lipidômica/métodos , Masculino , Espectrometria de Massas , Gradação de Tumores , Prostatectomia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/cirurgia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa