Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
STAR Protoc ; 3(4): 101683, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36116075

RESUMO

Epithelial folding is a fundamental process where initially flat monolayers transform into functional 3D structures. This protocol details fabrication steps for a polycarbonate microfluidic platform which enables triggering epithelial folds that recapitulate stereotypical cell shape changes and folding-associated mechanical stresses. We describe the steps for cell seeding to form a monolayer on the chip, and subsequent approach to trigger calcium waves in the epithelial monolayer through local epithelial deformation. Lastly, we outline quantitative analysis steps of the epithelial response. For complete details on the use and execution of this protocol, please refer to Blonski et al. (2021).


Assuntos
Sinalização do Cálcio , Cálcio , Microfluídica , Forma Celular , Estresse Mecânico
2.
Blood Adv ; 6(18): 5415-5428, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35736672

RESUMO

Stored red blood cells (RBCs) incur biochemical and morphological changes, collectively termed the storage lesion. Functionally, the storage lesion manifests as slower oxygen unloading from RBCs, which may compromise the efficacy of transfusions where the clinical imperative is to rapidly boost oxygen delivery to tissues. Recent analysis of large real-world data linked longer storage with increased recipient mortality. Biochemical rejuvenation with a formulation of adenosine, inosine, and pyruvate can restore gas-handling properties, but its implementation is impractical for most clinical scenarios. We tested whether storage under hypoxia, previously shown to slow biochemical degradation, also preserves gas-handling properties of RBCs. A microfluidic chamber, designed to rapidly switch between oxygenated and anoxic superfusates, was used for single-cell oxygen saturation imaging on samples stored for up to 49 days. Aliquots were also analyzed flow cytometrically for side-scatter (a proposed proxy of O2 unloading kinetics), metabolomics, lipidomics, and redox proteomics. For benchmarking, units were biochemically rejuvenated at 4 weeks of standard storage. Hypoxic storage hastened O2 unloading in units stored to 35 days, an effect that correlated with side-scatter but was not linked to posttranslational modifications of hemoglobin. Although hypoxic storage and rejuvenation produced distinct biochemical changes, a subset of metabolites including pyruvate, sedoheptulose 1-phosphate, and 2/3 phospho-d-glycerate, was a common signature that correlated with changes in O2 unloading. Correlations between gas handling and lipidomic changes were modest. Thus, hypoxic storage of RBCs preserves key metabolic pathways and O2 exchange properties, thereby improving the functional quality of blood products and potentially influencing transfusion outcomes.


Assuntos
Preservação de Sangue , Oxigênio , Adenosina/metabolismo , Preservação de Sangue/métodos , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Humanos , Hipóxia/metabolismo , Inosina/metabolismo , Oxigênio/metabolismo , Fosfatos/metabolismo , Piruvatos/metabolismo
3.
Lab Chip ; 21(9): 1771-1778, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710202

RESUMO

Here, we show the successful implementation of advanced sequential logic in droplet microfluidics, whose principles rely on capillary wells establishing stationary states, where droplets can communicate remotely via pressure impulses, influencing each other and switching the device states. All logic operations perform spontaneously due to the utilization of nothing more than capillary-hydrodynamic interactions, inherent for the confined biphasic flow. Our approach offers integration feasibility allowing to encode unprecedentedly long algorithms, e.g., 1000-droplet counting. This work has the potential for the advancement of liquid computers and thereby could participate in the development of the next generation of portable microfluidic systems with embedded control, enabling applications from single-cell analysis and biochemical assays to materials science.

4.
Dev Cell ; 56(23): 3222-3234.e6, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34875225

RESUMO

Cell shape dynamics during development is tightly regulated and coordinated with cell fate determination. Triggered by an interplay between biochemical and mechanical signals, epithelia form complex tissues by undergoing coordinated cell shape changes, but how such spatiotemporal coordination is controlled remains an open question. To dissect biochemical signaling from purely mechanical cues, we developed a microfluidic system that experimentally triggers epithelial folding to recapitulate stereotypic deformations observed in vivo. Using this system, we observe that the apical or basal direction of folding results in strikingly different mechanical states at the fold boundary, where the balance between tissue tension and torque (arising from the imposed curvature) controls the spread of folding-induced calcium waves at a short timescale and induces spatial patterns of gene expression at longer timescales. Our work uncovers that folding-associated gradients of cell shape and their resulting mechanical stresses direct spatially distinct biochemical responses within the monolayer.


Assuntos
Forma Celular , Elasticidade , Células Epiteliais/química , Modelos Biológicos , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Cães , Células Madin Darby de Rim Canino
5.
Nat Commun ; 10(1): 2528, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175303

RESUMO

While shear emulsification is a well understood industrial process, geometrical confinement in microfluidic systems introduces fascinating complexity, so far prohibiting complete understanding of droplet formation. The size of confined droplets is controlled by the ratio between shear and capillary forces when both are of the same order, in a regime known as jetting, while being surprisingly insensitive to this ratio when shear is orders of magnitude smaller than capillary forces, in a regime known as squeezing. Here, we reveal that further reduction of-already negligibly small-shear unexpectedly re-introduces the dependence of droplet size on shear/capillary-force ratio. For the first time we formally account for the flow around forming droplets, to predict and discover experimentally an additional regime-leaking. Our model predicts droplet size and characterizes the transitions from leaking into squeezing and from squeezing into jetting, unifying the description for confined droplet generation, and offering a practical guide for applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa