Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 62(16): E8-E15, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706883

RESUMO

The temperature dependence of core mode resonance has been thoroughly studied in fiber Bragg gratings (FBGs), but it is not the case for cladding mode resonances in multi-resonance gratings such as tilted FBGs (TFBGs). In this work, the temperature sensitivity of ultraviolet written TFBGs in SMF-28 fibers is assessed, demonstrating in the first, to the best of our knowledge, place that a single gauge factor K T =6.25⋅10-6±0.02⋅10-6 ∘ C -1 can be employed to characterize the response to temperature of the resonances over the full spectrum in the 10°-50°C range. Then, a simulation model is obtained, enabling to predict TFBG spectra in the 10°-50°C range with high accuracy. This requires a calibration of the core index and dispersion of the TFBG measured in air at 25°C, and determination of the glass refractive index thermo-optic coefficient (d n/d T=8.46⋅10-6±0.1⋅10-6 ∘ C -1, common to both core and cladding glasses), leading to a mean error on the wavelength position of resonances between 1 and 3 pm. This mean error can be further reduced (less than 1 pm) by considering a linear dependence with temperature of d n/d T. Therefore, this model will enable to completely remove the temperature-induced shifts of all resonances in TFBG sensing applications and measure with great accuracy the variables of interest by using the scaled averages of groups of resonances instead of (less accurate) individual shifts.

2.
Opt Express ; 30(7): 11036-11045, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473056

RESUMO

This work presents the implementation of a thermo-refractometer, which integrates the measurement of both refractive index and temperature in a single optical fiber structure. To this purpose, a lossy mode resonance (LMR)-based refractometer is obtained by means of the deposition of a titanium dioxide (TiO2) thin film onto a side-polished (D-shaped) single mode fiber. Measurement and subsequent temperature compensation are achieved by means of a fiber Bragg grating (FBG) inscribed in the core of the D-shaped region. The LMR wavelength shift is monitored in transmission while the FBG (FBG peak at 1533 nm) displacement is observed in reflection. The LMR is sensitive to both the surrounding refractive index (SRI), with a sensitivity of 3725.2 nm/RIU in the 1.3324-1.3479 range, and the temperature (- 0.186 nm/°C); while the FBG is only affected by the temperature (32.6 pm/°C in the 25°C - 45°C range). With these values, it is possible to recover the SRI and temperature variations from the wavelength shifts of the LMR and the FBG, constituting a thermo-refractometer, where it is suppressed the effect of the temperature over the refractometer operation, which could cause errors in the fourth or even third decimal of the measured SRI value.

3.
Opt Lett ; 46(12): 2892-2895, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34129567

RESUMO

The objective of this Letter consists of the exploration of the lossy mode resonance (LMR) phenomenon beyond the near-infrared region and specifically in the short wave infrared region (SWIR) and medium wave infrared region (MWIR). The experimental and theoretical results show for the first time, to the best of our knowledge, not only LMRs in these regions, but also the utilization of fluoride glass optical fiber associated with this phenomenon. The fabricated devices consist of a nanometric thin-film of titanium dioxide used as LMR generating material, which probed extraordinary sensitivities to external refractive index (RI) variations. RI sensitivity was studied in the SWIR and MWIR under different conditions, such as the LMR wavelength range or the order of resonance, showing a tremendous potential for the detection of minute concentrations of gaseous or biological compounds in different media.

4.
Opt Lett ; 46(13): 3284-3287, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197437

RESUMO

This Letter presents the fabrication of dual lossy mode resonance (LMR) refractometers based on titanium dioxide (TiO2) and tin oxide (SnO2) thin films deposited on a single side-polished D-shaped optical fiber. For the first time, to the best of our knowledge, two independent LMRs are obtained in the same D-shaped optical fiber, by using a step-shaped nanostructure consisting of a first section of TiO2 with a thickness of 120 nm and a second section with a thickness of 140 nm (120 nm of TiO2 and 20 nm of SnO2). Each section is responsible for generating a first-order LMR with TM-polarized light (LMRTM). TiO2 is deposited by atomic layer deposition and SnO2 by electron-beam deposition. The theoretical results show that the depth of each of the resonances of the dual LMR depends on the length of the corresponding section. Two experimental devices were fabricated with sections of different lengths, and their sensitivities were studied, achieving values ∼4000nm/refractiveindexunit (RIU) with a maximum of 4506 nm/RIU for values of the SRI between 1.3327 and 1.3485.

5.
Opt Express ; 23(6): 8045-50, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25837142

RESUMO

Tin doped indium oxide (ITO) coatings fabricated onto D-shaped optical fibers are presented as the supporting medium for Lossy Mode Resonances (LMRs) generation. The characteristic geometry of ITO-coated D-shaped optical fibers enables to observe experimentally LMRs obtained with both TM and TE polarized light (LMR(TM) and LMR(TE)). This permits to obtain a maximum transmission decay of 36 dB with a LMR spectral width of 6.9 nm, improving that obtained in previous works, where the LMRs were a combination of an LMR(TM) and an LMR(TE). Surrounding medium refractive index (SMRI) sensitivity characterization of LMR(TM) has been performed obtaining a maximum sensitivity of 8742 nm/RIU in the range 1.365-1.38 refractive index units (RIU) which overcomes that of surface plasmon resonance-based optical fiber devices presented in recent works.

6.
Biosens Bioelectron ; 93: 176-181, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27638106

RESUMO

This work presents the development of high sensitive, selective, fast and reusable C-reactive protein (CRP) aptasensors. This novel approach takes advantage of the utilization of high sensitive refractometers based on Lossy Mode Resonances generated by thin indium tin oxide (ITO) films fabricated onto the planar region of d-shaped optical fibers. CRP selectivity is obtained by means of the adhesion of a CRP specific aptamer chain onto the ITO film using the Layer-by-Layer (LbL) nano-assembly fabrication process. The sensing mechanism relies on resonance wavelength shifts originated by refractive index variations of the aptamer chain in presence of the target molecule. Fabricated devices show high selectivity to CRP when compared with other target molecules, such as urea or creatinine, while maintaining a low detection limit (0.0625mg/L) and fast response time (61s). Additionally, these sensors show a repetitive response for several days and are reusable after a cleaning process in ultrapure water.


Assuntos
Técnicas Biossensoriais , Proteína C-Reativa/isolamento & purificação , Tecnologia de Fibra Óptica/métodos , Proteína C-Reativa/química , Humanos , Limite de Detecção , Fibras Ópticas , Compostos de Estanho/química , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa