Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(9): e1009566, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34555124

RESUMO

The hemagglutinin (HA) of A/H3N2 pandemic influenza viruses (IAVs) of 1968 differed from its inferred avian precursor by eight amino acid substitutions. To determine their phenotypic effects, we studied recombinant variants of A/Hong Kong/1/1968 virus containing either human-type or avian-type amino acids in the corresponding positions of HA. The precursor HA displayed receptor binding profile and high conformational stability typical for duck IAVs. Substitutions Q226L and G228S, in addition to their known effects on receptor specificity and replication, marginally decreased HA stability. Substitutions R62I, D63N, D81N and N193S reduced HA binding avidity. Substitutions R62I, D81N and A144G promoted viral replication in human airway epithelial cultures. Analysis of HA sequences revealed that substitutions D63N and D81N accompanied by the addition of N-glycans represent common markers of avian H3 HA adaptation to mammals. Our results advance understanding of genotypic and phenotypic changes in IAV HA required for avian-to-human adaptation and pandemic emergence.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Aviária/genética , Influenza Humana/genética , Zoonoses Virais/genética , Animais , Patos , Humanos , Pandemias
2.
Virol J ; 16(1): 140, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752912

RESUMO

BACKGROUND: Next generation sequencing (NGS) is becoming widely used among diagnostics and research laboratories, and nowadays it is applied to a variety of disciplines, including veterinary virology. The NGS workflow comprises several steps, namely sample processing, library preparation, sequencing and primary/secondary/tertiary bioinformatics (BI) analyses. The latter is constituted by a complex process extremely difficult to standardize, due to the variety of tools and metrics available. Thus, it is of the utmost importance to assess the comparability of results obtained through different methods and in different laboratories. To achieve this goal, we have organized a proficiency test focused on the bioinformatics components for the generation of complete genome sequences of salmonid rhabdoviruses. METHODS: Three partners, that performed virus sequencing using different commercial library preparation kits and NGS platforms, gathered together and shared with each other 75 raw datasets which were analyzed separately by the participants to produce a consensus sequence according to their own bioinformatics pipeline. Results were then compared to highlight discrepancies, and a subset of inconsistencies were investigated more in detail. RESULTS: In total, we observed 526 discrepancies, of which 39.5% were located at genome termini, 14.1% at intergenic regions and 46.4% at coding regions. Among these, 10 SNPs and 99 indels caused changes in the protein products. Overall reproducibility was 99.94%. Based on the analysis of a subset of inconsistencies investigated more in-depth, manual curation appeared the most critical step affecting sequence comparability, suggesting that the harmonization of this phase is crucial to obtain comparable results. The analysis of a calibrator sample allowed assessing BI accuracy, being 99.983%. CONCLUSIONS: We demonstrated the applicability and the usefulness of BI proficiency testing to assure the quality of NGS data, and recommend a wider implementation of such exercises to guarantee sequence data uniformity among different virology laboratories.


Assuntos
Biologia Computacional/métodos , Biologia Computacional/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Vírus da Necrose Hematopoética Infecciosa/genética , Novirhabdovirus/genética , Análise de Sequência de DNA/normas , Animais , Peixes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Controle de Qualidade , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos
3.
Emerg Infect Dis ; 24(7): 1371-1374, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29912707

RESUMO

In 2017, highly pathogenic avian influenza A(H5N8) virus was detected in poultry in the Democratic Republic of the Congo. Whole-genome phylogeny showed the virus clustered with H5N8 clade 2.3.4.4B strains from birds in central and southern Asia. Emergence of this virus in central Africa represents a threat for animal health and food security.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Animais , Galinhas , República Democrática do Congo/epidemiologia , Patos , Geografia , História do Século XXI , Humanos , Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Humana/epidemiologia , Influenza Humana/história , Influenza Humana/virologia , Uganda/epidemiologia
5.
J Gen Virol ; 99(5): 693-703, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29580370

RESUMO

The surveillance activities for abnormal bivalve mortality events in Italy include the diagnosis of ostreid herpesvirus type 1 (OsHV-1) in symptomatic oysters. OsHV-1-positive oysters (Crassostrea gigas) were used as a source for in vivo virus propagation and a virus-rich sample was selected to perform shotgun sequencing based on Illumina technology. Starting from this unpurified supernatant sample from gills and mantle, we generated 3.5 million reads (2×300 bp) and de novo assembled the whole genome of an Italian OsHV-1 microvariant (OsHV-1-PT). The OsHV-1-PT genome encodes 125 putative ORFs, 7 of which had not previously been predicted in other sequenced Malacoherpesviridae. Overall, OsHV-1-PT displays typical microvariant OsHV-1 genome features, while few polymorphisms (0.08 %) determine its uniqueness. As little is known about the genetic determinants of OsHV-1 virulence, comparing complete OsHV-1 genomes supports a better understanding of the virus pathogenicity and provides new insights into virus-host interactions.


Assuntos
Crassostrea/virologia , Vírus de DNA/classificação , Genoma Viral , Animais , Vírus de DNA/isolamento & purificação , Vírus de DNA/patogenicidade , DNA Viral/isolamento & purificação , Itália , Fases de Leitura Aberta , Filogenia , Polimorfismo Genético
6.
J Fish Dis ; 41(7): 1063-1075, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29572941

RESUMO

This study fully describes a severe disease outbreak occurred in 2016 in black bullhead catfish farmed in Italy. Affected fish showed nervous clinical signs as well as emaciations and haemorrhagic petechiae on the skin at the fin bases, abdomen and gills. Viral isolation in cell culture allowed the subsequent identification of a rhabdovirus, tentatively named ictalurid rhabdovirus (IcRV), through electron microscopy, immunofluorescence and whole genome sequencing (WGS). The newly isolated virus, together with 14 additional viral strains stored in our repository and detected during similar mortality episodes in the period 1993-2016, was phylogenetically analysed on the basis of the nucleoprotein and the glycoprotein nucleotide and amino acid sequences. The genetic distances among Italian IcRV strains were also estimated. Our results show that all the IcRV strains belong to the genus Sprivivirus and are closely related to the tench rhabdovirus (TenRV). Italian catfish production is constantly decreasing, mainly due to viral infections, which include the newly characterized IcRV. Data presented in this work will assist to investigate the molecular epidemiology and the diffusive dynamics of this virus and to develop adequate surveillance activities.


Assuntos
Doenças dos Peixes/epidemiologia , Ictaluridae , Infecções por Rhabdoviridae/veterinária , Rhabdoviridae/isolamento & purificação , Animais , Surtos de Doenças/veterinária , Doenças dos Peixes/virologia , Itália/epidemiologia , Filogenia , Rhabdoviridae/classificação , Rhabdoviridae/genética , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/virologia , Análise de Sequência de RNA/veterinária
7.
J Virol ; 90(14): 6401-6411, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27147741

RESUMO

UNLABELLED: Next-generation sequencing technology is now being increasingly applied to study the within- and between-host population dynamics of viruses. However, information on avian influenza virus evolution and transmission during a naturally occurring epidemic is still limited. Here, we use deep-sequencing data obtained from clinical samples collected from five industrial holdings and a backyard farm infected during the 2013 highly pathogenic avian influenza (HPAI) H7N7 epidemic in Italy to unravel (i) the epidemic virus population diversity, (ii) the evolution of virus pathogenicity, and (iii) the pathways of viral transmission between different holdings and sheds. We show a high level of genetic diversity of the HPAI H7N7 viruses within a single farm as a consequence of separate bottlenecks and founder effects. In particular, we identified the cocirculation in the index case of two viral strains showing a different insertion at the hemagglutinin cleavage site, as well as nine nucleotide differences at the consensus level and 92 minority variants. To assess interfarm transmission, we combined epidemiological and genetic data and identified the index case as the major source of the virus, suggesting the spread of different viral haplotypes from the index farm to the other industrial holdings, probably at different time points. Our results revealed interfarm transmission dynamics that the epidemiological data alone could not unravel and demonstrated that delay in the disease detection and stamping out was the major cause of the emergence and the spread of the HPAI strain. IMPORTANCE: The within- and between-host evolutionary dynamics of a highly pathogenic avian influenza (HPAI) strain during a naturally occurring epidemic is currently poorly understood. Here, we perform for the first time an in-depth sequence analysis of all the samples collected during a HPAI epidemic and demonstrate the importance to complement outbreak investigations with genetic data to reconstruct the transmission dynamics of the viruses and to evaluate the within- and between-farm genetic diversity of the viral population. We show that the evolutionary transition from the low pathogenic form to the highly pathogenic form occurred within the first infected flock, where we identified haplotypes with hemagglutinin cleavage site of different lengths. We also identify the index case as the major source of virus, indicating that prompt application of depopulation measures is essential to limit virus spread to other farms.


Assuntos
Evolução Biológica , Galinhas/virologia , Epidemias/veterinária , Variação Genética/genética , Vírus da Influenza A Subtipo H7N7/genética , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Animais , Galinhas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Influenza Aviária/virologia , Itália/epidemiologia , Filogenia
8.
Plant Cell ; 25(12): 4777-88, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24319081

RESUMO

The grapevine (Vitis vinifera) cultivar Tannat is cultivated mainly in Uruguay for the production of high-quality red wines. Tannat berries have unusually high levels of polyphenolic compounds, producing wines with an intense purple color and remarkable antioxidant properties. We investigated the genetic basis of these important characteristics by sequencing the genome of the Uruguayan Tannat clone UY11 using Illumina technology, followed by a mixture of de novo assembly and iterative mapping onto the PN40024 reference genome. RNA sequencing data for genome reannotation were processed using a combination of reference-guided annotation and de novo transcript assembly, allowing 5901 previously unannotated or unassembled genes to be defined and resulting in the discovery of 1873 genes that were not shared with PN40024. Expression analysis showed that these cultivar-specific genes contributed substantially (up to 81.24%) to the overall expression of enzymes involved in the synthesis of phenolic and polyphenolic compounds that contribute to the unique characteristics of the Tannat berries. The characterization of the Tannat genome therefore indicated that the grapevine reference genome lacks many genes that appear to be relevant for the varietal phenotype.


Assuntos
Genoma de Planta , Polifenóis/biossíntese , Vitis/genética , Antioxidantes/metabolismo , Frutas/química , Frutas/genética , Anotação de Sequência Molecular , Fenótipo , Polifenóis/genética , Valores de Referência , Análise de Sequência de RNA , Transcriptoma , Uruguai , Vitis/metabolismo
9.
BMC Genomics ; 15: 313, 2014 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-24767544

RESUMO

BACKGROUND: Pyrenochaeta lycopersici is a soil-dwelling ascomycete pathogen that causes corky root rot disease in tomato (Solanum lycopersicum) and other Solanaceous crops, reducing fruit yields by up to 75%. Fungal pathogens that infect roots receive less attention than those infecting the aerial parts of crops despite their significant impact on plant growth and fruit production. RESULTS: We assembled a 54.9Mb P. lycopersici draft genome sequence based on Illumina short reads, and annotated approximately 17,000 genes. The P. lycopersici genome is closely related to hemibiotrophs and necrotrophs, in agreement with the phenotypic characteristics of the fungus and its lifestyle. Several gene families related to host-pathogen interactions are strongly represented, including those responsible for nutrient absorption, the detoxification of fungicides and plant cell wall degradation, the latter confirming that much of the genome is devoted to the pathogenic activity of the fungus. We did not find a MAT gene, which is consistent with the classification of P. lycopersici as an imperfect fungus, but we observed a significant expansion of the gene families associated with heterokaryon incompatibility (HI). CONCLUSIONS: The P. lycopersici draft genome sequence provided insight into the molecular and genetic basis of the fungal lifestyle, characterizing previously unknown pathogenic behaviors and defining strategies that allow this asexual fungus to increase genetic diversity and to acquire new pathogenic traits.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Microbiologia do Solo , Solanum lycopersicum/microbiologia
10.
BMC Genomics ; 14: 41, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23331995

RESUMO

BACKGROUND: Plants such as grapevine (Vitis spp.) display significant inter-cultivar genetic and phenotypic variation. The genetic components underlying phenotypic diversity in grapevine must be understood in order to disentangle genetic and environmental factors. RESULTS: We have shown that cDNA sequencing by RNA-seq is a robust approach for the characterization of varietal diversity between a local grapevine cultivar (Corvina) and the PN40024 reference genome. We detected 15,161 known genes including 9463 with novel splice isoforms, and identified 2321 potentially novel protein-coding genes in non-annotated or unassembled regions of the reference genome. We also discovered 180 apparent private genes in the Corvina genome which were missing from the reference genome. CONCLUSIONS: The de novo assembly approach allowed a substantial amount of the Corvina transcriptome to be reconstructed, improving known gene annotations by robustly defining gene structures, annotating splice isoforms and detecting genes without annotations. The private genes we discovered are likely to be nonessential but could influence certain cultivar-specific characteristics. Therefore, the application of de novo transcriptome assembly should not be restricted to species lacking a reference genome because it can also improve existing reference genome annotations and identify novel, cultivar-specific genes.


Assuntos
Perfilação da Expressão Gênica , Variação Genética/genética , Vitis/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Genes de Plantas/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Especificidade da Espécie , Vitis/crescimento & desenvolvimento
11.
Microorganisms ; 12(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38257883

RESUMO

The rainbow trout (Oncorhynchus mykiss) is the most important produced species in freshwater within the European Union, usually reared in intensive farming systems. This species is highly susceptible to viral hemorrhagic septicemia (VHS), a severe systemic disease widespread globally throughout the world. Viral hemorrhagic septicemia virus (VHSV) is the etiological agent and, recently, three classes of VHSV virulence (high, moderate, and low) have been proposed based on the mortality rates, which are strictly dependent on the viral strain. The molecular mechanisms that regulate VHSV virulence and the stimulated gene responses in the host during infection are not completely unveiled. While some preliminary transcriptomic studies have been reported in other fish species, to date there are no publications on rainbow trout. Herein, we report the first time-course RNA sequencing analysis on rainbow trout juveniles experimentally infected with high and low VHSV pathogenic Italian strains. Transcriptome analysis was performed on head kidney samples collected at different time points (1, 2, and 5 days post infection). A large set of notable genes were found to be differentially expressed (DEGs) in all the challenged groups (e.s. trim63a, acod1, cox-2, skia, hipk1, cx35.4, ins, mtnr1a, tlr3, tlr7, mda5, lgp2). Moreover, the number of DEGs progressively increased especially during time with a greater amount found in the group infected with the high VHSV virulent strain. The gene ontology (GO) enrichment analysis highlighted that functions related to inflammation were modulated in rainbow trout during the first days of VHSV infection, regardless of the pathogenicity of the strain. While some functions showed slight differences in enrichments between the two infected groups, others appeared more exclusively modulated in the group challenged with the highly pathogenic strain.

12.
Infect Genet Evol ; 109: 105406, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764634

RESUMO

In the aftermath of COVID-19, coronaviruses gained renewed attention by the scientific community. The study reports the identification and genetic characterization of a novel coronavirus in the European badger (Meles meles) obtained in the framework of passive surveillance implemented in Italian wildlife in response to the pandemic. Positive samples were characterized using next generation sequencing as well as genetic and phylogenetic analyses, aiming for taxonomic placement under ICTV guidelines of the viruses contained in each sample. Results obtained for six conserved domains within the polyprotein showed that the virus clustered as outgroup and shared <46% amino acid identity with other coronaviruses, supporting the assumption that it belongs to a new putative genus Epsiloncoronavirus. This finding highlights that mammals still hide diverse coronaviruses whose zoonotic and epizootic potential remains unknown.


Assuntos
COVID-19 , Mustelidae , Animais , Filogenia , Animais Selvagens
13.
Vaccines (Basel) ; 11(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112779

RESUMO

Infectious bursal disease (IBD) is a viral poultry disease known worldwide for impacting the economy and food security. The disease is endemic in Nigeria, with reported outbreaks in vaccinated poultry flocks. To gain insight into the dynamics of infectious bursal disease virus (IBDV) evolution in Nigeria, near-complete genomes of four IBDVs were evaluated. Amino acid sequences in the hypervariable region of the VP2 revealed conserved markers (222A, 242I, 256I, 294I and 299S) associated with very virulent (vv) IBDV, including the serine-rich heptapeptide motif (SWSASGS). Based on the newly proposed classification for segments A and B, the IBDVs clustered in the A3B5 group (where A3 are IBDVs with vvIBDV-like segment A, and where B5 are from non-vvIBDV-like segment B) form a monophyletic subcluster. Unique amino acid mutations with yet-to-be-determined biological functions have been observed in both segments. Amino acid sequences of the Nigerian IBDVs showed that they are reassortant viruses. Circulation of reassortant IBDVs may be responsible for the vaccination failures observed in the Nigerian poultry population. Close monitoring of changes in the IBDV genome is recommended to nip deleterious changes in the bud through the identification and introduction of the most appropriate vaccine candidates and advocacy/extension programs for properly implementing disease control.

14.
Viruses ; 15(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36851642

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the importance of having proper tools and models to study the pathophysiology of emerging infectious diseases to test therapeutic protocols, assess changes in viral phenotypes, and evaluate the effects of viral evolution. This study provided a comprehensive characterization of the Syrian hamster (Mesocricetus auratus) as an animal model for SARS-CoV-2 infection using different approaches (description of clinical signs, viral load, receptor profiling, and host immune response) and targeting four different organs (lungs, intestine, brain, and PBMCs). Our data showed that both male and female hamsters were susceptible to the infection and developed a disease similar to the one observed in patients with COVID-19 that included moderate to severe pulmonary lesions, inflammation, and recruitment of the immune system in the lungs and at the systemic level. However, all animals recovered within 14 days without developing the severe pathology seen in humans, and none of them died. We found faint evidence for intestinal and neurological tropism associated with the absence of lesions and a minimal host response in intestines and brains, which highlighted another crucial difference with the multiorgan impairment of severe COVID-19. When comparing male and female hamsters, we observed that males sustained higher viral RNA shedding and replication in the lungs, suffered from more severe symptoms and histopathological lesions, and triggered higher pulmonary inflammation. Overall, these data confirmed the Syrian hamster as a suitable model for mild to moderate COVID-19 and reflected sex-related differences in the response against the virus observed in humans.


Assuntos
COVID-19 , Animais , Cricetinae , Humanos , Feminino , Masculino , Mesocricetus , SARS-CoV-2 , Comportamento Sexual , Caracteres Sexuais
15.
Viruses ; 14(2)2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35215891

RESUMO

Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE), a severe zoonosis occurring in the Palearctic region mainly transmitted through Ixodes ticks. In Italy, TBEV is restricted to the north-eastern part of the country. This report describes for the first time a case of clinical TBE in a roe deer (Capreolus capreolus L.). The case occurred in the Belluno province, Veneto region, an area endemic for TBEV. The affected roe deer showed ataxia, staggering movements, muscle tremors, wide-base stance of the front limbs, repetitive movements of the head, persistent teeth grinding, hypersalivation and prolonged recumbency. An autopsy revealed no significant lesions to explain the neurological signs. TBEV RNA was detected in the brain by real-time RT-PCR, and the nearly complete viral genome (10,897 nucleotides) was sequenced. Phylogenetic analysis of the gene encoding the envelope protein revealed a close relationship to TBEV of the European subtype, and 100% similarity with a partial sequence (520 nucleotides) of a TBEV found in ticks in the bordering Trento province. The histological examination of the midbrain revealed lymphohistiocytic encephalitis, satellitosis and microgliosis, consistent with a viral etiology. Other viral etiologies were ruled out by metagenomic analysis of the brain. This report underlines, for the first time, the occurrence of clinical encephalitic manifestations due to TBEV in a roe deer, suggesting that this pathogen should be included in the frame of differential diagnoses in roe deer with neurologic disease.


Assuntos
Cervos/virologia , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/veterinária , Animais , Vetores Aracnídeos/fisiologia , Vetores Aracnídeos/virologia , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/patologia , Encefalite Transmitida por Carrapatos/virologia , Itália , Ixodes/fisiologia , Ixodes/virologia , Filogenia
16.
Viruses ; 14(6)2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35746712

RESUMO

Hantaviruses include several zoonotic pathogens that cause different syndromes in humans, with mortality rates ranging from 12 to 40%. Most commonly, humans get infected through the inhalation of aerosols or dust particles contaminated with virus-containing rodent excreta. Hantaviruses are specifically associated with the host species, and human cases depend on the presence and the dynamics of reservoir hosts. In this letter, we report the identification of Dobrava-Belgrade virus (DOBV) in the yellow-necked mouse (Apodemus flavicollis) from Italy. The virus was detected in the mountainous area of the province of Udine, bordering Austria and Slovenia, during an event of enhanced mortality in wild mice and voles. Despite serological evidence in rodents and humans that suggested the circulation of hantaviruses in Italy since 2000, this is the first virological confirmation of the infection. Phylogenetic analyses across the whole genome of the two detected viruses confirmed the host-specificity of DOBV sub-species and showed the highest identity with viruses identified in Slovenia and Croatia from both A. flavicollis and humans, with no signs of reassortment. These findings highlight the need for ecologists, veterinarians and medical doctors to come together in a coordinated approach in full compliance with the One Health concept.


Assuntos
Infecções por Hantavirus , Orthohantavírus , Animais , Áustria , Itália/epidemiologia , Camundongos , Murinae , Filogenia
17.
Virus Evol ; 7(2): veab056, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754510

RESUMO

Infectious hematopoietic necrosis virus (IHNV) is the causative agent of IHN triggering a systemic syndrome in salmonid fish. Although IHNV has always been associated with low levels of mortality in Italian trout farming industries, in the last years trout farmers have experienced severe disease outbreaks. However, the observed increasing virulence of IHNV is still based on empirical evidence due to the poor and often confounding information from the field. Virulence characterization of a selection of sixteen Italian isolates was performed through in vivo challenge of juvenile rainbow trout to confirm field evidence. The virulence of each strain was firstly described in terms of cumulative mortality and survival probability estimated by Kaplan-Meier curves. Furthermore, parametric survival models were applied to analyze the mortality rate profiles. Hence, it was possible to characterize the strain-specific mortality peaks and to relate their topology to virulence and mortality. Indeed, a positive correlation between maximum mortality probability and virulence was observed for all the strains. Results also indicate that more virulent is the strain, the earliest and narrowest is the mortality peak. Additionally, intra-host viral quantification determined in dead animals showed a significant correlation between viral replication and virulence. Whole-genome phylogeny conducted to determine whether there was a relation between virulence phenotype and IHNV genetics evidenced no clear clustering according to phenotype. Moreover, a root-to-tip analysis based on genetic distances and sampling date of Italian IHNV isolates highlighted a relevant temporal signal indicating an evolving nature of the virus, over time, with the more virulent strains being the more recent ones. This study provides the first systematic characterization of Italian IHNV's virulence. Overall results confirm field data and point out an abrupt increase in IHNV virulence, with strains from 2015-2019 showing moderate to high virulence in rainbow trout. Further investigations are needed in order to extensively clarify the relation between evolution and virulence of IHNV and investigate the genetic determinants of virulence of this viral species in rainbow trout.

18.
Viruses ; 13(11)2021 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34835129

RESUMO

Once low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes from wild birds enter into poultry species, there is the possibility of them mutating into highly pathogenic avian influenza viruses (HPAIVs), resulting in severe epizootics with up to 100% mortality. This mutation from a LPAIV to HPAIV strain is the main cause of an AIV's major economic impact on poultry production. Although AIVs are inextricably linked to their hosts in their evolutionary history, the contribution of host-related factors in the emergence of HPAI viruses has only been marginally explored so far. In this study, transcriptomic sequencing of tracheal tissue from chickens infected with four distinct LP H7 viruses, characterized by a different history of pathogenicity evolution in the field, was implemented. Despite the inoculation of a normalized infectious dose of viruses belonging to the same subtype (H7) and pathotype (LPAI), the use of animals of the same age, sex and species as well as the identification of a comparable viral load in the target samples, the analyses revealed a heterogeneity in the gene expression profile in response to infection with each of the H7 viruses administered.


Assuntos
Vírus da Influenza A Subtipo H7N7/imunologia , Influenza Aviária , Doenças das Aves Domésticas , Animais , Galinhas , Influenza Aviária/imunologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia
19.
Viruses ; 13(1)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375071

RESUMO

Bats are often claimed to be a major source for future viral epidemics, as they are associated with several viruses with zoonotic potential. Here we describe the presence and biodiversity of bats associated with intensive pig farms devoted to the production of heavy pigs in northern Italy. Since chiropters or signs of their presence were not found within animal shelters in our study area, we suggest that fecal viruses with high environmental resistance have the highest likelihood for spillover through indirect transmission. In turn, we investigated the circulation of mammalian orthoreoviruses (MRVs), coronaviruses (CoVs) and astroviruses (AstVs) in pigs and bats sharing the same environment. Results of our preliminary study did not show any bat virus in pigs suggesting that spillover from these animals is rare. However, several AstVs, CoVs and MRVs circulated undetected in pigs. Among those, one MRV was a reassortant strain carrying viral genes likely acquired from bats. On the other hand, we found a swine AstV and a MRV strain carrying swine genes in bat guano, indicating that viral exchange at the bat-pig interface might occur more frequently from pigs to bats rather than the other way around. Considering the indoor farming system as the most common system in the European Union (EU), preventive measures should focus on biosecurity rather than displacement of bats, which are protected throughout the EU and provide critical ecosystem services for rural settings.


Assuntos
Quirópteros , Suínos , Animais , Biodiversidade , Quirópteros/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Ecossistema , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus Reordenados/genética , Suínos/virologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia , Viroses/veterinária
20.
Viruses ; 12(5)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32456089

RESUMO

Mammalian Orthoreoviruses (MRV) are segmented dsRNA viruses in the family Reoviridae. MRVs infect mammals and cause asymptomatic respiratory, gastro-enteric and, rarely, encephalic infections. MRVs are divided into at least three serotypes: MRV1, MRV2 and MRV3. In Europe, swine MRV (swMRV) was first isolated in Austria in 1998 and subsequently reported more than fifteen years later in Italy. In the present study, we characterized two novel reassortant swMRVs identified in one same Italian farm over two years. The two viruses shared the same genetic backbone but showed evidence of reassortment in the S1, S4, M2 segments and were therefore classified into two serotypes: MRV3 in 2016 and MRV2 in 2018. A genetic relation to pig, bat and human MRVs and other unknown sources was identified. A considerable genetic diversity was observed in the Italian MRV3 and MRV2 compared to other available swMRVs. The S1 protein presented unique amino acid signatures in both swMRVs, with unexpected frequencies for MRV2. The remaining genes formed distinct and novel genetic groups that revealed a geographically related evolution of swMRVs in Italy. This is the first report of the complete molecular characterization of novel reassortant swMRVs in Italy and Europe, which suggests a greater genetic diversity of swMRVs never identified before.


Assuntos
Variação Genética , Orthoreovirus de Mamíferos/genética , Infecções por Reoviridae/virologia , Doenças dos Suínos/virologia , Animais , Proteínas do Capsídeo/genética , Chlorocebus aethiops , Europa (Continente) , Genoma Viral , Humanos , Itália , Mutação , Orthoreovirus de Mamíferos/classificação , Orthoreovirus de Mamíferos/isolamento & purificação , Filogenia , Sorogrupo , Suínos , Células Vero
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa