Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131937

RESUMO

Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits-"win-wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.


Assuntos
Agricultura , Conservação dos Recursos Naturais/métodos , Ecossistema , Humanos , Energia Renovável , Mudança Social
2.
Biometals ; 35(6): 1341-1358, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36163536

RESUMO

The Akaki River in the Upper Awash Basin, which flows through Addis Ababa, the capital city of Ethiopia, has been highly polluted by sewage from factories and residential areas. A population-based cross-sectional study was used to assess the association between trace elements and kidney injury from residents living in polluted areas downstream (Akaki-Kality) versus upstream (Gullele) in Sub-Cities of Addis Ababa. A total of 95 individuals (53 from Akaki-Kality and 42 from Gullele) were included in the study. Kidney injury molecule 1 (KIM-1), lead, arsenic, cadmium, cobalt, lead, manganese, zinc, iron, copper, chromium and nickel were evaluated in residents' urine and nail samples. A large proportion (74%) of the sample population contained KIM-1, including 81% residents in Akaki-Kality and 64% residents in Gullele. KIM-1 was, however, not significantly different (p = 0.05) between the two Sub-Cities, with median of 0.224 ng/mL in Akaki-Kality and 0.152 ng/mL in Gullele. Most of the analyzed elements, except Pb, As, Cd and Co, were found in all of the nail samples, with median (µg/g) in the range of 442‒714 Fe, 97.0‒246 Zn, 11.6‒24.1 Mn, 4.49‒5.85 Cu, 1.46‒1.66 Cr and 1.22‒1.41 Ni. The high incidence of KIM-1 indicates a potential for long term renal tubular damage among residents of the Sub-Cities. The concentrations of the elements in nails were, however, not significantly associated (p = 0.05) with the corresponding levels of KIM-1 in urine. Hence, the observed KIM-1 might be related to exposure to toxic substances or factors other than those included in this study.


Assuntos
Oligoelementos , Humanos , Oligoelementos/análise , Estudos Transversais , Unhas/química , Monitoramento Ambiental , Etiópia/epidemiologia , Biomarcadores
3.
Environ Monit Assess ; 194(3): 197, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35175434

RESUMO

The Blue Nile Highlands, Ethiopia, has been experiencing serious land degradation, menacing water security, and then human well-being. However, sustainable land management (SLM) may be the way to curb land degradation and improve water security. Therefore, in order to assess benefits after a 5-year catchment restoration effort, we conducted a paired-catchment study to investigate runoff and soil moisture dynamics. First and second catchments were used as control and treated, respectively. After comparing observations gathered from four sites within each of the study catchments, we found that implementing SLM reduced runoff curve numbers by -13.9 to -21.6 units and increased soil moisture storage by 15.6 to 800%, then promoting rapid recovery of the hydrologic functionality of the natural landscapes. We conclude that SLM initiatives can greatly improve water security in the drought-prone Blue Nile Highlands.


Assuntos
Conservação dos Recursos Naturais , Água , Monitoramento Ambiental , Humanos , Hidrologia , Solo , Abastecimento de Água
4.
Environ Manage ; 68(2): 240-261, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34105015

RESUMO

This study was conducted to evaluate the effectiveness of best management practices (BMPs) to reduce soil erosion in Gumara watershed of the Abbay (Upper Blue Nile) Basin using the Soil and Water Assessment Tool (SWAT) model. The model was calibrated (1995-2002) and validated (2003-2007) using the SWAT-CUP based on observed streamflow and sediment yield data at the watershed outlet. The study evaluated four individual BMP Scenarios; namely, filter strips (FS), stone/soil bunds (SSB), grassed waterways (GW) and reforestation of croplands (RC), and three blended BMP Scenarios, which combines individual BMPS of FS and RC (FS & RC), GW and RC (GW & RC), and SSB and GW (SSB & GW). Mean annual sediment yield at the baseline conditions was estimated at 19.7 t ha-1yr-1, which was reduced by 13.7, 30.5, 16.2 and 25.9% in the FS, SSB, GW, and RC Scenarios, respectively at the watershed scale. The highest reduction efficiency of 34% was achieved through the implementations of the SSB & GW Scenario. The GW & RC, and FS & RC Scenarios reduced the baseline sediment yield by 32% and 29.9%, respectively. The study therefore concluded that the combined Scenarios mainly SSB & GW, and GW & RC can be applied to reduce the high soil erosion in the Gumera watershed, and similar agro-ecological watersheds in Ethiopia. In cases where applying the combined scenarios is not possible, the SSB Scenario can yield significant soil erosion reduction.


Assuntos
Solo , Água , Etiópia , Erosão do Solo , Qualidade da Água
5.
Environ Monit Assess ; 190(5): 309, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29696501

RESUMO

Earlier studies on land change (LC) have focused on size and magnitude, gains and losses, or land transfers between categories. Therefore, these studies have failed to simultaneously show the complete LC processes. This paper examines LCs in the Legedadie-Dire catchments in Oromia State, Ethiopia, using land-category maps with intensity analysis (IA) at three points in time. We comprehensively analyze LC to jointly encompass the rate, intensity, transition, and process. Thirty-meter US Geological Survey (USGS) Landsat imagery from 1986, 2000, and 2015 (< 10% cloud) is processed using TerrSet-LCM and ArcGIS. Six categories are identified using a maximum likelihood classification technique: settlement, cultivation, forest, water, grassland, and bare land. Then, classified maps are superimposed on the images to statistically examine changes with an IA. Considerable changes are observed among categories, except for water, between 1986-2000 and 2000-2015. Overall land change occurred quickly at first and then slowly in the second time interval. The total land area that exhibited change (1st ≈ 54% and 2nd ≈ 51%) exceeded the total area of persistence (1st ≈ 46% and 2nd ≈ 49%) across the landscape. Cultivation and human settlements were the most intensively increased categories, at the expense of grassland and bare ground. Hence, when grassland was lost, it tended to be displaced by cultivation more than other categories, which was also true with bare land. Annual intensity gains were active for forest but minimal for cultivation, implying that the gains of forest were associated with in situ reforestation practices and that the gains in cultivation were caused by its relatively large initial area under a uniform intensity concept. This study demonstrates that IA is valuable for investigating LC across time intervals and can help distinguish dormant vs. active and targeted vs. avoided land categories.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Agricultura/estatística & dados numéricos , Etiópia , Florestas , Humanos
6.
Environ Sci Pollut Res Int ; 30(9): 22816-22834, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36308651

RESUMO

The Soil & Water Assessment Tool (SWAT) has been calibrated over a 33-year period to evaluate the Gojeb watershed's hydrological processes, sediment yield with downstream loading to the Gibe III dam, and erosion hotspot locations. Best management practices (BMPs) were run through the model to simulate the effects of watershed intervention scenarios on sediment yield and runoff. Simulation results of BMP intervention were compared with the reference and worst-case scenarios. The simulation of sediment production indicates a clear growing trend. Temporally, the maximum amount of sediment transported out of the watershed is experiential from June to September, and the minimum is in February. A plainly defined similar orientation is observed between precipitation, surface runoff, and sediment load in the landscape. Spatially, the maximum sediment transported out of the watershed is from agricultural landscape units with a slope of over 50%, annual precipitation above 1592 mm, and surface runoff over 151 mm. This signifies that the watershed is under serious threat from erosion due to vegetation loss, steep slope farming, and high surface runoff. Gibe III is a 243-m high roller compacted gravity dam built on the Omo-Gibe River basin in Ethiopia for hydroelectric power and downstream flood control. It is one of Africa's tallest dams, with an annual electric output of 1870 MW that began operation in 2016. Thus, Gibe III could see a loss of storage capacity due to higher-than-expected sedimentation resulting from worsening environmental degradation, which implies that the beneficial uses that depend on this dam - electricity production, regulated irrigation water supply, and flood control - will decline with significant economic losses. Despite that, selected sustainable land management interventions and the application of BMPs to critical erosion-prone hotspot areas can support the overall reduction in total sediment yield and surface runoff.


Assuntos
Solo , Água , Etiópia , Agricultura/métodos , Abastecimento de Água
7.
Sci Total Environ ; 862: 160833, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509281

RESUMO

Besides direct water abstraction, natural water scarcity in semi-arid and arid regions may be further exacerbated by human-assisted changes in vegetation composition, including the invasion by non-native plant species. Water abstraction by the invasive tree Prosopis juliflora and by the native Senegalia senegal was compared in the dry Great Rift Valley, Ethiopia. Transpiration rates were quantified using the heat ratio method on six trees each of P. julifora and S. senegal, growing adjacent to each other in the same environment. Water use for P. juliflora trees ranges from 1 to 26 L/day (an average of 4.74 ± 1.97), and that of S. senegal trees from 1 to 38 L/day (an average of 5.48 ± 5.29 during two study years). For both species, soil heat, latent heat, and soil moisture status influenced the rates of sap flow of trees; in addition, water use by P. juliflora trees was related to vapor pressure deficit; the higher the vapor pressure deficit, the higher the water abstraction by P. juliflora. Stand densities of pure P. juliflora and S. senegal were 1200-1600 trees and 400-600 trees per ha, respectively. At the stand scale, P. juliflora consumed approximately 6636 L/day/ha (transpiration: 242 mm per year) and S. senegal stands consumed 2723 L/day/ha (transpiration: 87 mm per year). That is, P. juliflora stands consumed three times more water than S. senegal stands, because of two reasons: (1) P. juliflora stands are denser than S. senegal stands, and denser stands consume more water than less dense stands, and (2) P. juliflora is evergreen and uses water all year-round, while S. senegal sheds its leaves during the peak dry seasons. Our findings suggest that, compared to S. senegal, P. juliflora invasion results in severe impacts on groundwater resources of the drylands of Ethiopia, with direct and indirect consequences to ecosystem services and rural livelihoods.


Assuntos
Prosopis , Árvores , Humanos , Ecossistema , Etiópia , Água , Senegal , Solo , Transpiração Vegetal
8.
Biol Trace Elem Res ; 201(2): 577-591, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35233714

RESUMO

The Akaki catchment in Ethiopia is home to Addis Ababa and about five million people. Its watercourses receive a variety of wastes released by the residents and industries. River water is being used for irrigation, livestock watering, and other domestic purposes. This study tested the hypothesis that the river pollution would be reflected in higher levels of trace elements in the nails of residents living in Akaki-Kality Sub-City in the downstream, as compared to those living in Gullele Sub-City in the upstream of the Akaki catchment. Samples were taken and subsequently analysed for metals using inductively coupled plasma optical emission spectrometry (ICP-OES). The mean concentrations of Fe, Zn, Cu, Mn, Ni, Cr, Pb, and As in nails from Akaki-Kality were 488 ± 49, 106 ± 10, 5.2 ± 0.3, 13 ± 1.5, 11 ± 8, 2.2 ± 0.3, 0.09 ± 0.01, and 0.16 ± 0.01 µg/g, respectively. Likewise, the concentrations of Fe, Zn, Cu, Mn, Ni, Cr, Pb, and As in nails from Gullele were 1035 ± 135, 251 ± 10, 6.6 ± 0.4, 31 ± 3.7, 7.4 ± 1.7, 2.0 ± 0.3, 0.63 ± 0.01, and 0.25 ± 0.01 µg/g, respectively. Co and Cd were not detected. Contrary to the initial hypothesis, higher metal levels were found in nails of residents living in the upstream rather than the downstream area of the catchment. In particular, the concentrations of Fe (p = 0.000), Zn (p = 0.01), and Mn (p = 0.000) were significantly elevated in nails from Gullele and also high in comparison with internationally reported values. Besides, geography and social factors, especially education level, correlated to trace metals in nails. Most of the elements were significantly lower in the nails of individuals with a university degree compared to those who were illiterate or only completed primary school.


Assuntos
Oligoelementos , Humanos , Oligoelementos/análise , Unhas/química , Fatores Sociais , Chumbo/análise , Etiópia , Monitoramento Ambiental/métodos , Geografia
9.
Toxicol Rep ; 9: 1297-1307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518430

RESUMO

The recent expansion of industries in Addis Ababa is causing additional environmental pollution through wastewater discharges; this is becoming a critical concern. Addis Ababa is located in the upper Awash River basin, and is the main source of industrial pollutants to the river. In this study, physicochemical parameters, nutrients and heavy metal content of wastewaters released from 16 factories, 6 tanneries, 6 beverages and 4 diverse factories, and the Akaki-Kality central wastewater treatment plant in Addis Ababa, were sampled to assess the level of pollutants. Heavy metals were determined using inductively coupled plasma optical emission spectroscopy (ICP-OES). Analysis of nutrients were conducted using Palintest Photometer. Physicochemical characteristics were measured either in situ using a portable micro meter or in the laboratory. Among the measured physicochemical properties, critical issues were observed with electrical conductivity, total dissolved solids and total hardness. Effluents from all of the tanneries, and a number of other factories, were found at levels higher than the maximum limits of various guideline standards. In addition, samples from two of the tanneries (T1 and T5), two beverage factories (B3 and B6) and the central wastewater treatment plant showed elevated concentrations of PO4 3-, which violated the limit (10 mg/l) set by Environmental Protection Agency of Ethiopia (ETHEPA). The two tanneries (T1 and T5) also contained higher SO4 2- than the guideline limit of 1000 mg/l. On the other hand, only one factory, one brewery (B3), exhibited NO3 - above the standard limit of 20 mg/l. Whereas NH3, NH4 +, Cl-, S2- and NO2 - were within the limits in all of the samples. Severe pollution was found in wastewaters from tanneries, where half of them (T1, T5 and T6) contained Cr beyond the maximum limit of 2000 µg/l. Furthermore, a third of the tanneries (T1 and T5) and a beverage factory (B5) contained Fe, Mn, Zn and Cu, higher than the ETHEPA limits of 10000, 5000, 5000 and 2000 µg/l, respectively. Waste disposal from factories without proper treatment can cause great harm to the local people and the environment. Hence, the results of this study call for regulatory bodies to pay close attention to factories, particularly tanneries, in Addis Ababa in implementing adequate treatments of their wastewater discharges.

10.
Toxicol Rep ; 9: 1777-1787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518487

RESUMO

The objective of this study was to evaluate the association between exposure to heavy metals and oxidative DNA damage among residents living in the potentially more polluted downstream (Akaki-Kality) area of Addis Ababa, in comparison to the upstream area (Gullele). For this, 8-hydroxy-2'-deoxyguanosine (8-OHdG) was used as a biomarker for oxidative DNA damage and heavy metals (Fe, Zn, Mn, Cu, Ni, Cr, Pb, As) as indicators of exposure. The concentrations of heavy metals in nails were determined using inductively coupled plasma optical emission spectroscopy (ICP-OES), and 8-OHdG in urine using Enzyme-Linked with Immunosorbent Assay (ELISA), from 95 residents of the two areas, upstream and downstream. The urinary 8-OHdG concentration was not significantly different (p = 0.05) between the two Sub-Cities, with mean of 18.50 ± 4.37 ng/mg Creatinine in Akaki-Kality and 17.30 ± 5.83 ng/mg Creatinine in Gullele. Also, there were no statistically significant (p = 0.05) difference among the different demographic groups according to gender, age, educational status, body mass index or habit of alcohol consumption. However, the interactions of sex with age, sex with alcohol consumption and alcohol consumption with education were found to affect the urinary 8-OHdG levels of residents of the two Sub-Cities. The mean concentrations (µg/g) of the elements were 488 and 1035 for Fe, 106 and 251 for Zn, 13.0 and 31.2 for Mn, 5.23 and 6.63 for Cu, 11.2 and 7.39 for Ni, 2.23 and 2.02 for Cr, 0.09 and 0.63 for Pb; and 0.16 and 0.25 for As, in nail samples from Akaki-Kality and Gullele, respectively. The determined concentrations of the heavy metals in nails were not significantly associated (p = 0.05) with the corresponding urinary levels of 8-OHdG. Hence, the observed 8-OHdG might have been caused by environmental exposure to toxic substances other than the analyzed heavy metals.

11.
Sci Rep ; 11(1): 2688, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514795

RESUMO

Dense impenetrable thickets of invasive trees and shrubs compete with other water users and thus disrupt ecosystem functioning and services. This study assessed water use by the evergreen Prosopis juliflora, one of the dominant invasive tree species in semi-arid and arid ecosystems in the tropical regions of Eastern Africa. The objectives of the study were to (1) analyze the seasonal water use patterns of P. juliflora in various locations in Afar Region, Ethiopia, (2) up-scale the water use from individual tree transpiration and stand evapotranspiration (ET) to the entire invaded area, and 3) estimate the monetary value of water lost due to the invasion. The sap flow rates of individual P. juliflora trees were measured using the heat ratio method while stand ET was quantified using the eddy covariance method. Transpiration by individual trees ranged from 1-36 L/day, with an average of 7 L of water per tree per day. The daily average transpiration of a Prosopis tree was about 3.4 (± 0.5) mm and the daily average ET of a dense Prosopis stand was about 3.7 (± 1.6) mm. Using a fractional cover map of P. juliflora (over an area of 1.18 million ha), water use of P. juliflora in Afar Region was estimated to be approximately 3.1-3.3 billion m3/yr. This volume of water would be sufficient to irrigate about 460,000 ha of cotton or 330,000 ha of sugar cane, the main crops in the area, which would generate an estimated net benefit of approximately US$ 320 million and US$ 470 million per growing season from cotton and sugarcane, respectively. Hence, P. juliflora invasion in the Afar Region has serious impacts on water availability and on the provision of other ecosystem services and ultimately on rural livelihoods.

12.
Heliyon ; 6(8): e04777, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32904234

RESUMO

Assessing the potential impacts of different land management practices helps to identify and implement sustainable watershed management measures. This study aims to assess a change in soil erosion rate under different land management practices in the Gilgel Abay watershed of the upper Blue Nile basin, Ethiopia. The Revised Universal Soil Loss Equation (RUSLE) model that was adapted to the Ethiopian highlands context was employed to estimate the rate of soil erosion. The impact of land management practices on soil erosion was estimated for three scenarios, which were baseline, intensive cultivation, and extensive cultivation scenarios. At the baseline scenario, the mean annual soil erosion was estimated at ~32.8 t ha-1yr-1, which is equivalent to a loss of ~13.66 Mt yr-1 from the entire watershed. While the rate of soil erosion reduced to ~11.3 t ha-1yr-1 during the implementation of intensive cultivation management practice, which reduced the total soil loss in the watershed by 65%. On the other hand, under the extensive cultivation scenario, the mean annual soil erosion rate increased to ~34.4 t ha-1yr-1. The findings suggest that implementing agricultural intensification management practices can significantly reduce soil erosion in the watershed.

13.
Sci Rep ; 9(1): 1576, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733452

RESUMO

The development of spatially differentiated management strategies against invasive alien plant species requires a detailed understanding of their current distribution and of the level of invasion across the invaded range. The objectives of this study were to estimate the current fractional cover gradient of invasive trees of the genus Prosopis in the Afar Region, Ethiopia, and to identify drivers of its invasion. We used seventeen explanatory variables describing Landsat 8 image reflectance, topography, climate and landscape structures to model the current cover of Prosopis across the invaded range using the random forest (RF) algorithm. Validation of the RF algorithm confirmed high model performance with an accuracy of 92% and a Kappa-coefficient of 0.8. We found that, within 35 years after its introduction, Prosopis has invaded approximately 1.17 million ha at different cover levels in the Afar Region (12.3% of the surface). Normalized difference vegetation index (NDVI) and elevation showed the highest explanatory power among the 17 variables, in terms of both the invader's overall distribution as well as areas with high cover. Villages and linear landscape structures (rivers and roads) were found to be more important drivers of future Prosopis invasion than environmental variables, such as climate and topography, suggesting that Prosopis is likely to continue spreading and increasing in abundance in the case study area if left uncontrolled. We discuss how information on the fractional cover and the drivers of invasion can help in developing spatially-explicit management recommendations against a target invasive plant species.


Assuntos
Ecossistema , Meio Ambiente , Espécies Introduzidas , Plantas , Etiópia , Geografia
14.
Sci Total Environ ; 675: 354-366, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31030142

RESUMO

Land use/land cover (LULC) dynamics and the resulting changes in ecosystems, as well as the services they provide, are a consequence of human activities and environmental drivers, such as invasive alien plant species. This study assessed the changes in LULC and ecosystem service values (ESVs) in the Afar National Regional State, Ethiopia, which experiences a rapid invasion by the alien tree Prosopis juliflora (Swartz DC). Landsat satellite data of 1986, 2000 and 2017 were used in Random Forest algorithm to assess LULC changes in the last 31 years, to calculate net changes for different LULC types and the associated changes in ESVs. Kappa accuracies of 88% and higher were obtained for the three LULC classifications. Post-classification change analyses for the period between 1986 and 2017 revealed a positive net change for Prosopis invaded areas, cropland, salt flats, settlements and waterbodies. The rate of Prosopis invasion was estimated at 31,127 ha per year. Negative net changes were found for grassland, bareland, bush-shrub-woodland, and natural forests. According to the local community representatives, the four most important drivers of LULC dynamics were climate change, frequent droughts, invasive species and weak traditional law. Based on two different ESVs estimations, the ecosystem changes caused by LULC changes resulted in an average loss of ESVs in the study area of about US$ 602 million (range US$ 112 to 1091 million) over the last 31 years. With an increase in area by 965,000 ha, Prosopis-invaded land was the highest net change during the study period, followed by grassland (-599,000 ha), bareland (-329,000 ha) and bush-shrub-woodland (-327,000 ha). Our study provides evidence that LULC changes in the Afar Region have led to a significant loss in ESVs, with serious consequences for the livelihoods of the rural people.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental , Espécies Introduzidas , Prosopis/crescimento & desenvolvimento , Biodiversidade , Ecossistema , Etiópia
15.
Heliyon ; 4(11): e00914, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30450439

RESUMO

This paper demonstrates synoptic ways of presenting and characterizing land change processes across Ethiopia's large, complex Rainfed Agricultural Area (RAA). We translated pixel-level detected changes into neighbourhood-level changes that are useful to decision-makers. First, we identified pixel-level changes without and with type/direction of change, based on land cover maps from the years 1986 and 2010. For type-/direction-based characterization, we sorted observed transitions into four categories of prominent land change processes ("forest degradation", "deforestation", "afforestation", and "no change"). Adopting appropriate window sizes for identified ecoregions in the study area, we ran a focal statistics summation operator separately on the two change rasters (with/without consideration of direction of change). The results obtained by applying the approach can be described in relative terms as well as qualitative terms, using ranges of change values that can be further classified using qualitative terms, i.e. ranging from "no change" to "high/substantial change". Our non-directional change assessment result showed that approximately 6% of the RAA is characterized by substantial change, whereas 40% appears stable ("no change"). Based on the directional-change assessment results, 3% of deforestation, 4% of forest degradation, and 3% of revegetation processes were found to constitute "high/substantial change". The types and intensity of landscape transformations display distinct spatial patterns linked to agro-ecological belts and socio-economic dynamics. Minimal reverse changes were observed on some severely degraded lands in the highlands, but the overall per cent cover remains relatively small. Overall, vegetation degradation still exceeds regeneration by more than half a per cent. Relatively lower altitudes and middle altitudes exhibit higher transformation. The presented approach and resulting outputs can provide planners and decision-makers with a synoptic view of land change processes. It can support policy formulation of sustainable land management and rehabilitation activities of the agricultural ecosystem at national and regional scales.

16.
Heliyon ; 4(9): e00771, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30225375

RESUMO

Drawing on hydrology, rainfall, and climatic data from the past 25 years, this article investigates the effects of climate change on water resources in the transnational Blue Nile Basin (BNB). The primary focus is on determining the long-term temporal and seasonal changes in the flows of the Blue Nile in Ethiopia at the border to Sudan. This is important because the Blue Nile is the main tributary to the Nile river, the lifeline of both Sudan and Egypt. Therefore, to begin with long-term trends in hydrological time series were detected by means of both parametric and nonparametric techniques. The Soil and Water Assessment Tool (SWAT) model was calibrated using several sub-basins and new high-resolution land use and soil maps. Future climate change impacts were projected using data from the Climate Forecast System Reanalysis (CFSR) of the National Centers for Environmental Predictions based on three different climate change scenarios from the Coupled Model Intercomparison Project (CMIP3). Projected time series were analysed for changes in rainfall and streamflow trends. Climate change scenario modelling suggested that the precipitation will increase from 7% to 48% and that streamflow from the BNB could increase by 21% to 97%. The results provide a basis for evaluating future impacts of climate change on the upper Blue Nile River (Abay River). This is the main river basin contributing to the Nile and a source of water for millions of people in Sudan and Egypt, downstream from Ethiopia. Three models (CCCMA, CNRM, MRI) were applied in this research, within two future time periods (2046-2064 and 2081-2099) and one scenario (A1B). The Abay Basin was divided into seven sub-basins, six of which were used as inlets to the lowest basin at the border to Sudan. The above-mentioned results show that under current climate change scenarios there is a strong seasonal shift to be expected from the present main rainfall season (June to September) to an earlier onset from January to May with less pronounced peaks but longer duration of the rainfall season. This has direct consequences on the streamflow of the Blue Nile, which is connected to the rainfall season and therefore has direct effects on the people living in the sphere of influence of the Nile River.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa