Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(13): 7529-7544, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35766425

RESUMO

Prokaryotic Argonaute proteins (pAgos) widely participate in hosts to defend against the invasion of nucleic acids. Compared with the CRISPR-Cas system, which requires a specific motif on the target and can only use RNA as guide, pAgos exhibit precise endonuclease activity on any arbitrary target sequence and can use both RNA and DNA as guide, thus rendering great potential for genome editing applications. Hitherto, most in-depth studies on the structure-function relationship of pAgos were conducted on thermophilic ones, functioning at ∼60 to 100°C, whose structures were, however, determined experimentally at much lower temperatures (20-33°C). It remains unclear whether these low-temperature structures can represent the true conformations of the thermophilic pAgos under their physiological conditions. The present work studied three pAgos, PfAgo, TtAgo and CbAgo, whose physiological temperatures differ significantly (95, 75 and 37°C). By conducting thorough experimental and simulation studies, we found that thermophilic pAgos (PfAgo and TtAgo) adopt a loosely-packed structure with a partially-melted surface at the physiological temperatures, largely different from the compact crystalline structures determined at moderate temperatures. In contrast, the mesophilic pAgo (CbAgo) assumes a compact crystalline structure at its optimal function temperature. Such a partially-disrupted structure endows thermophilic pAgos with great flexibility both globally and locally at the catalytic sites, which is crucial for them to achieve high DNA-cleavage activity. To further prove this, we incubated thermophilic pAgos with urea to purposely disrupt their structures, and the resulting cleavage activity was significantly enhanced below the physiological temperature, even at human body temperature. Further testing of many thermophilic Agos present in various thermophilic prokaryotes demonstrated that their structures are generally disrupted under physiological conditions. Therefore, our findings suggest that the highly dynamical structure with a partially-melted surface, distinct from the low-temperature crystalline structure, could be a general strategy assumed by thermophilic pAgos to achieve the high DNA-cleavage activity.


Assuntos
Proteínas Argonautas , Clivagem do DNA , Proteínas Argonautas/metabolismo , DNA/genética , DNA/metabolismo , Humanos , Células Procarióticas/metabolismo , RNA/metabolismo
2.
J Pept Sci ; 29(8): e3482, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36739581

RESUMO

Membrane-active peptides play an essential role in many living organisms and their immune systems and counter many infectious diseases. Many have dual or multiple mechanisms and can synergize with other molecules, like peptides, proteins, and small molecules. Although membrane-active peptides have been intensively studied in the past decades and more than 3500 sequences have been identified, only a few received approvals from the US Food and Drug Administration. In this review, we investigated all the peptide therapeutics that have entered the market or were subjected to preclinical and clinical studies to understand how they succeeded. With technological advancement (e.g., chemical modifications and pharmaceutical formulations) and a better understanding of the mechanism of action and the potential targets, we found at least five membrane-active peptide drugs that have entered preclinical/clinical phases and show promising results for cancer treatment. We summarized our findings in this review and provided insights into membrane-active anticancer peptide therapeutics.


Assuntos
Peptídeos , Proteínas , Estados Unidos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Composição de Medicamentos
3.
Chem Sci ; 15(15): 5612-5626, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638240

RESUMO

Prokaryotic Argonaute (pAgo) proteins, a class of DNA/RNA-guided programmable endonucleases, have been extensively utilized in nucleic acid-based biosensors. The specific binding and cleavage of nucleic acids by pAgo proteins, which are crucial processes for their applications, are dependent on the presence of Mn2+ bound in the pockets, as verified through X-ray crystallography. However, a comprehensive understanding of how dissociated Mn2+ in the solvent affects the catalytic cycle, and its underlying regulatory role in this structure-function relationship, remains underdetermined. By combining experimental and computational methods, this study reveals that unbound Mn2+ in solution enhances the flexibility of diverse pAgo proteins. This increase in flexibility through decreasing the number of hydrogen bonds, induced by Mn2+, leads to higher affinity for substrates, thus facilitating cleavage. More importantly, Mn2+-induced structural flexibility increases the mismatch tolerance between guide-target pairs by increasing the conformational states, thereby enhancing the cleavage of mismatches. Further simulations indicate that the enhanced flexibility in linkers triggers conformational changes in the PAZ domain for recognizing various lengths of nucleic acids. Additionally, Mn2+-induced dynamic alterations of the protein cause a conformational shift in the N domain and catalytic sites towards their functional form, resulting in a decreased energy penalty for target release and cleavage. These findings demonstrate that the dynamic conformations of pAgo proteins, resulting from the presence of the unbound Mn2+ in solution, significantly promote the catalytic cycle of endonucleases and the tolerance of cleavage to mismatches. This flexibility enhancement mechanism serves as a general strategy employed by Ago proteins from diverse prokaryotes to accomplish their catalytic functions and provide useful information for Ago-based precise molecular diagnostics.

4.
Chem Sci ; 13(15): 4341-4351, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35509458

RESUMO

Interfacial water remains liquid and mobile much below 0 °C, imparting flexibility to the encapsulated materials to ensure their diverse functions at subzero temperatures. However, a united picture that can describe the dynamical differences of interfacial water on different materials and its role in imparting system-specific flexibility to distinct materials is lacking. By combining neutron spectroscopy and isotope labeling, we explored the dynamics of water and the underlying substrates independently below 0 °C across a broad range of materials. Surprisingly, while the function-related anharmonic dynamical onset in the materials exhibits diverse activation temperatures, the surface water presents a universal onset at a common temperature. Further analysis of the neutron experiment and simulation results revealed that the universal onset of water results from an intrinsic surface-independent relaxation: switching of hydrogen bonds between neighboring water molecules with a common energy barrier of ∼35 kJ mol-1.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa