Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Geriatr Psychiatry ; 39(3): e6074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491809

RESUMO

OBJECTIVES: Neuropsychiatric symptoms (NPS) increase risk of developing dementia and are linked to various neurodegenerative conditions, including mild cognitive impairment (MCI due to Alzheimer's disease [AD]), cerebrovascular disease (CVD), and Parkinson's disease (PD). We explored the structural neural correlates of NPS cross-sectionally and longitudinally across various neurodegenerative diagnoses. METHODS: The study included individuals with MCI due to AD, (n = 74), CVD (n = 143), and PD (n = 137) at baseline, and at 2-years follow-up (MCI due to AD, n = 37, CVD n = 103, and PD n = 84). We assessed the severity of NPS using the Neuropsychiatric Inventory Questionnaire. For brain structure we included cortical thickness and subcortical volume of predefined regions of interest associated with corticolimbic and frontal-executive circuits. RESULTS: Cross-sectional analysis revealed significant negative correlations between appetite with both circuits in the MCI and CVD groups, while apathy was associated with these circuits in both the MCI and PD groups. Longitudinally, changes in apathy scores in the MCI group were negatively linked to the changes of the frontal-executive circuit. In the CVD group, changes in agitation and nighttime behavior were negatively associated with the corticolimbic and frontal-executive circuits, respectively. In the PD group, changes in disinhibition and apathy were positively associated with the corticolimbic and frontal-executive circuits, respectively. CONCLUSIONS: The observed correlations suggest that underlying pathological changes in the brain may contribute to alterations in neural activity associated with MBI. Notably, the difference between cross-sectional and longitudinal results indicates the necessity of conducting longitudinal studies for reproducible findings and drawing robust inferences.


Assuntos
Doença de Alzheimer , Transtornos Cerebrovasculares , Disfunção Cognitiva , Doença de Parkinson , Humanos , Estudos Transversais , Doença de Parkinson/psicologia , Estudos Longitudinais , Disfunção Cognitiva/psicologia , Doença de Alzheimer/psicologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Transtornos Cerebrovasculares/complicações , Testes Neuropsicológicos
2.
Eur J Neurol ; 30(4): 920-933, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36692250

RESUMO

BACKGROUND AND PURPOSE: The pathophysiology of Parkinson's disease (PD) negatively affects brain network connectivity, and in the presence of brain white matter hyperintensities (WMHs) cognitive and motor impairments seem to be aggravated. However, the role of WMHs in predicting accelerating symptom worsening remains controversial. The objective was to investigate whether location and segmental brain WMH burden at baseline predict cognitive and motor declines in PD after 2 years. METHODS: Ninety-eight older adults followed longitudinally from Ontario Neurodegenerative Diseases Research Initiative with PD of 3-8 years in duration were included. Percentages of WMH volumes at baseline were calculated by location (deep and periventricular) and by brain region (frontal, temporal, parietal, occipital lobes and basal ganglia + thalamus). Cognitive and motor changes were assessed from baseline to 2-year follow-up. Specifically, global cognition, attention, executive function, memory, visuospatial abilities and language were assessed as were motor symptoms evaluated using the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III, spatial-temporal gait variables, Freezing of Gait Questionnaire and Activities Specific Balance Confidence Scale. RESULTS: Regression analysis adjusted for potential confounders showed that total and periventricular WMHs at baseline predicted decline in global cognition (p < 0.05). Also, total WMH burden predicted the decline of executive function (p < 0.05). Occipital WMH volumes also predicted decline in global cognition, visuomotor attention and visuospatial memory declines (p < 0.05). WMH volumes at baseline did not predict motor decline. CONCLUSION: White matter hyperintensity burden at baseline predicted cognitive but not motor decline in early to mid-stage PD. The motor decline observed after 2 years in these older adults with PD is probably related to the primary neurodegenerative process than comorbid white matter pathology.


Assuntos
Disfunção Cognitiva , Transtornos Neurológicos da Marcha , Doenças Neurodegenerativas , Doença de Parkinson , Substância Branca , Humanos , Idoso , Substância Branca/patologia , Doenças Neurodegenerativas/patologia , Ontário , Imageamento por Ressonância Magnética/métodos , Cognição/fisiologia , Disfunção Cognitiva/patologia
3.
Cereb Cortex ; 32(6): 1223-1243, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34416758

RESUMO

Understanding the neural underpinnings of major depressive disorder (MDD) and its treatment could improve treatment outcomes. So far, findings are variable and large sample replications scarce. We aimed to replicate and extend altered functional connectivity associated with MDD and pharmacotherapy outcomes in a large, multisite sample. Resting-state fMRI data were collected from 129 patients and 99 controls through the Canadian Biomarker Integration Network in Depression. Symptoms were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS). Connectivity was measured as correlations between four seeds (anterior and posterior cingulate cortex, insula and dorsolateral prefrontal cortex) and all other brain voxels. Partial least squares was used to compare connectivity prior to treatment between patients and controls, and between patients reaching remission (MADRS ≤ 10) early (within 8 weeks), late (within 16 weeks), or not at all. We replicated previous findings of altered connectivity in patients. In addition, baseline connectivity of the anterior/posterior cingulate and insula seeds differentiated patients with different treatment outcomes. The stability of these differences was established in the largest single-site subsample. Our replication and extension of altered connectivity highlighted previously reported and new differences between patients and controls, and revealed features that might predict remission prior to pharmacotherapy. Trial registration:ClinicalTrials.gov: NCT01655706.


Assuntos
Transtorno Depressivo Maior , Encéfalo/diagnóstico por imagem , Canadá , Depressão , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Imageamento por Ressonância Magnética
4.
Neuroimage ; 237: 118197, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34029737

RESUMO

Quality assurance (QA) is crucial in longitudinal and/or multi-site studies, which involve the collection of data from a group of subjects over time and/or at different locations. It is important to regularly monitor the performance of the scanners over time and at different locations to detect and control for intrinsic differences (e.g., due to manufacturers) and changes in scanner performance (e.g., due to gradual component aging, software and/or hardware upgrades, etc.). As part of the Ontario Neurodegenerative Disease Research Initiative (ONDRI) and the Canadian Biomarker Integration Network in Depression (CAN-BIND), QA phantom scans were conducted approximately monthly for three to four years at 13 sites across Canada with 3T research MRI scanners. QA parameters were calculated for each scan using the functional Biomarker Imaging Research Network's (fBIRN) QA phantom and pipeline to capture between- and within-scanner variability. We also describe a QA protocol to measure the full-width-at-half-maximum (FWHM) of slice-wise point spread functions (PSF), used in conjunction with the fBIRN QA parameters. Variations in image resolution measured by the FWHM are a primary source of variance over time for many sites, as well as between sites and between manufacturers. We also identify an unexpected range of instabilities affecting individual slices in a number of scanners, which may amount to a substantial contribution of unexplained signal variance to their data. Finally, we identify a preliminary preprocessing approach to reduce this variance and/or alleviate the slice anomalies, and in a small human data set show that this change in preprocessing can have a significant impact on seed-based connectivity measurements for some individual subjects. We expect that other fMRI centres will find this approach to identifying and controlling scanner instabilities useful in similar studies.


Assuntos
Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Estudos Multicêntricos como Assunto/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Adulto , Neuroimagem Funcional/instrumentação , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Análise de Componente Principal
5.
Hum Brain Mapp ; 42(15): 4940-4957, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34296501

RESUMO

There is a growing interest in examining the wealth of data generated by fusing functional and structural imaging information sources. These approaches may have clinical utility in identifying disruptions in the brain networks that underlie major depressive disorder (MDD). We combined an existing software toolbox with a mathematically dense statistical method to produce a novel processing pipeline for the fast and easy implementation of data fusion analysis (FATCAT-awFC). The novel FATCAT-awFC pipeline was then utilized to identify connectivity (conventional functional, conventional structural and anatomically weighted functional connectivy) changes in MDD patients compared to healthy comparison participants (HC). Data were acquired from the Canadian Biomarker Integration Network for Depression (CAN-BIND-1) study. Large-scale resting-state networks were assessed. We found statistically significant anatomically-weighted functional connectivity (awFC) group differences in the default mode network and the ventral attention network, with a modest effect size (d < 0.4). Functional and structural connectivity seemed to overlap in significance between one region-pair within the default mode network. By combining structural and functional data, awFC served to heighten or reduce the magnitude of connectivity differences in various regions distinguishing MDD from HC. This method can help us more fully understand the interconnected nature of structural and functional connectivity as it relates to depression.


Assuntos
Encéfalo , Conectoma/métodos , Rede de Modo Padrão , Transtorno Depressivo Maior , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/patologia , Rede de Modo Padrão/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Transtorno Depressivo Maior/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia
6.
Hum Brain Mapp ; 41(6): 1400-1415, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31794150

RESUMO

Task-based functional neuroimaging methods are increasingly being used to identify biomarkers of treatment response in psychiatric disorders. To facilitate meaningful interpretation of neural correlates of tasks and their potential changes with treatment over time, understanding the reliability of the blood-oxygen-level dependent (BOLD) signal of such tasks is essential. We assessed test-retest reliability of an emotional conflict task in healthy participants collected as part of the Canadian Biomarker Integration Network in Depression. Data for 36 participants, scanned at three time points (weeks 0, 2, and 8) were analyzed, and intra-class correlation coefficients (ICC) were used to quantify reliability. We observed moderate reliability (median ICC values between 0.5 and 0.6), within occipital, parietal, and temporal regions, specifically for conditions of lower cognitive complexity, that is, face, congruent or incongruent trials. For these conditions, activation was also observed within frontal and sub-cortical regions, however, their reliability was poor (median ICC < 0.2). Clinically relevant prognostic markers based on task-based fMRI require high predictive accuracy at an individual level. For this to be achieved, reliability of BOLD responses needs to be high. We have shown that reliability of the BOLD response to an emotional conflict task in healthy individuals is moderate. Implications of these findings to further inform studies of treatment effects and biomarker discovery are discussed.


Assuntos
Conflito Psicológico , Emoções/fisiologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Biomarcadores , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Depressão/diagnóstico por imagem , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Valor Preditivo dos Testes , Desempenho Psicomotor/fisiologia , Tempo de Reação , Reprodutibilidade dos Testes , Teste de Stroop , Adulto Jovem
7.
Neuroimage ; 197: 589-597, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31075395

RESUMO

Subtle changes in hippocampal volumes may occur during both physiological and pathophysiological processes in the human brain. Assessing hippocampal volumes manually is a time-consuming procedure, however, creating a need for automated segmentation methods that are both fast and reliable over time. Segmentation algorithms that employ deep convolutional neural networks (CNN) have emerged as a promising solution for large longitudinal neuroimaging studies. However, for these novel algorithms to be useful in clinical studies, the accuracy and reproducibility should be established on independent datasets. Here, we evaluate the performance of a CNN-based hippocampal segmentation algorithm that was developed by Thyreau and colleagues - Hippodeep. We compared its segmentation outputs to manual segmentation and FreeSurfer 6.0 in a sample of 200 healthy participants scanned repeatedly at seven sites across Canada, as part of the Canadian Biomarker Integration Network in Depression consortium. The algorithm demonstrated high levels of stability and reproducibility of volumetric measures across all time points compared to the other two techniques. Although more rigorous testing in clinical populations is necessary, this approach holds promise as a viable option for tracking volumetric changes in longitudinal neuroimaging studies.


Assuntos
Algoritmos , Aprendizado Profundo , Hipocampo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Adolescente , Adulto , Criança , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
J Psychiatry Neurosci ; 44(4): 223-236, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30840428

RESUMO

Studies of clinical populations that combine MRI data generated at multiple sites are increasingly common. The Canadian Biomarker Integration Network in Depression (CAN-BIND; www.canbind.ca) is a national depression research program that includes multimodal neuroimaging collected at several sites across Canada. The purpose of the current paper is to provide detailed information on the imaging protocols used in a number of CAN-BIND studies. The CAN-BIND program implemented a series of platform-specific MRI protocols, including a suite of prescribed structural and functional MRI sequences supported by real-time monitoring for adherence and quality control. The imaging data are retained in an established informatics and databasing platform. Approximately 1300 participants are being recruited, including almost 1000 with depression. These include participants treated with antidepressant medications, transcranial magnetic stimulation, cognitive behavioural therapy and cognitive remediation therapy. Our ability to analyze the large number of imaging variables available may be limited by the sample size of the substudies. The CAN-BIND program includes a multimodal imaging database supported by extensive clinical, demographic, neuropsychological and biological data from people with major depression. It is a resource for Canadian investigators who are interested in understanding whether aspects of neuroimaging ­ alone or in combination with other variables ­ can predict the outcomes of various treatment modalities.


Assuntos
Protocolos Clínicos , Bases de Dados Factuais , Conjuntos de Dados como Assunto , Transtorno Depressivo/diagnóstico por imagem , Neuroimagem , Canadá , Transtorno Depressivo/terapia , Humanos
9.
Epilepsia ; 55(4): 519-27, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24512445

RESUMO

OBJECTIVE: Developmental differences in structure and function have been reported along the hippocampal subregions. The aims of this study were to determine if there were volumetric differences in hippocampal head (HH), body (HB), tail (HT), and total hippocampus (TotH)) in children with nonlesional localization-related epilepsy relative to controls, and the relation between hippocampal subregions with episodic memory and clinical parameters. METHODS: Forty-eight children with nonlesional localization-related epilepsy, consisting of 29 left-sided and 19 right-sided epilepsy, and 27 healthy controls were recruited. All patients and controls underwent volumetric T1-weighted imaging, and verbal and nonverbal memory testing. The volume of hippocampal subregions was compared between patients and controls. The associations between left hippocampal subregions with verbal memory; right hippocampal subregions with nonverbal memory; and hippocampal subregions with age, age at seizure onset, and seizure frequency were assessed. RESULTS: Patients with left-sided epilepsy had smaller left HH (p = 0.003) and HB (p = 0.012), right HB (p = 0.021) and HT (p = 0.015), and right TotH (p = 0.020) volumes. Those with right-sided epilepsy had smaller right HT (p = 0.018) volume. There were no statistically significant differences between verbal and nonverbal memory in left-sided and right-sided epilepsy relative to controls (all p > 0.025). In left-sided epilepsy, there was a significant association between left HH volume with verbal memory (ß = 0.492, p = 0.001). There was no significant association between left and right hippocampal subregions with verbal and nonverbal memory, respectively, in right-sided epilepsy and controls (all p > 0.002). In left-sided and right-sided epilepsy, there was no significant association between hippocampal subregions with age, age at seizure onset, and seizure frequency (all p > 0.002). SIGNIFICANCE: We have found hippocampal volume reduction, but did not identify a gradient in the severity of volume reduction along the hippocampal axis in children with localization-related epilepsy. Further study is needed to clarify if there are volumetric changes within the cornu ammonis subfields and dentate gyrus. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.


Assuntos
Epilepsias Parciais/diagnóstico , Epilepsias Parciais/fisiopatologia , Hipocampo/patologia , Hipocampo/fisiologia , Memória/fisiologia , Adolescente , Criança , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Tamanho do Órgão/fisiologia , Gravação em Vídeo/métodos
10.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38830756

RESUMO

Clinical studies of major depression (MD) generally focus on group effects, yet interindividual differences in brain function are increasingly recognized as important and may even impact effect sizes related to group effects. Here, we examine the magnitude of individual differences in relation to group differences that are commonly investigated (e.g., related to MD diagnosis and treatment response). Functional MRI data from 107 participants (63 female, 44 male) were collected at baseline, 2, and 8 weeks during which patients received pharmacotherapy (escitalopram, N = 68) and controls (N = 39) received no intervention. The unique contributions of different sources of variation were examined by calculating how much variance in functional connectivity was shared across all participants and sessions, within/across groups (patients vs controls, responders vs nonresponders, female vs male participants), recording sessions, and individuals. Individual differences and common connectivity across groups, sessions, and participants contributed most to the explained variance (>95% across analyses). Group differences related to MD diagnosis, treatment response, and biological sex made significant but small contributions (0.3-1.2%). High individual variation was present in cognitive control and attention areas, while low individual variation characterized primary sensorimotor regions. Group differences were much smaller than individual differences in the context of MD and its treatment. These results could be linked to the variable findings and difficulty translating research on MD to clinical practice. Future research should examine brain features with low and high individual variation in relation to psychiatric symptoms and treatment trajectories to explore the clinical relevance of the individual differences identified here.


Assuntos
Antidepressivos , Encéfalo , Transtorno Depressivo Maior , Individualidade , Imageamento por Ressonância Magnética , Humanos , Masculino , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Feminino , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/efeitos dos fármacos , Antidepressivos/uso terapêutico , Pessoa de Meia-Idade , Escitalopram/farmacologia , Citalopram/uso terapêutico , Adulto Jovem , Conectoma
11.
IBRO Neurosci Rep ; 16: 135-146, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38293679

RESUMO

Neural network-level changes underlying symptom remission in major depressive disorder (MDD) are often studied from a single perspective. Multimodal approaches to assess neuropsychiatric disorders are evolving, as they offer richer information about brain networks. A FATCAT-awFC pipeline was developed to integrate a computationally intense data fusion method with a toolbox, to produce a faster and more intuitive pipeline for combining functional connectivity with structural connectivity (denoted as anatomically weighted functional connectivity (awFC)). Ninety-three participants from the Canadian Biomarker Integration Network for Depression study (CAN-BIND-1) were included. Patients with MDD were treated with 8 weeks of escitalopram and adjunctive aripiprazole for another 8 weeks. Between-group connectivity (SC, FC, awFC) comparisons contrasted remitters (REM) with non-remitters (NREM) at baseline and 8 weeks. Additionally, a longitudinal study analysis was performed to compare connectivity changes across time for REM, from baseline to week-8. Association between cognitive variables and connectivity were also assessed. REM were distinguished from NREM by lower awFC within the default mode, frontoparietal, and ventral attention networks. Compared to REM at baseline, REM at week-8 revealed increased awFC within the dorsal attention network and decreased awFC within the frontoparietal network. A medium effect size was observed for most results. AwFC in the frontoparietal network was associated with neurocognitive index and cognitive flexibility for the NREM group at week-8. In conclusion, the FATCAT-awFC pipeline has the benefit of providing insight on the 'full picture' of connectivity changes for REMs and NREMs while making for an easy intuitive approach.

12.
J Affect Disord ; 351: 631-640, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290583

RESUMO

We examine structural brain characteristics across three diagnostic categories: at risk for serious mental illness; first-presenting episode and recurrent major depressive disorder (MDD). We investigate whether the three diagnostic groups display a stepwise pattern of brain changes in the cortico-limbic regions. Integrated clinical and neuroimaging data from three large Canadian studies were pooled (total n = 622 participants, aged 12-66 years). Four clinical profiles were used in the classification of a clinical staging model: healthy comparison individuals with no history of depression (HC, n = 240), individuals at high risk for serious mental illness due to the presence of subclinical symptoms (SC, n = 80), first-episode depression (FD, n = 82), and participants with recurrent MDD in a current major depressive episode (RD, n = 220). Whole-brain volumetric measurements were extracted with FreeSurfer 7.1 and examined using three different types of analyses. Hippocampal volume decrease and cortico-limbic thinning were the most informative features for the RD vs HC comparisons. FD vs HC revealed that FD participants were characterized by a focal decrease in cortical thickness and global enlargement in amygdala volumes. Greater total amygdala volumes were significantly associated with earlier onset of illness in the FD but not the RD group. We did not confirm the construct validity of a tested clinical staging model, as a differential pattern of brain alterations was identified across the three diagnostic groups that did not parallel a stepwise clinical staging approach. The pathological processes during early stages of the illness may fundamentally differ from those that occur at later stages with clinical progression.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Depressão , Imageamento por Ressonância Magnética/métodos , Canadá , Neuroimagem
13.
J Psychopathol Clin Sci ; 132(7): 797-807, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37843538

RESUMO

Childhood maltreatment (CM) is a strong transdiagnostic risk factor for future psychopathology. This risk is theorized to emerge partly because of glucocorticoid-mediated atrophy in the hippocampus, which leaves this area sensitive to further volume loss even through adulthood in the face of future stress and the emergence of psychopathology. This proof-of-principle study examines which specific dimensions of internalizing psychopathology in the context of a CM history are associated with decreases in hippocampal volume over a 6-month period. This study included 80 community-recruited adults (ages 18-66 years, 61.3% women) oversampled for a lifetime history of internalizing psychopathology. At baseline and a naturalistic 6-month follow-up, the symptom dimensions of the tripartite model (anxious arousal, anhedonic depression, and general distress) were assessed by self-report. Hippocampal volume was derived through T1-weighted magnetic resonance imaging scanning segmented via the volBrain HIPS pipeline. CM severity was determined via a semistructured, contextual interview with independent ratings. We found that higher levels of anxious arousal predicted decreases in hippocampal volume over time in those with greater severity of CM but were associated at a trend with increases in hippocampal volume over time in those with lower severity of maltreatment. Findings were specific to anxious arousal and the CA1 subregion of the hippocampus. These novel results suggest that for individuals with a history of CM, transdiagnostic interventions that target and reduce psychological and physiological arousal may result in the preservation of hippocampal structure and, thus, improvements in cognitive and emotional regulation in the face of stress. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Sobreviventes Adultos de Maus-Tratos Infantis , Hipocampo , Humanos , Adulto , Feminino , Masculino , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Ansiedade , Psicopatologia , Sobreviventes Adultos de Maus-Tratos Infantis/psicologia , Nível de Alerta
14.
Neurorehabil Neural Repair ; 37(7): 434-443, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269105

RESUMO

BACKGROUND: Acute change in gait speed while performing a mental task [dual-task gait cost (DTC)], and hyperintensity magnetic resonance imaging signals in white matter are both important disability predictors in older individuals with history of stroke (poststroke). It is still unclear, however, whether DTC is associated with overall hyperintensity volume from specific major brain regions in poststroke. METHODS: This is a cohort study with a total of 123 older (69 ± 7 years of age) participants with history of stroke were included from the Ontario Neurodegenerative Disease Research Initiative. Participants were clinically assessed and had gait performance assessed under single- and dual-task conditions. Structural neuroimaging data were analyzed to measure both, white matter hyperintensity (WMH) and normal appearing volumes. Percentage of WMH volume in frontal, parietal, occipital, and temporal lobes as well as subcortical hyperintensities in basal ganglia + thalamus were the main outcomes. Multivariate models investigated associations between DTC and hyperintensity volumes, adjusted for age, sex, years of education, global cognition, vascular risk factors, APOE4 genotype, residual sensorimotor symptoms from previous stroke and brain volume. RESULTS: There was a significant positive global linear association between DTC and hyperintensity burden (adjusted Wilks' λ = .87, P = .01). Amongst all WMH volumes, hyperintensity burden from basal ganglia + thalamus provided the most significant contribution to the global association (adjusted ß = .008, η2 = .03; P = .04), independently of brain atrophy. CONCLUSIONS: In poststroke, increased DTC may be an indicator of larger white matter damages, specifically in subcortical regions, which can potentially affect the overall cognitive processing and decrease gait automaticity by increasing the cortical control over patients' locomotion.


Assuntos
Doenças Neurodegenerativas , Acidente Vascular Cerebral , Substância Branca , Humanos , Idoso , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos de Coortes , Doenças Neurodegenerativas/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Marcha , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Imageamento por Ressonância Magnética
15.
Phys Med Biol ; 67(5)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965517

RESUMO

Clinically oriented studies commonly acquire diffusion MRI (dMRI) data with a single non-zerob-value (i.e. single-shell) and diffusion weighting ofb= 1000 s mm-2. To produce microstructural parameter maps, the tensor model is usually used, despite known limitations. Although compartment models have demonstrated improved fits in multi-shell dMRI data, they are rarely used for single-shell parameter maps, where their effectiveness is unclear from the literature. Here, various compartment models combining isotropic balls and symmetric tensors were fitted to single-shell dMRI data to investigate model fitting optimization and extract the most information possible. Full testing was performed in 5 subjects, and 3 subjects with multi-shell data were included for comparison. The results were tested and confirmed in a further 50 subjects. The Markov chain Monte Carlo (MCMC) model fitting technique outperformed non-linear least squares. Using MCMC, the 2-fibre-orientation mono-exponential ball and stick model (BSME2) provided artifact-free, stable results, in little processing time. The analogous ball and zeppelin model (BZ2) also produced stable, low-noise parameter maps, though it required much greater computing resources (50 000 burn-in steps). In single-shell data, the gamma-distributed diffusivity ball and stick model (BSGD2) underperformed relative to other models, despite being an often-used software default. It produced artifacts in the diffusivity maps even with extremely long processing times. Neither increased diffusion weighting nor a greater number of gradient orientations improvedBSGD2fits. In white matter (WM), the tensor produced the best fit as measured by Bayesian information criterion. This result contrasts with studies using multi-shell data. However, in crossing fibre regions the tensor confounded geometric effects with fractional anisotropy (FA): the planar/linear WM FA ratio was 49%, whileBZ2andBSME2retained 76% and 83% of restricted fraction, respectively. As a result, theBZ2andBSME2models are strong candidates to optimize information extraction from single-shell dMRI studies.


Assuntos
Processamento de Imagem Assistida por Computador , Substância Branca , Anisotropia , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Substância Branca/diagnóstico por imagem
16.
Schizophr Res ; 240: 220-227, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35074702

RESUMO

Youth at clinical high risk (CHR) for psychosis can present not only with characteristic attenuated psychotic symptoms but also may have other comorbid conditions, including anxiety and depression. These undifferentiated mood symptoms can overlap with the clinical presentation of youth with Distress syndromes. Increased resting-state functional connectivity within cerebello-thalamo-cortical (CTC) pathways has been proposed as a trait-specific biomarker for CHR. However, it is unclear whether this functional neural signature remains specific when compared to a different risk group: youth with Distress syndromes. The purpose of the present work was to describe CTC alterations that distinguish between CHR and Distressed individuals. Using machine learning algorithms, we analyzed CTC connectivity features of CHR (n = 51), Distressed (n = 41), and healthy control (n = 36) participants. We found four cerebellar (lobes VII and left Crus II anterior/posterior) and two basal ganglia (right putamen and right thalamus) nodes containing a set of specific connectivity features that distinguished between CHR, Distressed and healthy control groups. Hyperconnectivity between medial lobule VIIb, somatomotor network and middle temporal gyrus was associated with CHR status and more severe symptoms. Detailed atlas parcellation suggested that CHR individuals may have dysfunction mainly within the associative (cognitive) pathways, particularly, between those brain areas responsible for the multi-sensory signal integration.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Adolescente , Encéfalo , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Transtornos Psicóticos/diagnóstico por imagem
17.
Neuroimage Clin ; 35: 103120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908308

RESUMO

Many previous intervention studies have used functional magnetic resonance imaging (fMRI) data to predict the antidepressant response of patients with major depressive disorder (MDD); however, practical constraints have limited many of those attempts to small, single centre studies which may not adequately reflect how these models will generalize when used in clinical practice. Not only does the act of collecting data at multiple sites generally increase sample sizes (a critical point in machine learning development) it also generates a more heterogeneous dataset due to systematic differences in scanners at different sites, and geographical differences in patient populations. As part of the Canadian Biomarker Integration Network in Depression (CAN-BIND-1) study, 144 MDD patients from six sites underwent resting state fMRI prior to starting escitalopram treatment, and again two weeks after the start. Here, we consider ways to use machine learning techniques to produce models that can predict response (measured at eight weeks after initiation), based on various parcellations, functional connectivity (FC) metrics, dimensionality reduction algorithms, and base learners, and also whether to use scans from one or both time points. Models that use only baseline (pre-treatment) or only week 2 (early-response) whole-brain FC features consistently failed to perform significantly better than default models. Utilizing the change in FC between these two time points, however, yielded significant results, with the best performing analytical pipeline achieving 69.6% (SD 10.8) accuracy. These results appear contrary to findings from many smaller single-site studies, which report substantially higher predictive accuracies from models trained on only baseline resting state FC features, suggesting these models may not generalize well beyond data used for development. Further, these results indicate the potential value of collecting data both before and shortly after treatment initiation.


Assuntos
Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Biomarcadores , Encéfalo/diagnóstico por imagem , Canadá , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Escitalopram , Humanos , Imageamento por Ressonância Magnética/métodos
18.
Magn Reson Imaging ; 92: 150-160, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753643

RESUMO

PURPOSE: Magnetic resonance imaging (MRI) scanner-specific geometric distortions may contribute to scanner induced variability and decrease volumetric measurement precision for multi-site studies. The purpose of this study was to determine whether geometric distortion correction increases the precision of brain volumetric measurements in a multi-site multi-scanner study. METHODS: Geometric distortion variation was quantified over a one-year period at 10 sites using the distortion fields estimated from monthly 3D T1-weighted MRI geometrical phantom scans. The variability of volume and distance measurements were quantified using synthetic volumes and a standard quantitative MRI (qMRI) phantom. The effects of geometric distortion corrections on MRI derived volumetric measurements of the human brain were assessed in two subjects scanned on each of the 10 MRI scanners and in 150 subjects with cerebrovascaular disease (CVD) acquired across imaging sites. RESULTS: Geometric distortions were found to vary substantially between different MRI scanners but were relatively stable on each scanner over a one-year interval. Geometric distortions varied spatially, increasing in severity with distance from the magnet isocenter. In measurements made with the qMRI phantom, the geometric distortion correction decreased the standard deviation of volumetric assessments by 35% and distance measurements by 42%. The average coefficient of variance decreased by 16% in gray matter and white matter volume estimates in the two subjects scanned on the 10 MRI scanners. CONCLUSION: Geometric distortion correction using an up-to-date correction field is recommended to increase precision in volumetric measurements made from MRI images.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
19.
BMC Bioinformatics ; 12: 237, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21679425

RESUMO

BACKGROUND: The motivation behind this paper is to aid the automatic phenotyping of mouse embryos, wherein multiple embryos embedded within a single tube were scanned using Magnetic Resonance Imaging (MRI). RESULTS: Our algorithm, a modified version of the simplex deformable model of Delingette, addresses various issues with deformable models including initialization and inability to adapt to boundary concavities. In addition, it proposes a novel technique for automatic collision detection of multiple objects which are being segmented simultaneously, hence avoiding major leaks into adjacent neighbouring structures. We address the initialization problem by introducing balloon forces which expand the initial spherical models close to the true boundaries of the embryos. This results in models which are less sensitive to initial minimum of two fold after each stage of deformation. To determine collision during segmentation, our unique collision detection algorithm finds the intersection between binary masks created from the deformed models after every few iterations of the deformation and modifies the segmentation parameters accordingly hence avoiding collision.We have segmented six tubes of three dimensional MR images of multiple mouse embryos using our modified deformable model algorithm. We have then validated the results of the our semi-automatic segmentation versus manual segmentation of the same embryos. Our Validation shows that except paws and tails we have been able to segment the mouse embryos with minor error. CONCLUSIONS: This paper describes our novel multiple object segmentation technique with collision detection using a modified deformable model algorithm. Further, it presents the results of segmenting magnetic resonance images of up to 32 mouse embryos stacked in one gel filled test tube and creating 32 individual masks.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética/métodos , Animais , Embrião de Mamíferos/citologia , Imageamento Tridimensional/métodos , Camundongos , Software
20.
Artigo em Inglês | MEDLINE | ID: mdl-33296696

RESUMO

BACKGROUND AND METHODS: Investigation of the insula may inform understanding of the etiopathogenesis of major depressive disorder (MDD). In the present study, we introduced a novel gray matter volume (GMV) based structural covariance technique, and applied it to a multi-centre study of insular subregions of 157 patients with MDD and 93 healthy controls from the Canadian Biomarker Integration Network in Depression (CAN-BIND, https://www.canbind.ca/). Specifically, we divided the unilateral insula into three subregions, and investigated their coupling with whole-brain GMV-based structural brain networks (SBNs). We compared between-group difference of the structural coupling patterns between the insular subregions and SBNs. RESULTS: The insula was divided into three subregions, including an anterior one, a superior-posterior one and an inferior-posterior one. In the comparison between MDD patients and controls we found that patients' right anterior insula showed increased inter-network coupling with the default mode network, and it showed decreased inter-network coupling with the central executive network; whereas patients' right ventral-posterior insula showed decreased inter-network coupling with the default mode network, and it showed increased inter-network coupling with the central executive network. We also demonstrated that patients' loading parameters of the right ventral-posterior insular structural covariance negatively correlated with their suicidal ideation scores; and controls' loading parameters of the right ventral-posterior insular structural covariance positively correlated with their motor and psychomotor speed scores, whereas these phenomena were not found in patients. Additionally, we did not find significant inter-network coupling between the whole-brain SBNs, including salience network, default mode network, and central executive network. CONCLUSIONS: Our work proposed a novel technique to investigate the structural covariance coupling between large-scale structural covariance networks, and provided further evidence that MDD is a system-level disorder that shows disrupted structural coupling between brain networks.


Assuntos
Córtex Cerebral/fisiopatologia , Conjuntos de Dados como Assunto , Transtorno Depressivo Maior/fisiopatologia , Substância Cinzenta/fisiopatologia , Processamento de Imagem Assistida por Computador , Adulto , Encéfalo , Canadá , Transtorno Depressivo Maior/etiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa