Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 35(2): 808-826, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36454674

RESUMO

The carbon efficiency of storage lipid biosynthesis from imported sucrose in green Brassicaceae seeds is proposed to be enhanced by the PRK/Rubisco shunt, in which ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts outside the context of the Calvin-Benson-Bassham cycle to recycle CO2 molecules released during fatty acid synthesis. This pathway utilizes metabolites generated by the nonoxidative steps of the pentose phosphate pathway. Photosynthesis provides energy for reactions such as the phosphorylation of ribulose 5-phosphate by phosphoribulokinase (PRK). Here, we show that loss of PRK in Arabidopsis thaliana (Arabidopsis) blocks photoautotrophic growth and is seedling-lethal. However, seeds containing prk embryos develop normally, allowing us to use genetics to assess the importance of the PRK/Rubisco shunt. Compared with nonmutant siblings, prk embryos produce one-third less lipids-a greater reduction than expected from simply blocking the proposed PRK/Rubisco shunt. However, developing prk seeds are also chlorotic and have elevated starch contents compared with their siblings, indicative of secondary effects. Overexpressing PRK did not increase embryo lipid content, but metabolite profiling suggested that Rubisco activity becomes limiting. Overall, our findings show that the PRK/Rubisco shunt is tightly integrated into the carbon metabolism of green Arabidopsis seeds, and that its manipulation affects seed glycolysis, starch metabolism, and photosynthesis.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Carbono/metabolismo , Fotossíntese/genética , Sementes/genética , Sementes/metabolismo , Amido/metabolismo , Lipídeos
2.
Plant Cell ; 29(7): 1657-1677, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28684429

RESUMO

The molecular mechanism that initiates the synthesis of starch granules is poorly understood. Here, we discovered two plastidial proteins involved in granule initiation in Arabidopsis thaliana leaves. Both contain coiled coils and a family-48 carbohydrate binding module (CBM48) and are homologs of the PROTEIN TARGETING TO STARCH (PTST) protein; thus, we named them PTST2 and PTST3. Chloroplasts in mesophyll cells typically contain five to seven granules, but remarkably, most chloroplasts in ptst2 mutants contained zero or one large granule. Chloroplasts in ptst3 had a slight reduction in granule number compared with the wild type, while those of the ptst2 ptst3 double mutant contained even fewer granules than ptst2 The ptst2 granules were larger but similar in morphology to wild-type granules, but those of the double mutant had an aberrant morphology. Immunoprecipitation showed that PTST2 interacts with STARCH SYNTHASE4 (SS4), which influences granule initiation and morphology. Overexpression of PTST2 resulted in chloroplasts containing many small granules, an effect that was dependent on the presence of SS4. Furthermore, isothermal titration calorimetry revealed that the CBM48 domain of PTST2, which is essential for its function, interacts with long maltooligosaccharides. We propose that PTST2 and PTST3 are critical during granule initiation, as they bind and deliver suitable maltooligosaccharide primers to SS4.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Amido/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Isoamilase/metabolismo , Mutação , Filogenia , Plantas Geneticamente Modificadas , Amido/genética , Sintase do Amido/genética , Sintase do Amido/metabolismo
3.
J Exp Bot ; 67(6): 1819-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26792489

RESUMO

During photosynthesis of higher plants, absorbed light energy is converted into chemical energy that, in part, is accumulated in the form of transitory starch within chloroplasts. In the following night, transitory starch is mobilized to sustain the heterotrophic metabolism of the plant. ß-amylases are glucan hydrolases that cleave α-1,4-glycosidic bonds of starch and release maltose units from the non-reducing end of the polysaccharide chain. In Arabidopsis, nocturnal degradation of transitory starch involves mainly ß-amylase-3 (BAM3). A second ß-amylase isoform, ß-amylase-1 (BAM1), is involved in diurnal starch degradation in guard cells, a process that sustains stomata opening. However, BAM1 also contributes to diurnal starch turnover in mesophyll cells under osmotic stress. With the aim of dissecting the role of ß-amylases in osmotic stress responses in Arabidopsis, mutant plants lacking either BAM1 or BAM3 were subject to a mild (150mM mannitol) and prolonged (up to one week) osmotic stress. We show here that leaves of osmotically-stressed bam1 plants accumulated more starch and fewer soluble sugars than both wild-type and bam3 plants during the day. Moreover, bam1 mutants were impaired in proline accumulation and suffered from stronger lipid peroxidation, compared with both wild-type and bam3 plants. Taken together, these data strongly suggest that carbon skeletons deriving from BAM1 diurnal degradation of transitory starch support the biosynthesis of proline required to face the osmotic stress. We propose the transitory-starch/proline interplay as an interesting trait to be tackled by breeding technologies aimingto improve drought tolerance in relevant crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Secas , Prolina/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Amido/metabolismo , Estresse Fisiológico , Arabidopsis/genética , Luz , Peroxidação de Lipídeos/efeitos da radiação , Pressão Osmótica/efeitos da radiação , Transpiração Vegetal/fisiologia , Transpiração Vegetal/efeitos da radiação , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Regiões Promotoras Genéticas/genética , Solubilidade , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação
4.
J Hazard Mater ; 477: 135269, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39068881

RESUMO

Perfluoroalkyl substances (PFAS) are common environmental pollutants, but their toxicity framework remains elusive. This research focused on ten PFAS, evaluating their impacts on two ecotoxicologically relevant model organisms from distinct trophic levels: the crustacean Daphnia magna and the unicellular green alga Raphidocelis subcapitata. The results showed a greater sensitivity of R. subcapitata compared to D. magna. However, a 10-day follow-up to the 48 h immobilisation test in D. magna showed delayed mortality, underlining the limitations of relying on EC50 s from standard acute toxicity tests. Among the compounds scrutinized, Perfluorodecanoic acid (PFDA) was the most toxic to R. subcapitata, succeeded by Perfluorooctane sulfonate (PFOS), Perfluorobutanoic acid (PFBA), and Perfluorononanoic acid (PFNA), with the latter being the only one to show an algicidal effect. In the same species, assessment of binary mixtures of the compounds that demonstrated high toxicity in the single evaluation revealed either additive or antagonistic interactions. Remarkably, with an EC50 of 31 mg L-1, the short-chain compound PFBA, tested individually, exhibited toxicity levels akin to the notorious long-chain PFOS, and its harm to freshwater ecosystems cannot be ruled out. Despite mounting toxicological evidence and escalating environmental concentrations, PFBA has received little scientific attention and regulatory stewardship. It is strongly advisable that regulators re-evaluate its use to mitigate potential risks to the environmental and human health.


Assuntos
Ácidos Alcanossulfônicos , Daphnia , Fluorocarbonos , Água Doce , Poluentes Químicos da Água , Fluorocarbonos/toxicidade , Daphnia/efeitos dos fármacos , Animais , Poluentes Químicos da Água/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Ecossistema , Ácidos Decanoicos/toxicidade , Ácidos Graxos , Testes de Toxicidade , Ácidos Sulfônicos
5.
Pain ; 163(9): 1800-1811, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35239546

RESUMO

ABSTRACT: Defined by dysfunction or degeneration of Aδ and C fibers, small fiber neuropathies (SFNs) entail a relevant health burden. In 50% of cases, the underlying cause cannot be identified or treated. In 100 individuals (70% female individuals; mean age: 44.8 years) with an idiopathic, skin biopsy-confirmed SFN, we characterized the symptomatic spectrum and measured markers of oxidative stress (vitamin C, selenium, and glutathione) and inflammation (transforming growth factor beta, tumor necrosis factor alpha), as well as neurotoxic 1-deoxy-sphingolipids. Neuropathic pain was the most abundant symptom (95%) and cause of daily life impairment (72%). Despite the common use of pain killers (64%), the painDETECT questionnaire revealed scores above 13 points in 80% of patients. In the quantitative sensory testing (QST), a dysfunction of Aδ fibers was observed in 70% and of C fibers in 44%, affecting the face, hands, or feet. Despite normal nerve conduction studies, QST revealed Aß fiber involvement in 46% of patients' test areas. Despite absence of diabetes mellitus or mutations in SPTLC1 or SPTLC2 , plasma 1-deoxy-sphingolipids were significantly higher in the sensory loss patient cluster when compared with those in patients with thermal hyperalgesia ( P < 0.01) or those in the healthy category ( P < 0.1), correlating inversely with the intraepidermal nerve fiber density (1-deoxy-SA: P < 0.05, 1-deoxy-SO: P < 0.01). Patients with arterial hypertension, overweight (body mass index > 25 kg/m 2 ), or hyperlipidemia showed significantly lower L-serine (arterial hypertension: P < 0.01) and higher 1-deoxy-sphingolipid levels (arterial hypertension: P < 0.001, overweight: P < 0.001, hyperlipidemia: P < 0.01). Lower vitamin C levels correlated with functional Aß involvement ( P < 0.05). Reduced glutathione was lower in patients with Aδ dysfunction ( P < 0.05). Idiopathic SFNs are heterogeneous. As a new pathomechanism, plasma 1-deoxy-sphingolipids might link the metabolic syndrome with small fiber degeneration.


Assuntos
Hipertensão , Neuropatia de Pequenas Fibras , Adulto , Ácido Ascórbico , Feminino , Humanos , Masculino , Sobrepeso/patologia , Estresse Oxidativo , Pele/inervação , Esfingolipídeos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa