Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Genet ; 21(5): 277-291, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32099102

RESUMO

Declines in bee populations across the world threaten food security and ecosystem function. It is currently not possible to routinely predict which specific stressors lead to declines in different populations or contexts, hindering efforts to improve bee health. Genomics has the potential to dramatically improve our ability to identify, monitor and predict the effects of stressors, as well as to mitigate their impacts through the use of marker-assisted selection, RNA interference and potentially gene editing. Here we discuss the most compelling recent applications of genomics to investigate the mechanisms underpinning bee population declines and to improve the health of both wild and managed bee populations.


Assuntos
Abelhas/genética , Abelhas/fisiologia , Genômica , Animais , Edição de Genes , Interferência de RNA , Estresse Fisiológico
2.
Proc Natl Acad Sci U S A ; 117(24): 13615-13625, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32471944

RESUMO

Developmental plasticity generates phenotypic variation, but how it contributes to evolutionary change is unclear. Phenotypes of individuals in caste-based (eusocial) societies are particularly sensitive to developmental processes, and the evolutionary origins of eusociality may be rooted in developmental plasticity of ancestral forms. We used an integrative genomics approach to evaluate the relationships among developmental plasticity, molecular evolution, and social behavior in a bee species (Megalopta genalis) that expresses flexible sociality, and thus provides a window into the factors that may have been important at the evolutionary origins of eusociality. We find that differences in social behavior are derived from genes that also regulate sex differentiation and metamorphosis. Positive selection on social traits is influenced by the function of these genes in development. We further identify evidence that social polyphenisms may become encoded in the genome via genetic changes in regulatory regions, specifically in transcription factor binding sites. Taken together, our results provide evidence that developmental plasticity provides the substrate for evolutionary novelty and shapes the selective landscape for molecular evolution in a major evolutionary innovation: Eusociality.


Assuntos
Abelhas/crescimento & desenvolvimento , Abelhas/fisiologia , Animais , Abelhas/genética , Comportamento Animal , Evolução Biológica , Evolução Molecular , Feminino , Genoma de Inseto , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Metamorfose Biológica , Comportamento Social
3.
Proc Biol Sci ; 288(1952): 20210729, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34102886

RESUMO

The ability to clone oneself has clear benefits-no need for mate hunting or dilution of one's genome in offspring. It is therefore unsurprising that some populations of haplo-diploid social insects have evolved thelytokous parthenogenesis-the virgin birth of a female. But thelytokous parthenogenesis has a downside: the loss of heterozygosity (LoH) as a consequence of genetic recombination. LoH in haplo-diploid insects can be highly deleterious because female sex determination often relies on heterozygosity at sex-determining loci. The two female castes of the Cape honeybee, Apis mellifera capensis, differ in their mode of reproduction. While workers always reproduce thelytokously, queens always mate and reproduce sexually. For workers, it is important to reduce the frequency of recombination so as to not produce offspring that are homozygous. Here, we ask whether recombination rates differ between Cape workers and Cape queens that we experimentally manipulated to reproduce thelytokously. We tested our hypothesis that Cape workers have evolved mechanisms that restrain genetic recombination, whereas queens have no need for such mechanisms because they reproduce sexually. Using a combination of microsatellite genotyping and whole-genome sequencing we find that a reduction in recombination is confined to workers only.


Assuntos
Repetições de Microssatélites , Partenogênese , Animais , Abelhas/genética , Feminino , Heterozigoto , Humanos , Partenogênese/genética , Recombinação Genética , Classe Social
4.
Mol Ecol ; 30(17): 4220-4230, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34181797

RESUMO

In recent years, many pollinators have experienced large population declines, which threaten food security and the stability of natural ecosystems. Bumble bees are particularly important because their ability to "buzz" pollinate and tolerate cooler conditions make them critical pollinators for certain plants and regions. Here, we apply a conservation genomics approach to study the vulnerable Bombus terricola. We sequenced RNA from 30 worker abdomens, 18 of which were collected from agricultural sites and 12 of which were collected from nonagricultural sites. We found transcriptional signatures associated with exposure to insecticides, with gene expression patterns suggesting that bumble bees were exposed to neonicotinoids and/or fipronil-two compounds known to negatively impact bees. We also found transcriptional signatures associated with pathogen infections. In addition to the transcriptomic analysis, we carried out a metatranscriptomic analysis and detected five pathogens in the abdomens of workers, three of which are common in managed honey bee and bumble bee colonies. Our conservation genomics study provides functional support for the role of pesticides and pathogen spillover in the decline of B. terricola. We demonstrate that conservation genomics is an invaluable tool which allows researchers to quantify the effects of multiple stressors that impact pollinator populations in the wild.


Assuntos
Inseticidas , Praguicidas , Animais , Abelhas/genética , Ecossistema , Genômica , Neonicotinoides
5.
Proc Natl Acad Sci U S A ; 120(16): e2303921120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036978
6.
Annu Rev Genet ; 46: 591-615, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22994354

RESUMO

Behavior is a complex phenotype that is plastic and evolutionarily labile. The advent of genomics has revolutionized the field of behavioral genetics by providing tools to quantify the dynamic nature of brain gene expression in relation to behavioral output. The honey bee Apis mellifera provides an excellent platform for investigating the relationship between brain gene expression and behavior given both the remarkable behavioral repertoire expressed by members of its intricate society and the degree to which behavior is influenced by heredity and the social environment. Here, we review a linked series of studies that assayed changes in honey bee brain transcriptomes associated with natural and experimentally induced changes in behavioral state. These experiments demonstrate that brain gene expression is closely linked with behavior, that changes in brain gene expression mediate changes in behavior, and that the association between specific genes and behavior exists over multiple timescales, from physiological to evolutionary.


Assuntos
Abelhas/genética , Comportamento Animal/fisiologia , Encéfalo/citologia , Regulação da Expressão Gênica , Genes de Insetos , Comportamento Social , Agressão/fisiologia , Processamento Alternativo , Animais , Abelhas/fisiologia , Encéfalo/metabolismo , Metilação de DNA , Percepção de Distância/genética , Metanálise como Assunto , Corpos Pedunculados/citologia , Corpos Pedunculados/metabolismo , Especificidade da Espécie , Transcriptoma
7.
Proc Biol Sci ; 287(1933): 20201512, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32811314

RESUMO

While much of the focus of sociobiology concerns identifying genomic changes that influence social behaviour, we know little about the consequences of social behaviour on genome evolution. It has been hypothesized that social evolution can influence the strength of negative selection via two mechanisms. First, division of labour can influence the efficiency of negative selection in a caste-specific manner; indirect negative selection on worker traits is theoretically expected to be weaker than direct selection on queen traits. Second, increasing social complexity is expected to lead to relaxed negative selection because of its influence on effective population size. We tested these two hypotheses by estimating the strength of negative selection in honeybees, bumblebees, paper wasps, fire ants and six other insects that span the range of social complexity. We found no consistent evidence that negative selection was significantly stronger on queen-biased genes relative to worker-biased genes. However, we found strong evidence that increased social complexity reduced the efficiency of negative selection. Our study clearly illustrates how changes in behaviour can influence patterns of genome evolution by modulating the strength of natural selection.


Assuntos
Comportamento Animal , Evolução Biológica , Genoma de Inseto , Comportamento Social , Animais , Formigas/genética , Abelhas/genética , Insetos/genética , Fenótipo , Seleção Genética , Vespas
8.
Mol Ecol ; 29(8): 1523-1533, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32220095

RESUMO

The Kinship Theory of Genomic Imprinting (KTGI) posits that, in species where females mate with multiple males, there is selection for a male to enhance the reproductive success of his offspring at the expense of other males and his mating partner. Reciprocal crosses between honey bee subspecies show parent-of-origin effects for reproductive traits, suggesting that males modify the expression of genes related to female function in their female offspring. This effect is likely to be greater in the Cape honey bee (Apis mellifera capensis), because a male's daughters have the unique ability to produce female offspring that can develop into reproductive workers or the next queen without mating. We generated reciprocal crosses between Capensis and another subspecies and used RNA-seq to identify transcripts that are over- or underexpressed in the embryos, depending on the parental origin of the gene. As predicted, 21 genes showed expression bias towards the Capensis father's allele in colonies with a Capensis father, with no such bias in the reciprocal cross. A further six genes showed a consistent bias towards expression of the father's allele across all eight colonies examined, regardless of the direction of the cross. Consistent with predictions of the KTGI, six of the 21 genes are associated with female reproduction. No gene consistently showed overexpression of the maternal allele.


Assuntos
Impressão Genômica , Reprodução , Alelos , Animais , Abelhas/genética , Feminino , Expressão Gênica , Masculino , Fenótipo
9.
J Evol Biol ; 32(2): 144-152, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30414283

RESUMO

Inbreeding (the mating between closely related individuals) often has detrimental effects that are associated with loss of heterozygosity at overdominant loci, and the expression of deleterious recessive alleles. However, determining which loci are detrimental when homozygous, and the extent of their phenotypic effects, remains poorly understood. Here, we utilize a unique inbred population of clonal (thelytokous) honey bees, Apis mellifera capensis, to determine which loci reduce individual fitness when homozygous. This asexual population arose from a single worker ancestor approximately 20 years ago and has persisted for at least 100 generations. Thelytokous parthenogenesis results in a 1/3 of loss of heterozygosity with each generation. Yet, this population retains heterozygosity throughout its genome due to selection against homozygotes. Deep sequencing of one bee from each of the three known sub-lineages of the population revealed that 3,766 of 10,884 genes (34%) have retained heterozygosity across all sub-lineages, suggesting that these genes have heterozygote advantage. The maintenance of heterozygosity in the same genes and genomic regions in all three sub-lineages suggests that nearly every chromosome carries genes that show sufficient heterozygote advantage to be selectively detrimental when homozygous.


Assuntos
Abelhas/genética , Genoma de Inseto , Heterozigoto , Partenogênese , Seleção Genética , Animais , Endogamia
10.
J Exp Biol ; 222(Pt 9)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31019069

RESUMO

In animals that experience interactions with conspecifics while young, social interactions appear to be a necessary prerequisite for typical behaviour. Eusocial insects have large colonies where individuals experience a large number of social interactions with nest mates during all life stages, making them excellent candidates for understanding the effects of social isolation on brain development and behaviour. Here, we used the honey bee Apis mellifera to study the effect of social isolation and group size on reward perception and discrimination learning and memory. We confined day--old adult workers into three different size groups (1, 8 or 32 bees) for 6 days during a critical period associated with adult behavioural maturation. We quantified their sucrose responsiveness, their ability to use and remember olfactory cues to discriminate between sucrose and salt (i.e. discrimination learning), and four biogenic amines in the brain. We found that the smaller the group size, the more responsive a worker was to the sucrose reward. Honey bees raised in groups of 32 performed the best in the learning trials and had the highest levels of dopamine. We found no effect of group size on memory. The observed group size effect on learning but not memory supports the hypothesis that social interactions modulate learning through the dopaminergic system.


Assuntos
Abelhas/fisiologia , Animais , Abelhas/crescimento & desenvolvimento , Aprendizagem , Memória , Densidade Demográfica , Comportamento Social
11.
Nature ; 539(7630): 500-502, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27820944
12.
Proc Natl Acad Sci U S A ; 111(7): 2614-9, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24488971

RESUMO

Most theories used to explain the evolution of eusociality rest upon two key assumptions: mutations affecting the phenotype of sterile workers evolve by positive selection if the resulting traits benefit fertile kin, and that worker traits provide the primary mechanism allowing social insects to adapt to their environment. Despite the common view that positive selection drives phenotypic evolution of workers, we know very little about the prevalence of positive selection acting on the genomes of eusocial insects. We mapped the footprints of positive selection in Apis mellifera through analysis of 40 individual genomes, allowing us to identify thousands of genes and regulatory sequences with signatures of adaptive evolution over multiple timescales. We found Apoidea- and Apis-specific genes to be enriched for signatures of positive selection, indicating that novel genes play a disproportionately large role in adaptive evolution of eusocial insects. Worker-biased proteins have higher signatures of adaptive evolution relative to queen-biased proteins, supporting the view that worker traits are key to adaptation. We also found genes regulating worker division of labor to be enriched for signs of positive selection. Finally, genes associated with worker behavior based on analysis of brain gene expression were highly enriched for adaptive protein and cis-regulatory evolution. Our study highlights the significant contribution of worker phenotypes to adaptive evolution in social insects, and provides a wealth of knowledge on the loci that influence fitness in honey bees.


Assuntos
Adaptação Biológica/genética , Abelhas/genética , Evolução Biológica , Variação Genética , Hierarquia Social , Metagenômica , Seleção Genética , Animais , Sequência de Bases , Dados de Sequência Molecular , Análise de Sequência de DNA
13.
J Proteome Res ; 15(2): 411-21, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26718741

RESUMO

The honey bee is a key pollinator in agricultural operations as well as a model organism for studying the genetics and evolution of social behavior. The Apis mellifera genome has been sequenced and annotated twice over, enabling proteomics and functional genomics methods for probing relevant aspects of their biology. One troubling trend that emerged from proteomic analyses is that honey bee peptide samples consistently result in lower peptide identification rates compared with other organisms. This suggests that the genome annotation can be improved, or atypical biological processes are interfering with the mass spectrometry workflow. First, we tested whether high levels of polymorphisms could explain some of the missed identifications by searching spectra against the reference proteome (OGSv3.2) versus a customized proteome of a single honey bee, but our results indicate that this contribution was minor. Likewise, error-tolerant peptide searches lead us to eliminate unexpected post-translational modifications as a major factor in missed identifications. We then used a proteogenomic approach with ~1500 raw files to search for missing genes and new exons, to revive discarded annotations and to identify over 2000 new coding regions. These results will contribute to a more comprehensive genome annotation and facilitate continued research on this important insect.


Assuntos
Abelhas/genética , Genoma de Inseto/genética , Genômica/métodos , Anotação de Sequência Molecular/métodos , Animais , Abelhas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Espectrometria de Massas/métodos , Polimorfismo de Nucleotídeo Único , Processamento de Proteína Pós-Traducional , Proteólise , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos
14.
Proc Natl Acad Sci U S A ; 109(44): 18012-7, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23071321

RESUMO

The rise of insect societies, marked by the formation of reproductive and sterile castes, represents a major unsolved mystery in evolution. Across several independent origins of sociality, the genomes of social hymenopterans share two peculiar attributes: high recombination and low but heterogeneous GC content. For example, the genome of the honey bee, Apis mellifera, represents a mosaic of GC-poor and GC-rich regions with rates of recombination an order of magnitude higher than in humans. However, it is unclear how heterogeneity in GC content arises, and how it relates to the expression and evolution of worker traits. Using population genetic analyses, we demonstrate a bias in the allele frequency and fixation rate of derived C or G mutations in high-recombination regions, consistent with recombination's causal influence on GC-content evolution via biased gene conversion. We also show that recombination and biased gene conversion actively maintain the heterogeneous GC content of the honey bee genome despite an overall A/T mutation bias. Further, we found that GC-rich genes and intergenic regions have higher levels of genetic diversity and divergence relative to GC-poor regions, also consistent with recombination's causal influence on the rate of molecular evolution. Finally, we found that genes associated with behavior and those with worker-biased expression are found in GC-rich regions of the bee genome and also experience high rates of molecular evolution. Taken together, these findings suggest that recombination acts to maintain a genetically diverse and dynamic part of the genome where genes underlying worker behavior evolve more quickly.


Assuntos
Abelhas/genética , Comportamento Animal , Evolução Molecular , Recombinação Genética , Animais , Abelhas/fisiologia , Dados de Sequência Molecular
15.
Mol Biol Evol ; 30(7): 1665-74, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23538736

RESUMO

The genomes of eusocial insects have a reduced complement of immune genes-an unusual finding considering that sociality provides ideal conditions for disease transmission. The following three hypotheses have been invoked to explain this finding: 1) social insects are attacked by fewer pathogens, 2) social insects have effective behavioral or 3) novel molecular mechanisms for combating pathogens. At the molecular level, these hypotheses predict that canonical innate immune pathways experience a relaxation of selective constraint. A recent study of several innate immune genes in ants and bees showed a pattern of accelerated amino acid evolution, which is consistent with either positive selection or a relaxation of constraint. We studied the population genetics of innate immune genes in the honey bee Apis mellifera by partially sequencing 13 genes from the bee's Toll pathway (∼10.5 kb) and 20 randomly chosen genes (∼16.5 kb) sequenced in 43 diploid workers. Relative to the random gene set, Toll pathway genes had significantly higher levels of amino acid replacement mutations segregating within A. mellifera and fixed between A. mellifera and A. cerana. However, levels of diversity and divergence at synonymous sites did not differ between the two gene sets. Although we detect strong signs of balancing selection on the pathogen recognition gene pgrp-sa, many of the genes in the Toll pathway show signatures of relaxed selective constraint. These results are consistent with the reduced complement of innate immune genes found in social insects and support the hypothesis that some aspect of eusociality renders canonical innate immunity superfluous.


Assuntos
Abelhas/genética , Evolução Molecular , Imunidade Inata/genética , Redes e Vias Metabólicas/genética , Proteínas/genética , Animais , Sequência de Bases , Abelhas/imunologia , Insetos/genética , Insetos/imunologia , Filogenia , Proteínas/imunologia , Comportamento Social
16.
Curr Biol ; 34(6): 1349-1356.e4, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38428415

RESUMO

Invasive populations often have lower genetic diversity relative to the native-range populations from which they derive.1,2 Despite this, many biological invaders succeed in their new environments, in part due to rapid adaptation.3,4,5,6 Therefore, the role of genetic bottlenecks in constraining the adaptation of invaders is debated.7,8,9,10 Here, we use whole-genome resequencing of samples from a 10-year time-series dataset, representing the natural invasion of the Asian honey bee (Apis cerana) in Australia, to investigate natural selection occurring in the aftermath of a founding event. We find that Australia's A. cerana population was founded by as few as one colony, whose arrival was followed by a period of rapid population expansion associated with an increase of rare variants.11 The bottleneck resulted in a steep loss of overall genetic diversity, yet we nevertheless detected loci with signatures of positive selection during the first years post-invasion. When we investigated the origin of alleles under selection, we found that selection acted primarily on the variation introduced by founders and not on the variants that arose post-invasion by mutation. In all, our data highlight that selection on standing genetic variation can occur in the early years post-invasion, even where founding bottlenecks are severe.


Assuntos
Variação Genética , Genética Populacional , Animais , Abelhas , Seleção Genética , Análise de Sequência de DNA , Mutação
17.
J Econ Entomol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877967

RESUMO

Highbush blueberry pollination depends on managed honey bees (Apis mellifera) L. for adequate fruit sets; however, beekeepers have raised concerns about the poor health of colonies after pollinating this crop. Postulated causes include agrochemical exposure, nutritional deficits, and interactions with parasites and pathogens, particularly Melisococcus plutonius [(ex. White) Bailey and Collins, Lactobacillales: Enterococcaceae], the causal agent of European foulbrood disease, but other pathogens could be involved. To broadly investigate common honey bee pathogens in relation to blueberry pollination, we sampled adult honey bees from colonies at time points corresponding to before (t1), during (t2), at the end (t3), and after (t4) highbush blueberry pollination in British Columbia, Canada, across 2 years (2020 and 2021). Nine viruses, as well as M. plutonius, Vairimorpha ceranae, and V. apis [Tokarev et al., Microsporidia: Nosematidae; formerly Nosema ceranae (Fries et al.) and N. apis (Zander)], were detected by PCR and compared among colonies located near and far from blueberry fields. We found a significant interactive effect of time and blueberry proximity on the multivariate pathogen community, mainly due to differences at t4 (corresponding to ~6 wk after the beginning of the pollination period). Post hoc comparisons of pathogens in near and far groups at t4 showed that detections of sacbrood virus (SBV), which was significantly higher in the near group, not M. plutonius, was the primary driver. Further research is needed to determine if the association of SBV with highbush blueberry pollination is contributing to the health decline that beekeepers observe after pollinating this crop.

18.
Curr Biol ; 34(9): 1893-1903.e3, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38636513

RESUMO

Honey bees play a major role in crop pollination but have experienced declining health throughout most of the globe. Despite decades of research on key honey bee stressors (e.g., parasitic Varroa destructor mites and viruses), researchers cannot fully explain or predict colony mortality, potentially because it is caused by exposure to multiple interacting stressors in the field. Understanding which honey bee stressors co-occur and have the potential to interact is therefore of profound importance. Here, we used the emerging field of systems theory to characterize the stressor networks found in honey bee colonies after they were placed in fields containing economically valuable crops across Canada. Honey bee stressor networks were often highly complex, with hundreds of potential interactions between stressors. Their placement in crops for the pollination season generally exposed colonies to more complex stressor networks, with an average of 23 stressors and 307 interactions. We discovered that the most influential stressors in a network-those that substantively impacted network architecture-are not currently addressed by beekeepers. Finally, the stressor networks showed substantial divergence among crop systems from different regions, which is consistent with the knowledge that some crops (e.g., highbush blueberry) are traditionally riskier to honey bees than others. Our approach sheds light on the stressor networks that honey bees encounter in the field and underscores the importance of considering interactions among stressors. Clearly, addressing and managing these issues will require solutions that are tailored to specific crops and regions and their associated stressor networks.


Assuntos
Produtos Agrícolas , Polinização , Abelhas/fisiologia , Abelhas/parasitologia , Animais , Varroidae/fisiologia , Canadá , Estresse Fisiológico , Criação de Abelhas/métodos
19.
Mol Ecol ; 22(12): 3211-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24433573

RESUMO

De la Rúa et al. (2013) express some concerns about the conclusions of our recent study showing that management increases genetic diversity of honey bees (Apis mellifera) by promoting admixture (Harpur et al. 2012). We provide a brief review of the literature on the population genetics of A. mellifera and show that we utilized appropriate sampling methods to estimate genetic diversity in the focal populations. Our finding of higher genetic diversity in two managed A. mellifera populations on two different continents is expected to be the norm given the large number of studies documenting admixture in honey bees. Our study focused on elucidating how management affects genetic diversity in honey bees, not on how to best manage bee colonies. We do not endorse the intentional admixture of honey bee populations, and we agree with De la Rúa et al. (2013) that native honey bee subspecies should be conserved.


Assuntos
Criação de Animais Domésticos , Abelhas/genética , Variação Genética , Genética Populacional , Animais
20.
iScience ; 26(3): 106084, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36843853

RESUMO

The effects of neonicotinoid insecticides (NNIs) on honeybee health are intensely debated, with numerous studies showing negative effects of exposure, while others report no such effects. We carried out experiments to study the genetic and molecular basis of NNI tolerance in honeybees, which may underlie the discrepancies observed in the literature. We discovered that worker survival post-exposure to an acute oral dose of clothianidin is heritable (H 2 = 37.8%). Tolerance to clothianidin was not associated with differences in the expression of detoxification enzymes in our experiments. Instead, mutations in the primary neonicotinoid detoxification genes CYP9Q1 and CYP9Q3 were strongly associated with worker survival post-clothianidin exposure. In some instances, the strong association between CYP9Q haplotypes and worker survival was associated with the protein's predicted binding affinity for clothianidin. Our findings have implications regarding future toxicological studies utilizing honeybees as a model pollinator.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa