Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 15(6): e2002711, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28650960

RESUMO

Necroptosis is a regulated, nonapoptotic form of cell death initiated by receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL) proteins. It is considered to be a form of regulated necrosis, and, by lacking the "find me" and "eat me" signals that are a feature of apoptosis, necroptosis is considered to be inflammatory. One such "eat me" signal observed during apoptosis is the exposure of phosphatidylserine (PS) on the outer plasma membrane. Here, we demonstrate that necroptotic cells also expose PS after phosphorylated mixed lineage kinase-like (pMLKL) translocation to the membrane. Necroptotic cells that expose PS release extracellular vesicles containing proteins and pMLKL to their surroundings. Furthermore, inhibition of pMLKL after PS exposure can reverse the process of necroptosis and restore cell viability. Finally, externalization of PS by necroptotic cells drives recognition and phagocytosis, and this may limit the inflammatory response to this nonapoptotic form of cell death. The exposure of PS to the outer membrane and to extracellular vesicles is therefore a feature of necroptotic cell death and may serve to provide an immunologically-silent window by generating specific "find me" and "eat me" signals.


Assuntos
Membrana Celular/metabolismo , Necrose/metabolismo , Fagocitose , Fosfatidilserinas/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/imunologia , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Necrose/imunologia , Necrose/patologia , Necrose/prevenção & controle , Fagocitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Propriedades de Superfície/efeitos dos fármacos
2.
Cell Death Dis ; 12(11): 1059, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750357

RESUMO

Necroptosis is a regulated and inflammatory form of cell death. We, and others, have previously reported that necroptotic cells release extracellular vesicles (EVs). We have found that necroptotic EVs are loaded with proteins, including the phosphorylated form of the key necroptosis-executing factor, mixed lineage kinase domain-like kinase (MLKL). However, neither the exact protein composition, nor the impact, of necroptotic EVs have been delineated. To characterize their content, EVs from necroptotic and untreated U937 cells were isolated and analyzed by mass spectrometry-based proteomics. A total of 3337 proteins were identified, sharing a high degree of similarity with exosome proteome databases, and clearly distinguishing necroptotic and control EVs. A total of 352 proteins were significantly upregulated in the necroptotic EVs. Among these were MLKL and caspase-8, as validated by immunoblot. Components of the ESCRTIII machinery and inflammatory signaling were also upregulated in the necroptotic EVs, as well as currently unreported components of vesicle formation and transport, and necroptotic signaling pathways. Moreover, we found that necroptotic EVs can be phagocytosed by macrophages to modulate cytokine and chemokine secretion. Finally, we uncovered that necroptotic EVs contain tumor neoantigens, and are enriched with components of antigen processing and presentation. In summary, our study reveals a new layer of regulation during the early stage of necroptosis, mediated by the secretion of specific EVs that influences the microenvironment and may instigate innate and adaptive immune responses. This study sheds light on new potential players in necroptotic signaling and its related EVs, and uncovers the functional tasks accomplished by the cargo of these necroptotic EVs.


Assuntos
Morte Celular/imunologia , Vesículas Extracelulares/metabolismo , Imunidade/imunologia , Necroptose/imunologia , Proteômica/métodos , Humanos
3.
FEBS J ; 286(3): 507-522, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30576068

RESUMO

Interleukin-33 (IL-33) is a pro-inflammatory cytokine that plays a significant role in inflammatory diseases by activating immune cells to induce type 2 immune responses upon its release. Although IL-33 is known to be released during tissue damage, its exact release mechanism is not yet fully understood. Previously, we have shown that cleaved IL-33 can be detected in the plasma and epithelium of Ripk1-/- neonates, which succumb to systemic inflammation driven by spontaneous receptor-interacting protein kinase-3 (RIPK3)-dependent necroptotic cell death, shortly after birth. Thus, we hypothesized that necroptosis, a RIPK3/mixed lineage kinase-like protein (MLKL)-dependent, caspase-independent cell death pathway controls IL-33 release. Here, we show that necroptosis directly induces the release of nuclear IL-33 in its full-length form. Unlike the necroptosis executioner protein, MLKL, which was released in its active phosphorylated form in extracellular vesicles, IL-33 was released directly into the supernatant. Importantly, full-length IL-33 released in response to necroptosis was found to be bioactive, as it was able to activate basophils and eosinophils. Finally, the human and murine necroptosis inhibitor, GW806742X, blocked necroptosis and IL-33 release in vitro and reduced eosinophilia in Aspergillus fumigatus extract-induced asthma in vivo, an allergic inflammation model that is highly dependent on IL-33. Collectively, these data establish for the first time, necroptosis as a direct mechanism for IL-33 release, a finding that may have major implications in type 2 immune responses.


Assuntos
Apoptose/imunologia , Asma/imunologia , Interleucina-33/imunologia , Necrose/imunologia , Proteínas Quinases/imunologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Aspergillus fumigatus/química , Aspergillus fumigatus/imunologia , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/genética , Basófilos/efeitos dos fármacos , Basófilos/imunologia , Basófilos/patologia , Linhagem Celular , Misturas Complexas/administração & dosagem , Misturas Complexas/química , Misturas Complexas/imunologia , Modelos Animais de Doenças , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/patologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Interleucina-33/genética , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Necrose/genética , Necrose/patologia , Necrose/prevenção & controle , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Transdução de Sinais
4.
Methods Mol Biol ; 1857: 35-51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30136228

RESUMO

Apoptosis was the first programmed cell death to be defined-highly regulated and immunologically silent, as apoptotic bodies are being removed without triggering inflammation. Few decades later, necroptosis was discovered-uniquely regulated but inflammatory. As these two programmed cell death pathways may be initiated via similar pathways (death receptors and intracellular receptors) while being differently regulated and resulting in distinctive physiological consequences, the need for distinguishing apoptosis from necroptosis is required. Here we describe a series of distinguishing assays that use apoptotic- and necroptotic-distinct response to pharmacological interventions with specific death inhibitors, morphology and death-specific proteins involvement. The procedure includes cell death kinetics assessment and morphology monitoring of stimulated and pharmacologically treated-cells using flow cytometry and live imaging, with the detection of death-specific proteins using Immunoblot. The procedure described here is simple and thus can be adjusted to various experimental systems, enabling apoptosis to be distinguished from necroptosis in one's system of interest, without the need for more complex reagents such as genetic knockout models.


Assuntos
Apoptose , Inflamação/patologia , Necrose , Animais , Caspases/metabolismo , Humanos , Inflamação/etiologia , Proteínas Quinases/metabolismo
5.
Front Microbiol ; 8: 2152, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163436

RESUMO

Synchronous viral infection facilitates the study of viral gene expression, viral host interactions, and viral replication processes. However, the protocols for achieving synchronous infections were hardly ever tested in proper temporal resolution at the single-cell level. We set up a fluorescence-based, time lapse microscopy assay to study sources of variability in the timing of gene expression during herpes simplex virus-1 (HSV-1) infection. We found that with the common protocol, the onset of gene expression within different cells can vary by more than 3 h. We showed that simultaneous viral genome entry to the nucleus can be achieved with a derivative of the previously characterized temperature sensitive mutant tsB7, however, this did not improve gene expression synchrony. We found that elevating the temperature in which the infection is done and increasing the multiplicity of infection (MOI) significantly promoted simultaneous onset of viral gene expression among infected cells. Further, elevated temperature result in a decrease in the coefficient of variation (a standardized measure of dispersion) of viral replication compartments (RCs) sizes among cells as well as a slight increment of viral late gene expression synchrony. We conclude that simultaneous viral gene expression can be improved by simple modifications to the infection process and may reduce the effect of single-cell variability on population-based assays.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa