Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 55(6): 1032-1050.e14, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35704993

RESUMO

Conventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7+ cDC1 expressed IDO1 that was dependent on IRF8. Lipopolysaccharide treatment induced maturation and IDO1-dependent tolerogenic activity in isolated immature cDC1, but not isolated cDC2. However, both human and mouse cDC2 could induce IDO1 and acquire tolerogenic function when co-cultured with mature cDC1 through the action of cDC1-derived l-kynurenine. Accordingly, cDC1-specific inactivation of IDO1 in vivo exacerbated disease in experimental autoimmune encephalomyelitis. This study identifies a previously unrecognized metabolic communication in which IDO1-expressing cDC1 cells extend their immunoregulatory capacity to the cDC2 subset through their production of tryptophan metabolite l-kynurenine. This metabolic axis represents a potential therapeutic target in treating autoimmune demyelinating diseases.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Cinurenina , Animais , Células Dendríticas , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Camundongos , Transdução de Sinais , Triptofano/metabolismo
2.
Nat Immunol ; 13(8): 717-9, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22814343

RESUMO

Most myeloid cells express the growth-factor receptor CSF1R. Recognition of interleukin 34 by CSF1R is required for the development of tissue-resident Langerhans cells and microglia, which explains the independence of their growth from CSF1.


Assuntos
Interleucinas/metabolismo , Células de Langerhans/fisiologia , Microglia/fisiologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Febre do Nilo Ocidental/imunologia , Animais
3.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768851

RESUMO

In pregnancy, human amniotic fluid extracellular vesicles (HAF-EVs) exert anti-inflammatory effects on T cells and on monocytes, supporting their immunoregulatory roles. The specific mechanisms are still not completely defined. The aim of this study was to investigate the ability of HAF-EVs, isolated from pregnant women who underwent amniocentesis and purified by gradient ultracentrifugation, to affect inflammasome activation in the human monocytes. Proteomic studies revealed that HAF-EV samples expressed several immunoregulatory molecules as well as small amounts of endotoxin. Surprisingly, metagenomic analysis shows the presence of specific bacterial strain variants associated with HAF-EVs as potential sources of the endotoxin. Remarkably, we showed that a single treatment of THP-1 cells with HAF-EVs triggered inflammasome activation, whereas the same treatment followed by LPS and ATP sensitization prevented inflammasome activation, a pathway resembling monocyte refractories. A bioinformatics analysis of microbiota-HAF-EVs functional pathways confirmed the presence of enzymes for endotoxin biosynthesis as well as others associated with immunoregulatory functions. Overall, these data suggest that HAF-EVs could serve as a source of the isolation of a specific microbiota during early pregnancy. Moreover, HAF-EVs could act as a novel system to balance immune training and tolerance by modulating the inflammasome in monocytes or other cells.


Assuntos
Vesículas Extracelulares , Microbiota , Humanos , Feminino , Gravidez , Monócitos/metabolismo , Inflamassomos/metabolismo , Líquido Amniótico , Proteômica , Vesículas Extracelulares/metabolismo , Endotoxinas/metabolismo
4.
Proteins ; 90(2): 435-442, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34495558

RESUMO

Aspergillus fumigatus is a saprophytic ubiquitous fungus whose spores can trigger reactions such as allergic bronchopulmonary aspergillosis or the fatal invasive pulmonary aspergillosis. To survive in the lungs, the fungus must adapt to a hypoxic and nutritionally restrictive environment, exploiting the limited availability of aromatic amino acids (AAAs) in the best possible way, as mammals do not synthesize them. A key enzyme for AAAs catabolism in A. fumigatus is AroH, a pyridoxal 5'-phosphate-dependent aromatic aminotransferase. AroH was recently shown to display a broad substrate specificity, accepting L-kynurenine and α-aminoadipate as amino donors besides AAAs. Given its pivotal role in the adaptability of the fungus to nutrient conditions, AroH represents a potential target for the development of innovative therapies against A. fumigatus-related diseases. We have solved the crystal structure of Af-AroH at 2.4 Å resolution and gained new insight into the dynamics of the enzyme's active site, which appears to be crucial for the design of inhibitors. The conformational plasticity of the active site pocket is probably linked to the wide substrate specificity of AroH.


Assuntos
Aspergillus fumigatus/enzimologia , Transaminases/química , Domínio Catalítico , Especificidade por Substrato
5.
Immunity ; 39(2): 372-85, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23973224

RESUMO

Endogenous tryptophan (Trp) metabolites have an important role in mammalian gut immune homeostasis, yet the potential contribution of Trp metabolites from resident microbiota has never been addressed experimentally. Here, we describe a metabolic pathway whereby Trp metabolites from the microbiota balance mucosal reactivity in mice. Switching from sugar to Trp as an energy source (e.g., under conditions of unrestricted Trp availability), highly adaptive lactobacilli are expanded and produce an aryl hydrocarbon receptor (AhR) ligand-indole-3-aldehyde-that contributes to AhR-dependent Il22 transcription. The resulting IL-22-dependent balanced mucosal response allows for survival of mixed microbial communities yet provides colonization resistance to the fungus Candida albicans and mucosal protection from inflammation. Thus, the microbiota-AhR axis might represent an important strategy pursued by coevolutive commensalism for fine tuning host mucosal reactivity contingent on Trp catabolism.


Assuntos
Candida albicans/imunologia , Interleucinas/metabolismo , Limosilactobacillus reuteri/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Candidíase/imunologia , Metabolismo Energético , Feminino , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Indolamina-Pirrol 2,3,-Dioxigenase/deficiência , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indóis/metabolismo , Interleucina-17/deficiência , Interleucina-17/genética , Limosilactobacillus reuteri/crescimento & desenvolvimento , Limosilactobacillus reuteri/imunologia , Metagenoma , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Probióticos , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/genética , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Triptofano/química , Interleucina 22
6.
Immunity ; 38(5): 970-83, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706669

RESUMO

Mouse and human dendritic cells (DCs) are composed of functionally specialized subsets, but precise interspecies correlation is currently incomplete. Here, we showed that murine lung and gut lamina propria CD11b+ DC populations were comprised of two subsets: FLT3- and IRF4-dependent CD24(+)CD64(-) DCs and contaminating CSF-1R-dependent CD24(-)CD64(+) macrophages. Functionally, loss of CD24(+)CD11b(+) DCs abrogated CD4+ T cell-mediated interleukin-17 (IL-17) production in steady state and after Aspergillus fumigatus challenge. Human CD1c+ DCs, the equivalent of murine CD24(+)CD11b(+) DCs, also expressed IRF4, secreted IL-23, and promoted T helper 17 cell responses. Our data revealed heterogeneity in the mouse CD11b+ DC compartment and identifed mucosal tissues IRF4-expressing DCs specialized in instructing IL-17 responses in both mouse and human. The demonstration of mouse and human DC subsets specialized in driving IL-17 responses highlights the conservation of key immune functions across species and will facilitate the translation of mouse in vivo findings to advance DC-based clinical therapies.


Assuntos
Aspergillus fumigatus/imunologia , Células Dendríticas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Interleucina-17/metabolismo , Células Th17/metabolismo , Animais , Antígeno CD11b/metabolismo , Antígeno CD24/metabolismo , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Humanos , Interleucina-17/biossíntese , Interleucina-23/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Macrófagos/metabolismo , Camundongos , Receptores de IgG/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Tirosina Quinase 3 Semelhante a fms/metabolismo
7.
Infect Immun ; 89(8): e0010521, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33782152

RESUMO

The ability to predict invasive fungal infections (IFI) in patients with hematological malignancies is fundamental for successful therapy. Although gut dysbiosis is known to occur in hematological patients, whether airway dysbiosis also contributes to the risk of IFI has not been investigated. Nasal and oropharyngeal swabs were collected for functional microbiota characterization in 173 patients with hematological malignancies recruited in a multicenter, prospective, observational study and stratified according to the risk of developing IFI. A lower microbial richness and evenness were found in the pharyngeal microbiota of high-risk patients that were associated with a distinct taxonomic and metabolic profile. A murine model of IFI provided biologic plausibility for the finding that loss of protective anaerobes, such as Clostridiales and Bacteroidetes, along with an apparent restricted availability of tryptophan, is causally linked to the risk of IFI in hematologic patients and indicates avenues for antimicrobial stewardship and metabolic reequilibrium in IFI.


Assuntos
Doenças Hematológicas/complicações , Microbiota , Micoses/etiologia , Faringe/microbiologia , Pneumonia/etiologia , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Modelos Animais de Doenças , Neoplasias Hematológicas/complicações , Humanos , Metagenoma , Metagenômica/métodos , Camundongos , Micoses/diagnóstico , Micoses/tratamento farmacológico , Pneumonia/diagnóstico , Pneumonia/tratamento farmacológico , Medição de Risco , Fatores de Risco
8.
Eur J Immunol ; 50(12): 2092-2094, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32744364

RESUMO

Neuroblastoma survivors show signs of immunosenescence early after therapy in CD8+ T cell compartment and elevated plasma TNF-α but in later follow-up immune recovery comes into play. Whether the recovery phenotype is long lasting or transient remains to be elucidated, however, late adverse effects often occur in childhood cancer survivors.


Assuntos
Imunossenescência/imunologia , Neuroblastoma/imunologia , Linfócitos T CD8-Positivos/imunologia , Sobreviventes de Câncer , Humanos , Fatores de Risco , Sobreviventes , Fator de Necrose Tumoral alfa/imunologia
9.
Nature ; 511(7508): 184-90, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24930766

RESUMO

Disease tolerance is the ability of the host to reduce the effect of infection on host fitness. Analysis of disease tolerance pathways could provide new approaches for treating infections and other inflammatory diseases. Typically, an initial exposure to bacterial lipopolysaccharide (LPS) induces a state of refractoriness to further LPS challenge (endotoxin tolerance). We found that a first exposure of mice to LPS activated the ligand-operated transcription factor aryl hydrocarbon receptor (AhR) and the hepatic enzyme tryptophan 2,3-dioxygenase, which provided an activating ligand to the former, to downregulate early inflammatory gene expression. However, on LPS rechallenge, AhR engaged in long-term regulation of systemic inflammation only in the presence of indoleamine 2,3-dioxygenase 1 (IDO1). AhR-complex-associated Src kinase activity promoted IDO1 phosphorylation and signalling ability. The resulting endotoxin-tolerant state was found to protect mice against immunopathology in Gram-negative and Gram-positive infections, pointing to a role for AhR in contributing to host fitness.


Assuntos
Resistência à Doença/genética , Resistência à Doença/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Resistência à Doença/efeitos dos fármacos , Endotoxemia/genética , Endotoxemia/imunologia , Endotoxemia/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/enzimologia , Inflamação/genética , Inflamação/metabolismo , Cinurenina/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Fosforilação , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Triptofano Oxigenase/metabolismo , Quinases da Família src/metabolismo
10.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823705

RESUMO

The chemical processes taking place in humans intersects the myriad of metabolic pathways occurring in commensal microorganisms that colonize the body to generate a complex biochemical network that regulates multiple aspects of human life. The role of tryptophan (Trp) metabolism at the intersection between the host and microbes is increasingly being recognized, and multiple pathways of Trp utilization in either direction have been identified with the production of a wide range of bioactive products. It comes that a dysregulation of Trp metabolism in either the host or the microbes may unbalance the production of metabolites with potential pathological consequences. The ability to redirect the Trp flux to restore a homeostatic production of Trp metabolites may represent a valid therapeutic strategy for a variety of pathological conditions, but identifying metabolic checkpoints that could be exploited to manipulate the Trp metabolic network is still an unmet need. In this review, we put forward the hypothesis that pyridoxal 5'-phosphate (PLP)-dependent enzymes, which regulate multiple pathways of Trp metabolism in both the host and in microbes, might represent critical nodes and that modulating the levels of vitamin B6, from which PLP is derived, might represent a metabolic checkpoint to re-orienteer Trp flux for therapeutic purposes.


Assuntos
Interações Hospedeiro-Patógeno , Fosfato de Piridoxal/metabolismo , Triptofano/metabolismo , Animais , Bactérias/metabolismo , Humanos , Mamíferos/metabolismo , Vitamina B 6/metabolismo
11.
Med Mycol ; 57(Supplement_2): S189-S195, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30816972

RESUMO

Aspergillus moulds are increasingly being recognised as significant human pathogens that can cause life-threatening infections in the context of host immune dysregulation, particularly in the lung. It is now clear that there is a close relationship between infection susceptibility and the fine regulation of pulmonary immunity and inflammation. While the contribution of IL-17/Th17 responses to both physiological and pathological lung inflammation is now well established, the cellular interactions, soluble factors, and signalling pathways that determine Th17 cell responses to fungal infection remain unclear. Here, we identify potential key mediators of fungus-DC-T cell interactions in the respiratory tract, with a focus on the DC-derived cytokines thought to exert a major influence on generation of pathological Th17 cells. We review recent data indicating a crucial role for Aspergillus-induced autophagy in lung DCs on subsequent T-cell polarization and modulation of 'stemness', which appears critical for avoiding pathological lung inflammation and promoting disease resolution.


Assuntos
Aspergillus/imunologia , Aspergillus/patogenicidade , Células Dendríticas/imunologia , Interações Hospedeiro-Patógeno , Aspergilose Pulmonar/tratamento farmacológico , Aspergilose Pulmonar/patologia , Células Th17/imunologia , Animais , Autofagia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos
12.
Mediators Inflamm ; 2018: 7396136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510489

RESUMO

Mast cells are increasingly being recognized as crucial cells in the response of the organism to environmental agents. Interestingly, the ability of mast cells to sense and respond to external cues is modulated by the microenvironment that surrounds mast cells and influences their differentiation. The scenario that is emerging unveils a delicate equilibrium that balances the effector functions of mast cells to guarantee host protection without compromising tissue homeostasis. Among the environmental components able to mold mast cells and fine-tune their effector functions, the microorganisms that colonize the human body, collectively known as microbiome, certainly play a key role. Indeed, microorganisms can regulate not only the survival, recruitment, and maturation of mast cells but also their activity by setting the threshold required for the exploitation of their different effector functions. Herein, we summarize the current knowledge about the mechanisms underlying the ability of the microorganisms to regulate mast cell physiology and discuss potential deviations that result in pathological consequences. We will discuss the pivotal role of the aryl hydrocarbon receptor in sensing the environment and shaping mast cell adaptation at the host-microbe interface.


Assuntos
Mastócitos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Microbiota/fisiologia
13.
Mediators Inflamm ; 2018: 1601486, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670460

RESUMO

Tryptophan (trp) metabolism is an important regulatory component of gut mucosal homeostasis and the microbiome. Metabolic pathways targeting the trp can lead to a myriad of metabolites, of both host and microbial origins, some of which act as endogenous low-affinity ligands for the aryl hydrocarbon receptor (AhR), a cytosolic, ligand-operated transcription factor that is involved in many biological processes, including development, cellular differentiation and proliferation, xenobiotic metabolism, and the immune response. Low-level activation of AhR by endogenous ligands is beneficial in the maintenance of immune health and intestinal homeostasis. We have defined a functional node whereby certain bacteria species contribute to host/microbial symbiosis and mucosal homeostasis. A microbial trp metabolic pathway leading to the production of indole-3-aldehyde (3-IAld) by lactobacilli provided epithelial protection while inducing antifungal resistance via the AhR/IL-22 axis. In this review, we highlight the role of AhR in inflammatory lung diseases and discuss the possible therapeutic use of AhR ligands in cystic fibrosis.


Assuntos
Fibrose Cística/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Humanos , Indóis/metabolismo , Lactobacillus/metabolismo
14.
Mediators Inflamm ; 2018: 6195958, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692681

RESUMO

Phagocytes fight fungi using canonical and noncanonical, also called LC3-associated phagocytosis (LAP), autophagy pathways. However, the outcomes of autophagy/LAP in shaping host immune responses appear to greatly vary depending on fungal species and cell types. By allowing efficient pathogen clearance and/or degradation of inflammatory mediators, autophagy proteins play a broad role in cellular and immune homeostasis during fungal infections. Indeed, defects in autophagic machinery have been linked with aberrant host defense and inflammatory states. Thus, understanding the molecular mechanisms underlying the relationship between the different forms of autophagy may offer a way to identify drugable molecular signatures discriminating between selective recognition of cargo and host protection. In this regard, IFN-γ and anakinra are teaching examples of successful antifungal agents that target the autophagy machinery. This article provides an overview of the role of autophagy/LAP in response to fungi and in their infections, regulation, and therapeutic exploitation.


Assuntos
Autofagia/fisiologia , Fagocitose/fisiologia , Animais , Humanos , Interferon gama/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Fagócitos/metabolismo , Fagócitos/fisiologia
15.
Nucleic Acids Res ; 43(2): 836-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25550437

RESUMO

The transcription factor NFATc2 regulates dendritic cell (DC) responses to microbial stimulation through the C-type lectin receptor dectin-1. But the genetic targets of NFATc2 and their effects on DC function remain largely unknown. Therefore we used ChIP-seq to conduct genome-wide mapping of NFATc2 target sites in dectin-1-activated DCs. By combining binding-site data with a comprehensive gene expression profile, we found that NFATc2 occupancy regulates the expression of a subset of dectin-1-activated genes. Surprisingly, NFATc2 targeted an extensive range of DC-derived cytokines and chemokines, including regulatory cytokines such as IL2, IL23a and IL12b. Furthermore, we demonstrated that NFATc2 binding is required to induce the histone 3 lysine 4 trimethylation (H3K4me3) epigenetic mark, which is associated with enhanced gene expression. Together, these data show that the transcription factor NFATc2 mediates epigenetic modification of DC cytokine and chemokine genes leading to activation of their expression.


Assuntos
Quimiocinas/genética , Citocinas/genética , Células Dendríticas/imunologia , Epigênese Genética , Lectinas Tipo C/metabolismo , Fatores de Transcrição NFATC/metabolismo , Ativação Transcricional , Animais , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Quimiocinas/biossíntese , Citocinas/biossíntese , Células Dendríticas/metabolismo , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sítio de Iniciação de Transcrição
16.
Eur J Immunol ; 44(11): 3192-200, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25256754

RESUMO

An increased understanding of the importance of microbiota in shaping the host's immune and metabolic activities has rendered fungal interactions with their hosts more complex than previously appreciated. The aryl hydrocarbon receptor (AhR) has a pivotal role in connecting tryptophan catabolism by microbial communities and the host's own pathway of tryptophan metabolite production with the orchestration of T-cell function. AhR activation by a Lactobacillus-derived AhR ligand leads to the production of IL-22 to the benefit of mucosal defense mechanisms, an activity upregulated in the absence of the host tryptophan catabolic enzyme, indoleamine 2,3-dioxygenase 1 (IDO1), which is required for protection from fungal diseases ("disease tolerance"). As AhR activation in turn leads to the activation-in a feedback fashion-of IDO1, the regulatory loop involving AhR and IDO1 may have driven the coevolution of commensal fungi with the mammalian immune system and the microbiota, to the benefit of host survival and fungal commensalism. This review will discuss the essential help the microbiota provides in controlling the balance between the dual nature of the fungal-host relationship, namely, commensalism vs. infection.


Assuntos
Fungos/imunologia , Micoses/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Simbiose/imunologia , Triptofano/metabolismo , Fungos/patogenicidade , Humanos , Tolerância Imunológica/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Interleucinas/biossíntese , Interleucinas/imunologia , Lactobacillus/metabolismo , Microbiota , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Interleucina 22
17.
Stem Cells ; 32(12): 3232-44, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25100642

RESUMO

Maintenance of myeloid progenitor cells is controlled by complex regulatory mechanisms and is orchestrated by multiple different transcription factors. Here, we report that the activation of the transcription factor nuclear factor of activated T cells (NFAT) by calcium-sensing protein calcineurin inhibits the proliferation of myeloid granulocyte-monocyte progenitors (GMPs). Myeloid progenitor subtypes exhibit variable sensitivity to induced Ca(2+) entry and consequently display differential engagement of the calcineurin-NFAT pathway. This study shows that inhibition of the calcineurin-NFAT pathway enhances the proliferation of GMPs both in vitro and in vivo and demonstrates that calcineurin-NFAT signaling in GMPs is initiated by Flt3-L. Inhibition of the calcineurin-NFAT pathway modified expression of the cell cycle regulation genes Cdk4, Cdk6, and Cdkn1a (p21), thus enabling rapid cell cycle progression specifically in GMPs. NFAT inhibitor drugs are extensively used in the clinic to restrict the pathological activation of lymphoid cells, and our data reveal for the first time that these therapies also exert potent effects on maintenance of the myeloid cell compartment through specific regulation of GMP proliferation.


Assuntos
Calcineurina/metabolismo , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Monócitos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Granulócitos/metabolismo , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Transdução de Sinais/fisiologia
18.
BMC Bioinformatics ; 15: 387, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25495206

RESUMO

BACKGROUND: Dynamic aspects of gene regulatory networks are typically investigated by measuring system variables at multiple time points. Current state-of-the-art computational approaches for reconstructing gene networks directly build on such data, making a strong assumption that the system evolves in a synchronous fashion at fixed points in time. However, nowadays omics data are being generated with increasing time course granularity. Thus, modellers now have the possibility to represent the system as evolving in continuous time and to improve the models' expressiveness. RESULTS: Continuous time Bayesian networks are proposed as a new approach for gene network reconstruction from time course expression data. Their performance was compared to two state-of-the-art methods: dynamic Bayesian networks and Granger causality analysis. On simulated data, the methods comparison was carried out for networks of increasing size, for measurements taken at different time granularity densities and for measurements unevenly spaced over time. Continuous time Bayesian networks outperformed the other methods in terms of the accuracy of regulatory interactions learnt from data for all network sizes. Furthermore, their performance degraded smoothly as the size of the network increased. Continuous time Bayesian networks were significantly better than dynamic Bayesian networks for all time granularities tested and better than Granger causality for dense time series. Both continuous time Bayesian networks and Granger causality performed robustly for unevenly spaced time series, with no significant loss of performance compared to the evenly spaced case, while the same did not hold true for dynamic Bayesian networks. The comparison included the IRMA experimental datasets which confirmed the effectiveness of the proposed method. Continuous time Bayesian networks were then applied to elucidate the regulatory mechanisms controlling murine T helper 17 (Th17) cell differentiation and were found to be effective in discovering well-known regulatory mechanisms, as well as new plausible biological insights. CONCLUSIONS: Continuous time Bayesian networks were effective on networks of both small and large size and were particularly feasible when the measurements were not evenly distributed over time. Reconstruction of the murine Th17 cell differentiation network using continuous time Bayesian networks revealed several autocrine loops, suggesting that Th17 cells may be auto regulating their own differentiation process.


Assuntos
Teorema de Bayes , Diferenciação Celular , Redes Reguladoras de Genes , Células Th17/citologia , Animais , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Camundongos , Células Th17/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
19.
Blood ; 120(7): 1380-9, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22611159

RESUMO

The calcineurin/nuclear factor of activated T cells (NFAT) signaling pathway mediates multiple adaptive T-cell functions, but recent studies have shown that calcineurin/NFAT signaling also contributes to innate immunity and regulates the homeostasis of innate cells. Myeloid cells, including granulocytes and dendritic cells, can promote inflammation, regulate adaptive immunity, and are essential mediators of early responses to pathogens. Microbial ligation of pattern-recognition receptors, such as TLR4, CD14, and dectin 1, is now known to induce the activation of calcineurin/NFAT signaling in myeloid cells, a finding that has provided new insights into the molecular pathways that regulate host protection. Inhibitors of calcineurin/NFAT binding, such as cyclosporine A and FK506, are broadly used in organ transplantation and can act as potent immunosuppressive drugs in a variety of different disorders. There is increasing evidence that these agents influence innate responses as well as inhibiting adaptive T-cell functions. This review focuses on the role of calcineurin/NFAT signaling in myeloid cells, which may contribute to the various unexplained effects of immunosuppressive drugs already being used in the clinic.


Assuntos
Imunidade Inata/imunologia , Fatores de Transcrição NFATC/imunologia , Animais , Calcineurina/metabolismo , Homeostase/imunologia , Humanos , Células Mieloides/imunologia , Transdução de Sinais/imunologia
20.
Nature ; 451(7175): 211-5, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-18185592

RESUMO

Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients' leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vgamma1(+) gammadelta T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or gammadelta T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-gamma (IFN-gamma), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vgamma4(+) gammadelta and Foxp3(+) alphabeta T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.


Assuntos
Doença Granulomatosa Crônica/metabolismo , Doença Granulomatosa Crônica/patologia , Inflamação/metabolismo , Cinurenina/metabolismo , Triptofano/metabolismo , Animais , Aspergilose/complicações , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus fumigatus/fisiologia , Doença Crônica , Modelos Animais de Doenças , Doença Granulomatosa Crônica/complicações , Doença Granulomatosa Crônica/tratamento farmacológico , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/patologia , Interferon gama/imunologia , Interferon gama/uso terapêutico , Interleucina-17/deficiência , Interleucina-17/metabolismo , Cinurenina/uso terapêutico , Pulmão/imunologia , Pulmão/patologia , Pneumopatias Fúngicas/complicações , Pneumopatias Fúngicas/imunologia , Pneumopatias Fúngicas/microbiologia , Pneumopatias Fúngicas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/deficiência , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Superóxidos/metabolismo , Linfócitos T/enzimologia , Linfócitos T/imunologia , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa