Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Invest ; 132(19)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36189795

RESUMO

Mevalonate kinase deficiency (MKD) is characterized by recurrent fevers and flares of systemic inflammation, caused by biallelic loss-of-function mutations in MVK. The underlying disease mechanisms and triggers of inflammatory flares are poorly understood because of the lack of in vivo models. We describe genetically modified mice bearing the hypomorphic mutation p.Val377Ile (the commonest variant in patients with MKD) and amorphic, frameshift mutations in Mvk. Compound heterozygous mice recapitulated the characteristic biochemical phenotype of MKD, with increased plasma mevalonic acid and clear buildup of unprenylated GTPases in PBMCs, splenocytes, and bone marrow. The inflammatory response to LPS was enhanced in compound heterozygous mice and treatment with the NLRP3 inflammasome inhibitor MCC950 prevented the elevation of circulating IL-1ß, thus identifying a potential inflammasome target for future therapeutic approaches. Furthermore, lines of mice with a range of deficiencies in mevalonate kinase and abnormal prenylation mirrored the genotype-phenotype relationship in human MKD. Importantly, these mice allowed the determination of a threshold level of residual enzyme activity, below which protein prenylation is impaired. Elevated temperature dramatically but reversibly exacerbated the deficit in the mevalonate pathway and the defective prenylation in vitro and in vivo, highlighting increased body temperature as a likely trigger of inflammatory flares.


Assuntos
Deficiência de Mevalonato Quinase , Animais , Temperatura Corporal , Febre , GTP Fosfo-Hidrolases/genética , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Lipopolissacarídeos/metabolismo , Deficiência de Mevalonato Quinase/tratamento farmacológico , Deficiência de Mevalonato Quinase/genética , Deficiência de Mevalonato Quinase/metabolismo , Ácido Mevalônico/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Prenilação de Proteína
2.
J Rheumatol ; 29(4): 787-95, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11950023

RESUMO

OBJECTIVE: The antiinflammatory effects of glucocorticoids are mediated by several mechanisms, including inhibition of nuclear factor-kappaB (NF-kappaB) nuclear translocation and DNA binding. This mechanism is not evident in some cell types, including endothelial cells and rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). We determined the effect of glucocorticoids and tumor necrosis factor (TNF) on nuclear localization and DNA binding of the transcription factor NF-kappaB in osteoarthritic (OA) synovial tissue. METHODS: Explants of synovial tissue from patients undergoing joint replacement surgery for arthritis were placed in culture and treated with dexamethasone 10(-6) M for 18 h and again at 30 min prior to stimulation with TNF for a further 30 min. NF-kappaB and AP-1 DNA binding activities were determined by electrophoretic mobility shift analysis of nuclear extracts prepared from 6 whole tissue explants. Nuclear localization of NF-kappaB was determined by quantitative immunohistochemistry for Rel-A(p65) in thin sections of 5 synovial tissue explants. RESULTS: TNF induced NF-kappaB nuclear translocation and DNA binding in all OA synovial tissue explants, although there were no consistent effects on AP-1 DNA binding. Dexamethasone reduced TNF stimulated nuclear translocation of RelA(p65) in all 5 OA synovial explants analyzed by immunohistochemistry. Dexamethasone partially decreased NF-kappaB DNA binding in 5 of 6 TNF stimulated explants and 4 of 6 unstimulated explants. In cultured rheumatoid arthritis and OA fibroblast-like synoviocytes and Mono Mac 6 cells the effects of dexamethasone on NF-kappaB DNA binding were not evident. CONCLUSION: Dexamethasone partially inhibits TNF induced NF-kappaB DNA binding in human synovial tissue. It is feasible to use explants of intact fresh human synovium as a substrate for the action of antirheumatic drugs targeting a transcription factor.


Assuntos
Anti-Inflamatórios/farmacologia , DNA/metabolismo , Dexametasona/farmacologia , NF-kappa B/biossíntese , Osteoartrite , Membrana Sinovial/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Combinação de Medicamentos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , NF-kappa B/antagonistas & inibidores , Osteoartrite/metabolismo , Osteoartrite/patologia , Proteínas Recombinantes , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição RelA , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa