Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Prosthet Dent ; 131(1): 163.e1-163.e8, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37891042

RESUMO

STATEMENT OF PROBLEM: The accuracy of intraoral scans, particularly in edentulous areas, remains a concern despite the increasing use of digital technology, especially intraoral scanners. PURPOSE: The purpose of this in vitro study was to assess the impact of the extent of an edentulous area on the accuracy (trueness and precision) of intraoral scans from 2 intraoral scanners. MATERIAL AND METHODS: A KaVo dentoform with epoxy resin teeth was used to generate 9 groups with different numbers of teeth removed. A laboratory scanner served as the reference dataset, and 2 intraoral scanners (TRIOS 3 and Primescan AC) were evaluated. A single operator performed all scans following standardized protocols and calibration. Trueness and precision were assessed by using root mean square (RMS) values. Analysis of variance was used to compare trueness and precision values obtained from the 2 scanners and different partially edentulous conditions (α=.05). RESULTS: A significant difference was found in the trueness of intraoral scans of the 2 scanners and under different partially edentulous extensions. Primescan AC exhibited significantly lower trueness than TRIOS 3 (P<.001). For the individual edentulous conditions, Primescan had a significantly higher RMS mean than TRIOS 3 for G0, G3, G4, G6, G7, and G8 (P<.001) and a significantly lower RMS mean than TRIOS 3 for G1 and G4 (P<.001), while no significant difference in RMS mean was found between the 2 scanners for G2 (P=.999). For precision, no significant difference was found between the 2 scanners or different edentulous conditions [(F 8, 90)=1.82, P=.085]. CONCLUSIONS: The accuracy of intraoral scans was influenced by the length of edentulous areas and the scanner used. Primescan AC demonstrated lower trueness than TRIOS 3 for most partially edentulous conditions, while the scanners were similar in precision. These findings highlight the need for careful scanner selection in specific clinical situations, as scanning accuracy may vary depending on the scanner and edentulous condition.


Assuntos
Desenho Assistido por Computador , Boca Edêntula , Humanos , Técnica de Moldagem Odontológica , Modelos Dentários , Imageamento Tridimensional
2.
J Prosthodont ; 33(1): 54-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36693242

RESUMO

PURPOSE: The purpose of this study was to analyze the fibroblast growth and proliferation on 3D-printed zirconia in presence and absence of porosities. MATERIAL AND METHODS: A total of 40 bars (8 × 4 × 3) were included in this study. Thirty 3D-printed and 10 milled zirconia samples were prepared. The 3D-printed samples had different porosities, 0% (PZ0), 20% (PZ20), and 40% (PZ40) with 10 specimens in each group. Milled zirconia samples were used as the control (MZ). Rat gingival fibroblasts were cultured for 48 h, and the proliferation of fibroblasts on each sample in each group (n = 10) was determined by MTT assays. The differences among the four groups were compared by one-way ANOVA. To test the significance of the observed differences between two groups, an unpaired Student's t-test was applied. The significance level was set at p < 0.05. Qualitative analysis for the cell culture was performed using scanning electron microscopy. RESULTS: One-way ANOVA showed that the numbers of the fibroblasts among the four groups had a statistical difference. Post hoc Bonferroni test revealed that there was no significant difference between PZ0 and MZ; however, all other groups and among groups were significantly different. CONCLUSIONS: Fibroblasts had a better affinity toward the MZ and PZ0 in a short period of cell culture time.


Assuntos
Fibroblastos , Zircônio , Animais , Ratos , Zircônio/farmacologia , Impressão Tridimensional , Teste de Materiais
3.
J Prosthodont ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666691

RESUMO

PURPOSE: This systematic review aims to compare clinical outcomes of digital dentures with conventional dentures. MATERIALS AND METHODS: This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and was registered in Prospero. The formulated population, intervention, comparison, outcome (PICO) question was "What is the clinical outcome of digital versus conventional complete dentures (CDs) in edentulous patients?". The search strategy used three main electronic databases and an additional manual search was completed in August 2023 by following an established search strategy. Initial inclusion was based on titles and abstracts, followed by a detailed review of selected studies, and clinical studies that evaluated the clinical outcome of digital (milled or 3D-printed) versus conventional CDs were included. A qualitative analysis for clinical studies was used to assess the risk of bias. The certainty of the evidence was assessed according to the grading of recommendations, assessment, development, and evaluations (GRADE) system. In addition, a single-arm meta-analysis was performed to evaluate the retention between digital versus conventional CDs. RESULTS: The initial search yielded a total of 947 articles, out of which 19 were selected for a comprehensive review, and six met the eligibility criteria to be included in this systematic review. The computer-aided design and computer-aided manufacturing (CAD-CAM) CDs showed increased retention, no relevant differences in oral health-related quality of life (OHRQoL), and shorter working time compared to conventional dentures. Two studies were eligible for meta-analysis; retention was significantly better among CAD-CAM fabricated dentures (standardized mean difference [SMD] 0.501) than conventional dentures. The heterogeneity between studies was high (95% CI: 0.049-0.952). CONCLUSIONS: Clinically, both the milled and the 3D-printed CD fared better than conventional dentures in terms of retention, reduction in the number of appointments, improved patient comfort, and improved predictable maintenance of the denture. Patients' perceptions and satisfaction were independent of the digital and conventional fabricated dentures.

4.
J Prosthodont ; 33(7): 684-690, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39118597

RESUMO

PURPOSE: This in vitro study aimed to create a graded structured dental crown using 3D printing technology and investigate the fracture resistance and the adaptation of this new design. MATERIALS AND METHODS: A dental crown with a uniform thickness of 1.5 mm was designed, and the exported stereolithography file (STL) was used to manufacture 30 crowns in three groups (n = 10), solid (SC), bilayer (BL), and multilayer (ML) crowns using  3D jet printing technology. Marginal and internal gaps were measured using the silicone replica technique. Crowns were then luted to a resin die using a temporary luting agent and the fracture resistance was measured using a universal testing machine. One-way ANOVA and Tukey post hoc tests were used to compare the fracture resistance and the adaptation of crowns at a significance level of 0.05. RESULTS: Mean marginal and internal gap of the ML group were 80 and 82 mm, respectively; which were significantly (p < 0.05) smaller than BL (203 and 183 mm) and SC (318 and 221 mm) groups. The SC group showed the highest mean load at fracture (2330 N) which was significantly (p < 0.05) higher than the BL (1716 N) and ML (1516 N) groups. CONCLUSION: 3D jet printing technology provides an opportunity to manufacture crowns in a graded structure with various mechanical properties. This study provided an example of graded structured crowns and presented their fracture resistance. SC group had the highest fracture resistance; however, ML had the best marginal and internal adaptation.


Assuntos
Coroas , Planejamento de Prótese Dentária , Análise do Estresse Dentário , Impressão Tridimensional , Planejamento de Prótese Dentária/métodos , Humanos , Adaptação Marginal Dentária , Teste de Materiais , Falha de Restauração Dentária , Técnicas In Vitro , Desenho Assistido por Computador
5.
J Prosthodont ; 33(2): 188-194, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36810925

RESUMO

PURPOSE: To investigate the design and location of supporting structures on the marginal and internal gap of interim restorations. MATERIALS AND METHODS: A mandibular right first molar resin tooth was prepared for a full coverage crown and scanned using a laboratory scanner (3Shape D900). The scanned data were converted into standard tessellation language (STL) format and an indirect prosthesis was designed using computer-aided design (CAD) software (exocad DentalCAD). The STL file was used to fabricate a total of 60 crowns with a 3D printer (EnvisionTEC Vida HD). The crowns were printed using E-Dent C&B MH resin and divided into 4 groups based on four different support structure designs, including supports on the occlusal (0° group), buccal and occlusal (45° group), buccal (90° group), and a new design consisting of horizontal bars placed on all surfaces and line angles (Bar) (n = 15). The silicone replica technique was used to determine the gap discrepancy. Fifty measurements were obtained for each specimen to examine the marginal and internal gaps by using a digital microscope (Olympus SZX16) at ×70 magnification. Additionally, the marginal discrepancy at different locations of the tested crowns, including buccal (B), lingual (L), mesial (M), and distal (D), as well as the maximum and minimum marginal gap intervals among groups, were analyzed. The collected data were analyzed using factorial ANOVA, followed by the Tukey HSD test for multiple comparisons (a = 0.05). RESULTS: There was a significant difference in marginal and internal gaps among the groups (p < 0.001). The buccal placement supports (90° group) had the least marginal and internal discrepancies (p < 0.001). The new design group showed the highest marginal and internal gap. The marginal discrepancy in different locations of the tested crowns (B, L, M, D) was found to be significantly different among the groups (p < 0.001). The mesial margin of the Bar group had the largest marginal gap, whereas the buccal margin of the 90° group had the lowest marginal gap. The new design had a significantly smaller difference between the maximum and minimum marginal gap intervals than other groups (p < 0.001). CONCLUSION: The location and design of the supporting structures affected the marginal and internal gaps of an interim crown. The buccal placement of supporting bars (90° printing orientation) showed the smallest mean internal and marginal discrepancies.


Assuntos
Adaptação Marginal Dentária , Planejamento de Prótese Dentária , Humanos , Planejamento de Prótese Dentária/métodos , Coroas , Desenho Assistido por Computador , Tecnologia
6.
J Prosthet Dent ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36932021

RESUMO

STATEMENT OF PROBLEM: Delamination of veneering ceramic is one of the most common challenges relating to veneered zirconia restorations. Additive manufacturing (AM) is a fast-expanding technology that has gained widespread acceptance in dentistry and is increasingly being used to produce dental restorations. However, information about bonding of porcelain to AM zirconia is lacking. PURPOSE: The purpose of this in vitro study was to investigate the shear bond strength (SBS) of porcelain to milled and additively manufactured zirconia, and the effect of surface treatment on bond strength. MATERIAL AND METHODS: A Ø12×5-mm disk was designed virtually to fabricate all specimens, which were divided into 2 groups according to the manufacturing technique: additively manufactured or milled zirconia. The effect of airborne-particle abrasion and a zirconia liner before porcelain application was investigated in both groups. Veneering porcelain was fired into an alumina ring mold on the zirconia surface. SBS was measured by using a universal testing machine at a crosshead speed of 1 mm/min before and after aging (n=10). SBS data were analyzed with 3-way ANOVA (α=.05) RESULTS: A significant difference was found between milled and AM zirconia. The SBS of porcelain to milled zirconia was significantly higher (1.38 MPa) than to AM zirconia (0.68 MPa) (P<.001). The surface treatment of zirconia had no significant effect on porcelain SBS in either group (P=.254), whereas thermocycling significantly reduced the SBS of porcelain to zirconia in both milled and AM groups (P=.001). CONCLUSIONS: Porcelain bonding to milled zirconia was better than to AM zirconia. Pretreating the zirconia substrate before porcelain application did not improve the porcelain bond.

7.
J Prosthet Dent ; 129(5): 788-795, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34602276

RESUMO

STATEMENT OF PROBLEM: Additive manufacturing (AM) is a technology that has been recently introduced into dentistry for fabricating dental devices, including interim restorations. Printing orientation is one of the important and influential factors in AM that affects the accuracy, surface roughness, and mechanical characteristics of printed objects. However, the optimal print orientation for best bond strength to 3D-printed interim restorations remains unclear. PURPOSE: The purpose of this in vitro study was to evaluate the effect of printing orientation on the surface roughness, topography, and shear bond strength of AM interim restorations to composite resin. MATERIAL AND METHODS: Disk-shaped specimens (Ø20×10 mm) were designed by a computer-aided design software program (Geomagic freeform), and a standard tessellation language (STL) file was obtained. The STL file was used for the AM of 60 disks in 3 different printing orientations (0, 45, and 90 degrees) by using E-Dent 400 C&B material. An autopolymerizing interim material (Protemp 4) was used as a control group (CNT), and specimens were fabricated by using the injecting mold technique (n=20). Surface roughness (Sa, Sz parameters) was measured by using a 3D-laser scanning confocal microscope (CLSM) at ×20 magnification. For shear bond testing, the specimens were embedded in polymethylmethacrylate autopolymerized resin (n=20). A flowable composite resin was bonded by using an adhesive system. The specimens were stored in distilled water at 37 °C for 1 day and thermocycled 5000 times. The shear bond strength (SBS) was measured at a crosshead speed of 1 mm/min. The data were analyzed by 1-way ANOVA, followed by the Tukey HSD test (α=.05). RESULTS: The 45-degree angulation printing group reported the highest Sa, followed by the CNT and the 90-degree and 0-degree angulations with significant difference between them (P<.001). The CNT showed the highest Sz, followed by the 45-degree, 90-degree, and 0-degree angulations. The mean ±standard deviation SBS was 28.73 ±5.82 MPa for the 90-degree, 28.21 ±10.69 MPa for the 45-degree, 26.21 ±11.19 MPa for the 0-degree angulations and 25.39 ±4.67 MPa for the CNT. However, no statistically significant difference was found in the SBS among the groups (P=.475). CONCLUSIONS: Printing orientation significantly impacted the surface roughness of 3D-printed resin for interim restorations. However, printing orientation did not significantly affect the bond strength with composite resin.


Assuntos
Colagem Dentária , Colagem Dentária/métodos , Teste de Materiais , Materiais Dentários/química , Resinas Compostas/química , Polimetil Metacrilato , Impressão Tridimensional , Propriedades de Superfície , Resistência ao Cisalhamento , Cimentos de Resina/química
8.
J Prosthet Dent ; 130(1): 108.e1-108.e6, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37210221

RESUMO

STATEMENT OF PROBLEM: The carbon digital light synthesis (DLS) or continuous liquid interface production (CLIP) technology is an innovative additive manufacturing technology using oxygen-inhibited photopolymerization to create a continuous liquid interface of unpolymerized resin between the growing component and the exposure window. This interface eliminates the need for an incremental layer-by-layer approach, allowing for continuous creation and increased printing speed. However, the internal and marginal discrepancies associated with this new technology remain unclear. PURPOSE: The purpose of this in vitro study was to evaluate the marginal and internal discrepancies by using the silicone replica technique of interim crowns fabricated by 3 different manufacturing technologies: direct light processing (DLP), DLS, and milling. MATERIAL AND METHODS: A mandibular first molar was prepared, and a crown was designed with a computer-aided design (CAD) software program. The standard tessellation language (STL) file was used to create 30 crowns from the DLP, DLS, milling technologies (n=10). The gap discrepancy was determined using the silicone replica approach, with 50 measurements made with a ×70 microscope for each specimen for the marginal and internal gaps. The data were analyzed using 1-way ANOVA, followed by the Tukey HSD post hoc test (α=.05). RESULTS: The DLS group had the least marginal discrepancy compared with the DLP and milling groups (P<.001). The DLP group showed the highest internal discrepancy followed by the DLS and milling groups (P=.038). No significant difference was found between DLS and milling in terms of internal discrepancy (P>.05). CONCLUSIONS: The manufacturing technique had a significant effect on both internal and marginal discrepancies. The DLS technology showed the smallest marginal discrepancies.


Assuntos
Adaptação Marginal Dentária , Planejamento de Prótese Dentária , Planejamento de Prótese Dentária/métodos , Coroas , Desenho Assistido por Computador , Silicones
9.
J Prosthet Dent ; 129(1): 166-173, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34119320

RESUMO

STATEMENT OF PROBLEM: Vat-polymerized casts can be designed with different bases, but the influence of the base design on the accuracy of the casts remains unclear. PURPOSE: The purpose of the present in vitro study was to evaluate the influence of various base designs (solid, honeycombed, and hollow) with 2 different wall thicknesses (1 mm and 2 mm) on the accuracy of vat-polymerized diagnostic casts. MATERIAL AND METHODS: A virtual maxillary cast was obtained and used to create 3 different base designs: solid (S group), honeycombed (HC group), and hollow (H group). The HC and H groups were further divided into 2 subgroups based on the wall thickness of the cast designed: 1 mm (HC-1 and H-1) and 2 mm (HC-2 and H-2) (N=50, n=10). All the specimens were manufactured with a vat-polymerized printer (Nexdent 5100) and a resin material (Nexdent Model Ortho). The linear and 3D discrepancies between the virtual cast and each specimen were measured with a coordinate measuring machine. Trueness was defined as the mean of the average absolute dimensional discrepancy between the virtual cast and the AM specimens and precision as the standard deviation of the dimensional discrepancies between the virtual cast and the AM specimens. The Kolmogorov-Smirnov and Shapiro-Wilk tests revealed that the data were not normally distributed. The data were analyzed with Kruskal-Wallis and Mann-Whitney U pairwise comparison tests (α=.05). RESULTS: The trueness ranged from 63.73 µm to 77.17 µm, and the precision ranged from 44.00 µm to 54.24 µm. The Kruskal-Wallis test revealed significant differences on the x- (P<.001), y- (P=.006), and z-axes (P<.001) and on the 3D discrepancy (P<.001). On the x-axis, the Mann-Whitney test revealed significant differences between the S and H-1 groups (P<.001), S and H-2 groups (P<.001), HC-1 and H-1 groups (P<.001), HC-1 and H-2 groups (P<.001), HC-2 and H-1 groups (P<.001), and HC-2 and H-2 groups (P<.001); on the y-axis, between the S and H-1 groups (P<.001), HC-1 and H-1 groups (P=.001), HC-1 and H-2 groups (P=.02), HC-2 and H-1 groups (P<.001), HC-2 and H-2 groups (P=.003); and on the z-axis, between the S and H-1 groups (P=.003). For the 3D discrepancy analysis, significant differences were found between the S and H-1 groups (P<.001), S and H-2 groups (P=.004), HC-1 and H-1 groups (P=.04), and HC-2 and H-1 groups (P=.002). CONCLUSIONS: The base designs tested influenced the manufacturing accuracy of the diagnostic casts fabricated with a vat-polymerization printer, with the solid and honeycombed bases providing the greatest accuracy. However, all the specimens were clinically acceptable.


Assuntos
Desenho Assistido por Computador , Maxila , Polimerização
10.
J Prosthodont ; 32(8): 721-727, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36401608

RESUMO

PURPOSE: The purpose of this in vitro study was to compare the flexural strength and Weibull characteristics of 3 different resin-ceramic materials with a zirconia-reinforced lithium silicate material after thermal-cycling. MATERIAL AND METHODS: Four different computer-aided design and computer-aided manufacturing restorative materials (Vita Enamic, Lava Ultimate, Crystal Ultra, and Vita Suprinity) were tested. A total of 40 Ø12×1.2-mm disks were prepared and divided into 4 groups (n = 10). Their flexural strength was evaluated after 5000 thermal-cycles with a 4-point biaxial flexure test using a universal testing machine. The Weibull modulus and probability of failure were also determined from the biaxial flexural strength data. Data were analyzed with one-way ANOVA and the Tukey pairwise comparison test (α = 0.05). RESULTS: Significant differences were found among the materials in terms of biaxial flexural strength (p < 0.05). Vita Suprinity had the highest mean ±standard deviation flexural strength (289.1 ± 15.1 MPa), and Vita Enamic had the lowest (100.0 ± 3.2 MPa). The highest Weibull modulus was calculated for Crystal Ultra, followed by Vita Enamic, Lava Ultimate, and Vita Suprinity. CONCLUSION: Vita Suprinity had the highest flexural strength when compared with the other materials tested. Crystal Ultra had the highest flexural strength among the resin-ceramic materials. The highest Weibull modulus was calculated for Crystal Ultra and the lowest for Vita Suprinity.


Assuntos
Cerâmica , Resistência à Flexão , Teste de Materiais , Propriedades de Superfície , Cerâmica/química , Materiais Dentários/química , Desenho Assistido por Computador , Porcelana Dentária/química
11.
J Prosthodont ; 32(1): 90-93, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36169659

RESUMO

Continuous innovation in digital dental technology offers new prospects for creating a complete virtual environment. The technique described adds a facial approach to the conventional digital workflow by incorporating 3D face scans to cone beam computed tomography and intraoral scans. Using this workflow, clinicians can obtain a complete virtual patient for facially generated diagnostic wax up and plan and implement a predictable implant placement and interim prosthesis. This technique provides a full digital workflow for restoratively-driven computer-aided implant planning, guided surgery, and 3D printing of an interim complete-arch fixed implant-supported prosthesis.


Assuntos
Implantes Dentários , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Desenho Assistido por Computador , Prótese Dentária Fixada por Implante/métodos , Implantação Dentária Endóssea/métodos , Tomografia Computadorizada de Feixe Cônico/métodos
12.
J Prosthodont ; 32(4): 331-339, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35524587

RESUMO

PURPOSE: To measure the influence of best-fit (BF) algorithms (entire dataset, 3 or 6 points landmark-based, or section-based BF) on virtual casts and their alignment discrepancies. MATERIAL AND METHODS: A mandibular typodont was obtained and digitized by using an industrial scanner (GOM Atos Q 3D 12M). A control mesh was acquired. The typodont was digitized by using an intraoral scanner (TRIOS 4). Based on the alignment procedures, four groups were created: BF of the entire dataset (BF group), landmark-based BF using 3 reference points (LBF-3 group), or 6 reference points (LBF-6 group), and section-based BF (SBF group). The root mean square (RMS) error was calculated. One-way ANOVA and post hoc pairwise multi-comparison Tukey were used to analyze the data (α = 0.05). RESULTS: Significant RMS error mean value differences were found across the groups (p < 0.001). Tukey test revealed significant RMS error mean value differences between the BF and LBF-3 groups (p = 0.022), BF and LBF-6 groups (p < 0.001), LB-3 and LB-6 groups (p < 0.001), LBF-3 and SBF groups (p < 0.001), and LBF-6 and SBF groups (p < 0.001). The LBF-6 group had the lowest trueness, while SBF and BF groups obtained the highest trueness values. Furthermore, significant SD differences were revealed across the groups tested (p < 0.001). Tukey test revealed significant SD differences between the BF and LBF-6 groups (p < 0.001), LBF-3 and LB-6 groups (p < 0.001), LBF-3 and SBF groups (p = 0.004), and LBF-6 and SBF groups (p < 0.001). The BF and SBF groups showed equal and highest precision, while the LBF-6 group had the lowest precision. CONCLUSIONS: The best-fit algorithms tested influenced the virtual casts' alignment discrepancy. Entire dataset or section-based best-fit algorithms obtained the highest virtual casts' alignment trueness and precision compared with the landmark-based method.


Assuntos
Desenho Assistido por Computador , Técnica de Moldagem Odontológica , Modelos Dentários , Algoritmos , Análise de Variância , Imageamento Tridimensional
13.
Clin Oral Investig ; 26(4): 3547-3561, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34859327

RESUMO

OBJECTIVE: The aim of this study was to assess the influence of different silicatization protocols with various silane treatment methods on the bond performance to high-translucent zirconia. MATERIALS AND METHODS: High-translucent zirconia specimens were assigned to five groups according to mechanical surface pretreatment: as-sintered (Con), 0.2 MPa alumina sandblasting (AB2), tribochemical silica coating (TSC), 0.2 and 0.4 MPa glass bead air abrasion (GB2) and (GB4). Each group was subjected to 4 different cementation protocols: Panavia SA Universal (SAU), Panavia SA plus (SAP), silane + SAP (S-SAP), and Universal adhesive + SAP (U-SAP). Tensile bond strength (TBS) was measured after 24 h and 10,000 thermocycling (TC). Surface topography, surface energy, and elemental composition of the abraded zirconia surface analyses were completed. TBS data was analyzed using the Weibull analysis method. Surface roughness and surface energy were compared by one-way ANOVA analysis of variance (α = 0.05). RESULTS: After 24 h, higher TBS was achieved with all cementation protocols in AB2 and TSC, also, in GB2 with all protocols except U-SAP, and in GB4 with SAU and S-SAP. After aging, GB4/S-SAP, GB2/S-SAP, AB2/U-SAP, and TSC/S-SAP showed the highest bond strength. GB groups showed the lowest surface roughness and highest surface energy. CONCLUSION: Glass bead abrasion achieved the durable bond strength to high-translucent zirconia using a separate silane coupling agent while altered surface chemistry, surface energy, and roughness without effect on morphology. CLINICAL RELEVANCE: Glass bead air abrasion is an alternative to alumina sandblasting and tribochemical silica coating and improves bond strength to high translucent zirconia.


Assuntos
Colagem Dentária , Cimentos de Resina , Abrasão Dental por Ar , Óxido de Alumínio/química , Cerâmica , Colagem Dentária/métodos , Análise do Estresse Dentário , Teste de Materiais , Cimentos de Resina/química , Dióxido de Silício/química , Propriedades de Superfície , Zircônio/química
14.
J Prosthet Dent ; 127(6): 911-917, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33541817

RESUMO

STATEMENT OF PROBLEM: Computer-aided design (CAD) software can merge the intraoral digital scan with patient photographs or 3-dimensional (3D) facial reconstructions for treatment planning purposes. However, whether an individual perceives a 3D facial reconstruction as a better self-representation compared with a 2-dimensional (2D) photograph is unclear. PURPOSE: The purpose of this observational study was to compare self-perception ratings and self-representation preference of the 2D and 3D facial reconstructions among laypersons, dental students, and dentists. MATERIAL AND METHODS: Three populations participated in the study: laypersons, dental students, and dentists (n=20, N=60). Facial and intraoral features were digitized by using facial and intraoral scanners, and a complete-face smile photograph was obtained. Two simulations were performed for each participant: 2D (2D group) and 3D (3D group) reconstructions. In the 2D group, a maxillary digital veneer waxing from the left to the right second premolars was produced without altering the shape, position, or length of the involved teeth. A software program (Dental Systems; 3Shape A/S) was used to merge the maxillary digital waxing with the full-face smile photograph. One image was obtained for each participant. In the 3D group, a dental software program (Matera 2.4; exocad GmbH) was used to merge the intraoral and facial scans. Subsequently, 1 video of a 180-degree rotation of each 3D superimposition was obtained. Participants evaluated both superimpositions on a scale from 1 (least esthetically pleasing) to 6 (most esthetically pleasing). Finally, participants were asked which superimposition they preferred for a potential treatment outcome representation. RESULTS: All the ratings were esthetically pleasing (median group rating 5 or 6). When analyzed solely for differences across occupation groups, ratings for the 2D representation varied significantly across populations (Kruskal-Wallis chi-squared=13.241, df=2, P=.001), but the ratings for the 3D representation did not exhibit statistically significant differences (Kruskal-Wallis chi-squared=4.3756, df=2, P=.112). Ordinal logistic regression revealed no significant main effects but a significant effect of the population×image-type interaction on the esthetic rating. All participants felt well-represented in both the 2D and 3D representations. Also, 40% of dentists, 55% of dental students, and 50% of laypersons preferred the 3D reconstructions. Sex and occupation in general had no effect on the ratings. However, students tended to give higher ratings to the 3D representations of themselves. CONCLUSIONS: There is no evidence based on the current study that 2D and 3D representations were perceived differently, but representation preferences may depend on a person's occupation. When individuals rated 3D visualization higher than 2D visualization, they strongly preferred the 3D visualization for representing the treatment outcome.


Assuntos
Odontólogos , Estética Dentária , Humanos , Autoimagem , Sorriso , Estudantes de Odontologia
15.
J Prosthet Dent ; 128(6): 1179-1183, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33933270

RESUMO

A complete-arch implant-supported interim prosthesis was fabricated from a cone beam computed tomography digital scan of the implant abutments for a patient with primordial dwarfism. The patient presented with limited mouth opening, which hindered the use of a conventional impression technique. The described technique provided an alternative digital procedure to obtain a virtual implant definitive cast.


Assuntos
Implantes Dentários , Nanismo , Humanos , Prótese Dentária Fixada por Implante , Tomografia Computadorizada de Feixe Cônico , Desenho Assistido por Computador , Técnica de Moldagem Odontológica
16.
J Prosthet Dent ; 128(2): 211-215, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33573829

RESUMO

STATEMENT OF PROBLEM: When compared with subtractive fabricating methods, additive manufacturing (AM) technologies are capable of fabricating complex geometries with different material porosities. However, the manufacturing accuracy and shrinkage of the stereolithography (SLA) AM zirconia with different porosities are unclear. PURPOSE: The purpose of this in vitro study was to measure the manufacturing accuracy and volumetric changes of AM zirconia specimens with porosities of 0%, 20%, and 40%. MATERIAL AND METHODS: A digital design of a bar (25×4×3 mm) was obtained by using an open-source software program (Blender, version 2.77a; The Blender Foundation). The standard tessellation language (STL) file was exported. Three groups were created based on the material porosity: 0% porosity (0% group), 20% porosity (20% group), and 40% porosity (40% group). The STL was used to manufacture all the specimens by using an SLA ceramic printer (CeraMaker 900; 3DCeram Co) and zirconia material (3DMix ZrO2 paste; 3DCeram Co) (n=20). After manufacturing, the specimens were cleaned of the green parts by using a semiautomated cleaning station. Subsequently, debinding procedures was completed in a furnace at 600 °C. The sintering procedures varied among the groups to achieve different porosities. For the 0% group, the ZrO2 was sintered in a furnace at 1450 °C, and for the 20% and 40% groups, the sintering temperature varied between 1450 °C and 1225 °C. The specimen dimensions (length, width, and height) were measured 3 times with digital calipers, and the mean value was determined. The manufacturing volume shrinkage (%) was calculated by using the digital design of the bar and the achieved AM dimensions of the specimens. The Shapiro-Wilk test revealed that the data were not normally distributed. Therefore, the data were analyzed by using the Kruskal-Wallis followed by pairwise Mann-Whitney U tests (α=.05). RESULTS: The Kruskal-Wallis test demonstrated significant differences among the groups in length, width, and height (P<.001). The Mann-Whitney U test indicated significant differences in pairwise comparisons of length, width, and height among the 3 groups (P<.001). The 0% group obtained a median ±interquartile range values of 20.92 ±0.14 mm in length, 3.43 ±0.07 mm in width, and 2.39 ±0.03 mm in height; the 20% group obtained 22.81 ±0.29 mm in length, 3.74 ±0.07 mm in width, and 2.62 ±0.05 mm in height; and the 40% group presented 25.11 ±0.13 mm in length, 4.14 ±0.08 mm in width, and 2.96 ±0.02 mm in height. Significant differences in manufacturing volumetric changes were encountered among the 3 groups (P<.001). In all groups, volumetric changes in the length, width, and height were not uniform, being higher in the z-axis direction compared with the x- and y-axis. The manufacturing volumetric changes varied from -20.33 ±1.00% to +3.5 ±2.00%. CONCLUSIONS: The 40%-porosity group obtained the highest manufacturing accuracy and the lowest manufacturing volume change, followed by the 20%-porosity and the 0%-porosity groups. An uneven manufacturing volume change in the x-, y-, and z-axis was observed. However, none of the groups tested were able to perfectly match the virtual design of the specimens.


Assuntos
Desenho Assistido por Computador , Estereolitografia , Porosidade , Zircônio
17.
J Prosthet Dent ; 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35803763

RESUMO

A novel way to use the patient's existing ceramic crown from a nonrestorable maxillary anterior tooth as part of the interim restoration after extraction is described. The crown was fixed intraorally with a digitally designed and 3D-printed resin-bonded fixed dental prosthesis framework in its pre-extraction position. The procedure maintained esthetics, optimized soft-tissue management, and provided a fixed prosthesis before implant placement in the esthetic zone.

18.
J Prosthet Dent ; 127(2): 219-222, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33423818

RESUMO

A complete digital workflow to remove a cement-retained implant-supported crown by using an additively manufactured implant abutment screw-access guide is described. The existing cone beam computed tomography (CBCT) scan was superimposed on the digital scans of the patient, which facilitated the visualization of the implant abutment screw access and guided the design of the device. Advantages of the technique described include the precise translation of the implant abutment screw access, safe removal of the implant crown, and conservative clinical intervention.


Assuntos
Projeto do Implante Dentário-Pivô , Implantes Dentários , Parafusos Ósseos , Coroas , Dente Suporte , Projeto do Implante Dentário-Pivô/métodos , Prótese Dentária Fixada por Implante/métodos , Humanos
19.
J Prosthet Dent ; 128(5): 984-993, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33838919

RESUMO

STATEMENT OF PROBLEM: A patient 3-dimensional virtual representation aims to facilitate the integration of facial references into treatment planning or prosthesis design procedures, but the accuracy of the virtual patient representation remains unclear. PURPOSE: The purpose of the present observational clinical study was to determine and compare the accuracy (trueness and precision) of a virtual patient obtained from the superimposition procedures of facial and intraoral digital scans guided by 2 scan body systems. MATERIAL AND METHODS: Ten participants were recruited. An intraoral digital scan was completed (TRIOS 4). Four fiduciary markers were placed in the glabella (Gb), left (IOL) and right infraorbital canal (IOR), and tip of the nose (TN). Two digitizing procedures were completed: cone beam computed tomography (CBCT) (i-CAT FLX V-Series) and facial scans (Face Camera Pro Bellus) with 2 different scan body systems: AFT (ScanBodyFace) and Sat 3D (Sat 3D). For the AFT system, a reference facial scan was obtained, followed by a facial scan with the participant in the same position as when capturing the CBCT scan. For the Sat 3D system, a reference facial scan was recorded, followed by a facial scan with the patient in the same position as when capturing the CBCT scan. The patient 3-dimensional representation for each scan body system was obtained by using a computer program (Matera 2.4). A total of 14 interlandmark distances were measured in the CBCT scan and both 3-dimensional patient representations. The discrepancies between the CBCT scan (considered the standard) and each 3-dimensional representation of each patient were used to analyze the data. The Kolmogorov-Smirnov test revealed that trueness and precision values were not normally distributed (P<.05). A log10 transformation was performed with 1-way repeated-measures MANOVA (α=.05). RESULTS: The accuracy of the virtual 3-dimensional patient representations obtained by using AFT and Sat 3D systems showed a trueness ranging from 0.50 to 1.64 mm and a precision ranging from 0.04 to 0.14 mm. The Wilks lambda detected an overall significant difference in the accuracy values between the AFT and Sat 3D systems (F=3628.041, df=14, P<.001). A significant difference was found in 12 of the 14 interlandmark measurements (P<.05). The AFT system presented significantly higher discrepancy values in Gb-IOL, TN-IOR, IOL-IOR, and TN-6 (P<.05) than in the Sat 3D system. The Sat 3D system had a significantly higher discrepancy in Gb-TN, TN-IOL, IOL-3, IOL-6, TN-8, TN-9, TN-11, IOR-11, and IOR-14 (P<.05) than in the AFT system. The Wilcoxon signed-rank test did not detect any significant difference in the precision values between the AFT and Sat 3D systems (Z=-0.838, P=.402). CONCLUSIONS: The accuracy of the patient 3-dimensional virtual representations obtained using AFT and Sat 3D systems showed trueness values ranging from 0.50 to 1.64 mm and precision values ranging from 0.04 to 0.14 mm. The AFT system obtained higher trueness than the Sat 3D system, but both systems showed similar precision values.


Assuntos
Desenho Assistido por Computador , Modelos Dentários , Humanos , Imageamento Tridimensional/métodos , Maxila/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico , Técnica de Moldagem Odontológica
20.
J Prosthodont ; 31(7): 623-628, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34890485

RESUMO

PURPOSE: To evaluate the bond strength of three monolithic hybrid ceramics/resin nanoceramics and a zirconia-reinforced lithium silicate to resin cement after thermocycling. MATERIALS AND METHODS: Using four materials, including Vita Enamic (VITA Zahnfabrik), Lava Ultimate (3M ESPE), Crystal Ultra (Digital Dental), and Vita Suprinity (VITA Zahnfabrik), 64 specimens were prepared with dimensions of 4 mm × 3 mm × 1.5 mm. Vita Suprinity samples were sintered at 840°C for 8 min. After polishing and cleaning all the samples in each group (n = 16), they were subjected to their recommended surface treatment: 10% hydrofluoric acid for Vita Enamic (60s) and Vita Suprinity (20s); air abrasion of Lava Ultimate and Crystal Ultra with 50 u Al2 O3 particles. Then, tygon tubes were filled with dual cure resin cement (Panavia F2.0), cured and then subjected to thermal cycling (2000 cycles; 5-55°C). The microshear bond strength was measured using microtensile testing machine. The data were analyzed using Welch and Games-Howell tests (α = 0.05). The mode of failure was also evaluated using a stereomicroscope. RESULTS: The highest and the lowest mean microshear bond strength belonged to the Crystal Ultra (7.71 ± 1.54 MPa) and Vita Suprinity (4.73 ± 1.87 MPa) groups, respectively. The differences between groups were significant and Crystal Ultra had higher bond strength in comparison to all three materials (p < 0.05). CONCLUSION: Hybrid ceramics showed higher bond strength to resin cements in comparison to resin nanoceramics and zirconia-reinforced lithium silicate materials.


Assuntos
Colagem Dentária , Porcelana Dentária , Abrasão Dental por Ar , Cerâmica/química , Desenho Assistido por Computador , Porcelana Dentária/química , Análise do Estresse Dentário , Lítio , Teste de Materiais , Polímeros , Cimentos de Resina/química , Silicatos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa