Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Biol Reprod ; 110(1): 48-62, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37812443

RESUMO

Genomic integrity is critical for sexual reproduction, ensuring correct transmission of parental genetic information to the descendant. To preserve genomic integrity, germ cells have evolved multiple DNA repair mechanisms, together termed as DNA damage response. The RNA N6-methyladenosine is the most abundant mRNA modification in eukaryotic cells, which plays important roles in DNA damage response, and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) is a well-acknowledged N6-methyladenosine reader protein regulating the mRNA decay and stress response. Despite this, the correlation between YTHDF2 and DNA damage response in germ cells, if any, remains enigmatic. Here, by employing a Ythdf2-conditional knockout mouse model as well as a Ythdf2-null GC-1 mouse spermatogonial cell line, we explored the role and the underlying mechanism for YTHDF2 in spermatogonial DNA damage response. We identified that, despite no evident testicular morphological abnormalities under the normal circumstance, conditional mutation of Ythdf2 in adult male mice sensitized germ cells, including spermatogonia, to etoposide-induced DNA damage. Consistently, Ythdf2-KO GC-1 cells displayed increased sensitivity and apoptosis in response to DNA damage, accompanied by the decreased SET domain bifurcated 1 (SETDB1, a histone methyltransferase) and H3K9me3 levels. The Setdb1 knockdown in GC-1 cells generated a similar phenotype, but its overexpression in Ythdf2-null GC-1 cells alleviated the sensitivity and apoptosis in response to DNA damage. Taken together, these results demonstrate that the N6-methyladenosine reader YTHDF2 promotes DNA damage repair by positively regulating the histone methyltransferase SETDB1 in spermatogonia, which provides novel insights into the mechanisms underlying spermatogonial genome integrity maintenance and therefore contributes to safe reproduction.


Assuntos
Acetatos , Fenóis , Proteínas de Ligação a RNA , Espermatogônias , Animais , Masculino , Camundongos , Dano ao DNA , Reparo do DNA , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espermatogônias/metabolismo , Fatores de Transcrição/genética
2.
J Biol Chem ; 298(2): 101559, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34979097

RESUMO

Spermatogonial stem cells (SSCs) are able to undergo both self-renewal and differentiation. Unlike self-renewal, which replenishes the SSC and progenitor pool, differentiation is an irreversible process committing cells to meiosis. Although the preparations for meiotic events in differentiating spermatogonia (Di-SG) are likely to be accompanied by alterations in chromatin structure, the three-dimensional chromatin architectural differences between SSCs and Di-SG, and the higher-order chromatin dynamics during spermatogonial differentiation, have not been systematically investigated. Here, we performed in situ high-throughput chromosome conformation capture, RNA-seq, and chromatin immunoprecipitation-sequencing analyses on porcine undifferentiated spermatogonia (which consist of SSCs and progenitors) and Di-SG. We identified that Di-SG exhibited less compact chromatin structural organization, weakened compartmentalization, and diminished topologically associating domains in comparison with undifferentiated spermatogonia, suggesting that diminished higher-order chromatin architecture in meiotic cells, as shown by recent reports, might be preprogrammed in Di-SG. Our data also revealed that A/B compartments, representing open or closed chromatin regions respectively, and topologically associating domains were related to dynamic gene expression during spermatogonial differentiation. Furthermore, we unraveled the contribution of promoter-enhancer interactions to premeiotic transcriptional regulation, which has not been accomplished in previous studies due to limited cell input and resolution. Together, our study uncovered the three-dimensional chromatin structure of SSCs/progenitors and Di-SG, as well as the interplay between higher-order chromatin architecture and dynamic gene expression during spermatogonial differentiation. These findings provide novel insights into the mechanisms for SSC self-renewal and differentiation and have implications for diagnosis and treatment of male sub-/infertility.


Assuntos
Células-Tronco Germinativas Adultas , Cromatina , Espermatogênese , Espermatogônias , Células-Tronco Germinativas Adultas/citologia , Células-Tronco Germinativas Adultas/metabolismo , Animais , Diferenciação Celular/fisiologia , Cromatina/metabolismo , Masculino , Espermatogênese/fisiologia , Espermatogônias/citologia , Suínos
3.
Mol Hum Reprod ; 29(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37233400

RESUMO

Chromium (Cr) and its compounds are closely associated with individuals' lives and extensively used in industry. Excessive exposure to hexavalent chromium (Cr(VI)) induces oxidative damage of various organs including the testes, posing a serious threat to male reproductive fitness. As an endogenous antioxidant, melatonin holds potent antioxidative and anti-inflammatory properties, becoming a potential candidate for treatment of a variety of diseases, including reproductive disorders. Here, by using a mouse model, we systematically assessed Cr(VI)-induced damage to male fertility as well as the preventive role of melatonin. We analyzed the histology and pathology of the testis and epididymis, the density, viability, and malformation of caudal epididymal sperm, the proliferative activity and apoptosis of various spermatogenic subtypes and Sertoli cells, as well as the fertility of mice at five timepoints within one cycle of spermatogenesis (Days 0, 14, 21, 28, and 35) post 14 days of Cr(VI) and/or melatonin intraperitoneal injection. We identified that the testicular damage caused by Cr(VI) persisted to Day 21 after administration and then started to be alleviated, with clear alleviation on Day 35. Pretreatment with melatonin evidently reduced Cr(VI)-induced testicular damage and accelerated spermatogenic restoration, generating an almost normal phenotype on Day 35. Melatonin pretreatment also retained the sperm quality at all time points investigated. Moreover, melatonin to some extent preserved the fertility of Cr(VI)-treated mice without apparent side effects. The findings shed light on the future clinical application of melatonin as a therapeutic agent for environmental heavy metal toxicant-induced male subfertility or infertility.


Assuntos
Melatonina , Masculino , Animais , Melatonina/farmacologia , Estudos Longitudinais , Sêmen , Antioxidantes/farmacologia , Cromo/toxicidade , Fertilidade
4.
Mol Divers ; 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688740

RESUMO

The activated form of vitamin D3 [1,25-dihydroxyvitamin D3; 1,25(OH)2D3] is important for various physiological processes, such as bone mineralization and calcium metabolism, and plays an anticancer role in numerous cancers as well. Its role in melanoma cells has yet to be proven. NOP2/Sun RNA methyltransferase 2 (NSUN2) is a typical RNA methyltransferase and is highly expressed in a variety of cancer cells. However, the molecular mechanisms underlying the role of 1,25(OH)2D3 and NSUN2 in melanoma cells remain largely unknown. The current study showed that 1,25(OH)2D3 could significantly and specifically inhibit the proliferation and migration of melanoma B16 cells. 1,25(OH)2D3 enhances vitamin D receptor expression while simultaneously reducing NSUN2 expression in melanoma cells. Subsequently, knockdown of NSUN2 suppressed B16 cell proliferation and migration. RNA-Seq results illuminated that DNA replication, cell proliferation and cell cycle pathways were enriched, and genes promoting these pathways were reduced after knocking down Nsun2. Dual-luciferase reporter assays showed that 1,25(OH)2D3 downregulated reporter gene expression was controlled by the Nsun2 promoter. The results suggest that 1,25(OH)2D3 binds to the vitamin D response element located upstream of the Nsun2 promoter to downregulate Nsun2 transcription activity and then affects the gene expression pattern related to cell proliferation and the cell cycle, thereby restraining B16 cell proliferation and migration.

5.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203316

RESUMO

Methyltransferase-like 21C (METTL21C) is a member of the non-histone methyltransferase superfamily, which mainly mediates the methylation of lysine (Lys) residues. The main types of modification are Lys dimethylation and trimethylation. However, at present, most of the studies on METTL21C are focused on humans and mice, and there are few reports on poultry. Therefore, chicken embryo fibroblasts (DF-1) were selected as the object of study. To explore the function of chicken METTL21C (chMETTL21C) in the proliferation of DF-1 cells, flow cytometry and qPCR were used to detect the function of chicken METTL21C in the proliferation of DF-1 cells. The results showed that overexpression of METTL21C blocked the cell cycle in the G1max S phase, thus inhibiting cell proliferation. In addition, based on proteomic analysis, stable overexpression of METTL21C may inhibit the proliferation of DF-1 cells by mediating lysine trimethylation of proliferation-related proteins phosphorylated adapter RNA export protein (PHAX), nucleoside diphosphate kinases (NDPKs), eukaryotic transcription extension factor (eukaryotic translation elongation factor 1A,e EF1A), and inversin (Invs). Through immunoprecipitation (co-IP) and liquid chromatography-mass spectrometry (LC-MS/MS) analysis, METTL21C-mediated PHAX Lys-381 methylation was confirmed to be involved in the regulation of DF-1 cell proliferation. The results of this study provide a reference for analyzing the methylation function of METTL21C and the mechanism of regulating the growth and development of chicken cells.


Assuntos
Lisina , RNA , Embrião de Galinha , Humanos , Animais , Camundongos , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Proteínas Adaptadoras de Transdução de Sinal , Galinhas , Metiltransferases/genética
6.
Mol Reprod Dev ; 89(8): 325-336, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35734898

RESUMO

Mammalian sperm and oocytes are haploid cells that carry parental genetic and epigenetic information for their progeny. The cytoplasm of oocytes is also capable of reprograming somatic cells to establish totipotency through somatic cell nuclear transfer (SCNT). However, epigenetic barriers seriously counteract SCNT reprogramming. Here, we found that sperm-derived RNAs elevated chromatin accessibility of nuclear donor cells concurrent with the appearance of increased RNA amount and decreased cell proliferation, instead of activating DNA damage response. Additionally, tri-methylation of lysine 9 on histone H3 (H3K9me3) and the H3K9 methyltransferase SUV39H2 were significantly downregulated by the sperm-derived RNA treatment. Our findings thus raise a fascinating possibility that sperm RNA-induced R-loops may activate gene expression and chromatin structure, thereby promoting SCNT reprogramming.


Assuntos
Estruturas R-Loop , Sêmen , Animais , Reprogramação Celular/genética , Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Masculino , Mamíferos/genética , Técnicas de Transferência Nuclear , RNA/genética , RNA/metabolismo , Espermatozoides
7.
J Anim Physiol Anim Nutr (Berl) ; 106(2): 266-275, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34212433

RESUMO

The present work aimed to explore the influence and underlying mechanisms involving arginine in testicular development in boars. To this end, thirty 30-day-old male Duroc piglets (7.00 ± 0.30 kg) were randomly sorted into two groups, maintained on either a basal diet (CON, n = 15) or a diet supplemented with 0.8% arginine (ARG, n = 15). Blood and testicular samples were collected during the experimental period to analyse amino acid composition and arginine metabolite levels. The results showed that dietary supplementation with arginine increased number of spermatogonia and height of the seminiferous epithelium (p < 0.05). Sperm density, total number and effective number of sperm of the boars in the ARG group increased significantly compared with those in the CON group (p < 0.05). Although arginine supplementation did not affect plasma amino acid levels, testicular arginine levels in 150-day-old boars exhibited a significant increase (p < 0.05). The level of serum nitric oxide (NO) and activity of nitric oxide synthase (NOS) also increased in 150-day-old boars in the ARG group (p < 0.05). Interestingly, dietary supplementation with arginine increased testicular levels of putrescine in 150-day-old boars (p < 0.05). These results indicated that arginine supplementation increased serum NO levels and testicular arginine and putrescine abundance, thereby improving testicular development and semen quality in boars.


Assuntos
Arginina , Análise do Sêmen , Testículo , Ração Animal/análise , Animais , Arginina/análise , Arginina/sangue , Arginina/farmacologia , Suplementos Nutricionais , Masculino , Óxido Nítrico/análise , Óxido Nítrico/sangue , Putrescina/análise , Putrescina/sangue , Análise do Sêmen/veterinária , Espermatogênese/efeitos dos fármacos , Suínos , Testículo/química , Testículo/efeitos dos fármacos , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
8.
J Biol Chem ; 295(32): 10885-10900, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32487749

RESUMO

tRNA-derived small RNAs (tsRNAs) from spermatozoa could act as acquired epigenetic factors and contribute to offspring phenotypes. However, the roles of specific tsRNAs in early embryo development remain to be elucidated. Here, using pigs as a research model, we probed the tsRNA dynamics during spermatogenesis and sperm maturation and demonstrated the delivery of tsRNAs from semen-derived exosomes to spermatozoa. By microinjection of antisense sequences into in vitro fertilized oocytes and subsequent single-cell RNA-seq of embryos, we identified a specific functional tsRNA group (termed here Gln-TTGs) that participate in the early cleavage of porcine preimplantation embryos, probably by regulating cell cycle-associated genes and retrotransposons. We conclude that specific tsRNAs present in mature spermatozoa play significant roles in preimplantation embryo development.


Assuntos
Blastocisto , Divisão Celular , RNA de Transferência de Glutamina/fisiologia , RNA/metabolismo , Espermatozoides/metabolismo , Animais , Desenvolvimento Embrionário , Feminino , Masculino , Microinjeções , Gravidez , Maturação do Esperma , Espermatogênese , Suínos
9.
Reproduction ; 161(2): 111-122, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434159

RESUMO

Infertility caused by male factors is routinely diagnosed by assessing traditional semen parameters. Growing evidence has indicated that the tsRNAs carried in sperm act as epigenetic factors and potential biomarkers for the assessment of sperm quality. We recently demonstrated that tRNAGln-TTG derived small RNAs played notable roles in the first cleavage of a porcine embryo. However, the function of human sperm tRNAGln-TTG derived small RNAs as a diagnostic biomarker and its role in early embryo development remains unclear. In this study, we found that human sperm tRNAGln-TTG derived small RNAs were highly associated with sperm quality. By microinjecting the antisense sequence into human tripronuclear (3PN) zygotes followed by single-cell RNA-sequencing, we found that human sperm tRNAGln-TTG derived small RNAs participated in the development of a human embryo. Furthermore, Gln-TTGs might influence embryonic genome activation by modulating noncoding RNA processing. These findings demonstrated that human sperm tRNAGln-TTG derived small RNAs could be potential diagnostic biomarkers and could be used as a clinical target for male infertility.


Assuntos
Sêmen , Espermatozoides , Animais , Biomarcadores , Fertilidade , Humanos , Masculino , RNA/genética , Suínos
10.
Anim Biotechnol ; 32(5): 566-572, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32091312

RESUMO

Ningqiang pony is one of the five pony breeds in China and is listed as a rare species. It is, therefore, meaningful to conduct stature research on this breed for its efficient reproduction, utilization and protection. This study is based on four SNP variants of adjacent LCORL/NCAPG, HMGA2, ZFAT and LASP1 genes, which have been found to be associated with horse height, and then, the 4 SNP loci in 22 Ningqiang ponies were analyzed. The results showed that there were genetic variations at the four loci in Ningqiang pony, there was a SNP on LCORL/NCAPG, HMGA2 and ZFAT gene all including T allele and C allele and LASP1 including A allele and G allele. Further data analysis revealed that LCORL/NCAPG variant harbor the allele T and LASP1 variant harbor the allele G were significantly related to body height (p < 0.05). These findings suggested that the two SNP mutations within the LCORL/NCAPG and LASP1 genes could be considered as a screening marker for the body height of Ningqiang pony and could provide a new strategy for breeding and protect the rare germplasm resources.


Assuntos
Cavalos/genética , Polimorfismo de Nucleotídeo Único , Animais , Tamanho Corporal , China , Cavalos/crescimento & desenvolvimento
11.
J Biol Chem ; 294(49): 18714-18725, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31662436

RESUMO

DNA methylation and histone modifications critically regulate the expression of many genes and repeat regions during spermatogenesis. However, the molecular details of these processes in male germ cells remain to be addressed. Here, using isolated murine sperm cells, ultra-low-input native ChIP-Seq (ULI-NChIP-Seq), and whole genome bisulfite sequencing (WGBS), we investigated genome-wide DNA methylation patterns and histone 3 Lys-9 trimethylation (H3K9me3) modifications during mouse spermatogenesis. We found that DNA methylation and H3K9me3 have distinct sequence preferences and dynamics in promoters and repeat elements during spermatogenesis. H3K9me3 modifications in histones at gene promoters were highly enriched in round spermatids. H3K9me3 modification on long terminal repeats (LTRs) and long interspersed nuclear elements (LINEs) was involved in silencing active transcription from these regions in conjunction with reestablishment of DNA methylation. Furthermore, H3K9me3 remodeling on the X chromosome was involved in meiotic sex chromosome inactivation and in partial transcriptional reactivation of sex chromosomes in spermatids. Our findings also revealed the DNA methylation patterns and H3K9me3 modification profiles of paternal and maternal germline imprinting control regions (gICRs) during spermatogenesis. Taken together, our results provide a genome-wide map of H3K9me3 modifications during mouse spermatogenesis that may be helpful for understanding male reproductive disorders.


Assuntos
Metilação de DNA/fisiologia , Histonas/metabolismo , Espermatogênese/fisiologia , Animais , Metilação de DNA/genética , Epigenômica , Masculino , Camundongos , Processamento de Proteína Pós-Traducional , Espermatogênese/genética , Sequências Repetidas Terminais/genética , Sequências Repetidas Terminais/fisiologia
12.
Mol Hum Reprod ; 26(2): 65-79, 2020 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-31943111

RESUMO

Spermatogenesis, an intricate process occurring in the testis, is responsible for ongoing production of spermatozoa and thus the cornerstone of lifelong male fertility. In the testis, spermatogenesis occurs optimally at a temperature 2-4°C lower than that of the core body. Increased scrotal temperature generates testicular heat stress and later causes testicular atrophy and spermatogenic arrest, resulting in a lower sperm yield and therefore impaired male fertility. Melatonin (N-acetyl-5-methoxytryptamine), a small neuro-hormone synthesized and secreted by the pineal gland and the testis, is widely known as a potent free-radical scavenger; it has been reported that melatonin protects the testis against inflammation and reactive oxygen species generation thereby playing anti-inflammatory, -oxidative and -apoptotic roles in the testis. Nevertheless, the role of melatonin in the testicular response to heat stress has not been studied. Here, by employing a mouse model of testicular hyperthermia, we systematically investigated the testicular response to heat stress as well as the occurrence of autophagy, apoptosis and oxidative stress in the testis. Importantly, we found that pre-treatment with melatonin attenuated heat-induced apoptosis and oxidative stress in the testis. Also, post-treatment with melatonin promoted recovery of the testes from heat-induced damage, probably by maintaining the integrity of the Sertoli cell tight-junction. Thus, we for the first time provide the proof of concept that melatonin can protect the testis against heat-induced damage, supporting the potential future use of melatonin as a therapeutic drug in men for sub/infertility incurred by various testicular hyperthermia factors.


Assuntos
Temperatura Alta/efeitos adversos , Melatonina/uso terapêutico , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Masculino , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/ultraestrutura , Testículo/lesões , Testículo/patologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/ultraestrutura
13.
Zygote ; : 1-8, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32482196

RESUMO

The objective of the present study was to elucidate whether resveratrol could facilitate the survival of boar sperm during liquid preservation and fast cooling processes. Boar semen were diluted with Modena extender containing different concentrations of resveratrol. Sperm motility was evaluated by visual estimation. Membrane integrity, acrosome integrity and mitochondrial membrane potentials were measured by SYBR-14/PI, FITC-PNA and JC-1 staining, respectively. Moreover, the levels of reactive oxygen species (ROS), malonaldehyde (MDA) and total antioxidant capacity (T-AOC) were measured using commercial assay kits. B-cell lymphoma protein-2 (BCL2) content was determined by western blotting. During liquid preservation at 17oC, the addition of 50 µM resveratrol to the Modena extender significantly improved sperm motility, membrane integrity, acrosome integrity, and sperm mitochondrial membrane potentials. Similar results were also observed in the 150 µM resveratrol group during the fast cooling process. Furthermore, addition of resveratrol led to a decrease of ROS and MDA, and an increase in the content of T-AOC and BCL2. These observations suggest that addition of resveratrol to Modena extender protects boar sperm against oxidative stress. The optimal concentrations of resveratrol are 50 µM and 150 µM during liquid preservation and fast cooling process, respectively.

14.
RNA Biol ; 16(10): 1494-1503, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31276432

RESUMO

Mammalian fertility is reduced during heat exposure in the summer, but is regained as temperatures decrease in the autumn again. However, the mechanism underlying the phenomenon remains unknown. We investigated heat stress tolerance of germ cells and their surrounding somatic cells, and discovered that microRNA ssc-ca-1 was upregulated after heat stress in cultured porcine granulosa cells (GCs), but not in serum-starved GCs. Ssc-ca-1 inhibited heat shock protein 70 (Hsp70) expression through its 3'- and 5'-UTRs. Although Hsp70 mRNA transcription was induced in GCs by in vivo exposure to heat in the summer, ssc-ca-1 inhibited Hsp70 expression. In ovarian cultures, heat stress-induced Hsp70 expression in primordial but not in growing follicles; ssc-ca-1 expression did not change in primordial follicles, but increased in growing follicles. Consistently, ssc-ca-1 was present in testicular cells and exhibited the same function as in ovarian cells. It modulated the different Hsp70 expression between spermatogonial stem cells and Sertoli cells after scrotal heat stress. This mechanism is of relevance to mammalian fertility in parts of the world dominated by heat stress associated with global climate change.


Assuntos
Células Germinativas/metabolismo , Resposta ao Choque Térmico/genética , MicroRNAs/genética , Termotolerância/genética , Animais , Apoptose/genética , Biomarcadores , Feminino , Regulação da Expressão Gênica , Células da Granulosa/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Masculino , Folículo Ovariano , Células de Sertoli/metabolismo , Suínos
15.
Cryobiology ; 88: 1-8, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31034812

RESUMO

Mammalian spermatozoa are highly susceptible to reactive oxygen species (ROS) stress. The aim of the present study was to investigate whether and how melatonin protects rabbit spermatozoa against ROS stress during cryopreservation. Semen was diluted with Tris-citrate-glucose extender in presence of different concentrations of melatonin. It was observed that addition of 0.1 mM melatonin significantly improved spermatozoa motility, membrane integrity, acrosome integrity, mitochondrial membrane potential as well as AMP-activated protein kinase (AMPK) phosphorylation. Meanwhile, the lipid peroxidation (LPO), ROS levels and apoptosis of post-thaw spermatozoa were reduced in presence of melatonin. Interestingly, when fresh spermatozoa were incubated with 100 µM H2O2, addition of 0.1 mM melatonin significantly decreased the oxidative damage compared to the H2O2 treatment, whereas addition of luzindole, an MT1 receptor inhibitor, decrease the effect of melatonin in spermatozoa. It was observed that the glutathione (GSH) content and activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were significantly increased with addition of melatonin during cryopreservation. In conclusion, addition of melatonin to the freezing extender protects rabbit spermatozoa against ROS attack by enhancing AMPK phosphorylation for increasing the antioxidative defense.


Assuntos
Antioxidantes/farmacologia , Crioprotetores/farmacologia , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Preservação do Sêmen/métodos , Espermatozoides/efeitos dos fármacos , Acrossomo/efeitos dos fármacos , Animais , Catalase/metabolismo , Criopreservação/métodos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Receptor MT1 de Melatonina/antagonistas & inibidores , Sêmen/metabolismo , Análise do Sêmen , Motilidade dos Espermatozoides/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Triptaminas/farmacologia
16.
Zygote ; 27(2): 101-110, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30888311

RESUMO

SummaryCryptorchidism, characterized by the presence of one (unilateral) or both (bilateral) undescended testes, is a common male urogenital defect. Cryptorchidism can lead to male infertility, testicular cancer being the most extreme clinical symptom, as well as psychological issues of the inflicted individual. Despite this, both knowledge about the aetiology of cryptorchidism and the mechanism for cryptorchidism-induced male infertility remain limited. In this present study, by using an artificial cryptorchid mouse model, we investigated the effects of surgery-induced cryptorchidism on spermatogenic cells and seminiferous epithelial cycles. We found that surgery-induced cryptorchidism led to a reduced testicular weight, aberrant seminiferous epithelial cycles and impaired spermatogenesis characterized by degenerating spermatogenic cells. We also observed multinucleated giant cells after surgery-induced cryptorchidism. Transmission electron microscopy, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) and western blot assays demonstrated cryptorchidism-induced apoptosis of spermatogenic cells. Moreover, we identified the occurrence of autophagy in germ cells after surgery-induced cryptorchidism. Interestingly, apoptosis and autophagy were synchronous, suggestive of their synergetic roles in promoting germ cell death. Our results provide novel insights into the cryptorchidism-induced male infertility, thereby contributing to the development of male contraceptive strategies as well as treatment options for male infertility caused by cryptorchidism.


Assuntos
Criptorquidismo/patologia , Criptorquidismo/cirurgia , Testículo/patologia , Animais , Apoptose , Autofagia , Modelos Animais de Doenças , Marcação In Situ das Extremidades Cortadas , Infertilidade Masculina/etiologia , Infertilidade Masculina/patologia , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Tamanho do Órgão , Epitélio Seminífero/fisiopatologia , Espermatogênese , Espermatozoides/patologia , Espermatozoides/fisiologia
17.
Cell Physiol Biochem ; 47(6): 2420-2431, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29991051

RESUMO

BACKGROUND/AIMS: ATP is essential for mammalian sperm to survive and maintain fertilizing capacity. AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. The aims of the present study were to explore the localization of AMPK in goat sperm and to investigate whether and how AMPK regulates sperm functions in vitro. METHODS: Sperm were treated with AMPK modulators (AICAR, metformin and Compound C) during incubation. Sperm motility was assessed with a computer-assisted spermatozoa analysis system (CASA). Membrane integrity, acrosome reaction and mitochondrial membrane potentials were detected by SYBR-14/PI, FITC-PNA and JC-1 staining, respectively. And the lactate content, ATP content, AMPK activity, activity of pyruvate kinase (PK) and lactate dehydrogenase (LDH) were also measured with the commercial assay kits. Immunofluorescence staining was used to analyze the distribution of PK, LDH, AMPK and phospho-Thr172-AMPK in sperm. The role of AMPK was further studied during induction of capacitation and acrosome reaction. RESULTS: We found that AMPKα was localized in the entire acrosomal region, the midpiece and the flagellum, while the phospho-Thr172-AMPK was distributed in the head, the midpiece and flagellum. Activation of AMPK by AICAR and metformin significantly improved sperm motility, membrane integrity and acrosome reaction, largely maintained sperm mitochondrial membrane potentials, lactate content and ATP content, and enhanced the activity of AMPK, PK and LDH, whereas inhibition by Compound C triggered the converse effects. Moreover, PK was localized in the acrosomal area and the midpiece, while LDH was distributed in the tail. Induction of capacitation and acrosome reaction led to AMPK phosphorylation. AMPK phosphorylation regulated the activity of energetic enzymes. CONCLUSION: This study for the first time provides evidence that AMPK governs goat sperm functions through energy metabolism in vitro. This finding will help to improve assisted reproductive techniques in goats and the other species.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Reação Acrossômica/fisiologia , Metabolismo Energético/fisiologia , Espermatozoides/enzimologia , Animais , Cabras , Masculino , Fosforilação/fisiologia , Espermatozoides/citologia
18.
Biochem Biophys Res Commun ; 502(4): 486-492, 2018 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-29864426

RESUMO

Spermatogenesis has a close relationship with male infertility. MicroRNAs (miRNAs) play crucial roles in their regulation of target genes during spermatogenesis. A huge dataset of high-throughput sequencing all over the world provides the basis to dig the cryptic molecular mechanism. But how to take advantage of the big data and unearth the miRNA regulation is still a challenging problem. Here we integrated transcriptome of spermatogenesis and found miRNA regulate spermatogenesis through miRNA editing. We then compared different species and found that the distributions of miRNA editing site number and editing types among different cell types during spermatogenesis are conservative. Interesting, we further found that nearly half of the editing events occurred in the seed region in both mouse and pig. Finally, we foundmiR-34c, which is edited frequently at all stages during spermatogenesis, regulates its target genes through the RNA structure changing and shows dysfunction when it is edited. Summary, we depicted the overall profile of miRNA editing during spermatogenesis in mouse and pig and reveal miR-34c may play its roles through miRNA editing.


Assuntos
MicroRNAs/genética , Edição de RNA , Espermatogênese/genética , Animais , Azoospermia/genética , Sequenciamento de Nucleotídeos em Larga Escala , Infertilidade Masculina/genética , Masculino , Camundongos , Especificidade da Espécie , Suínos
19.
Toxicol Appl Pharmacol ; 340: 30-38, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29289671

RESUMO

Given the potential biological functions of spermatogonial stem cells (SSCs) in spermatogenesis and in delivering parental genetic information to the next generation, how these cells respond to environmental toxins and carcinogens should be investigated. We examined the toxic effect of hexavalent chromium (Cr(VI)) on global histone modifications and apoptotic signaling pathways in SSCs. We determined the effect of melatonin, one of the most powerful endogenous free radical scavengers and wide-spectrum antioxidants, in protecting SSCs from Cr(VI)-induced apoptosis and global histone modification by Western blot analysis. In addition, we examined the in vivo effect of melatonin on Cr(VI)-induced histological changes of seminiferous tubules in mouse testes. We also evaluated the fertility of male mice by monitoring litter size following intraperitoneal injection of these chemicals. Our study demonstrated the Cr(VI)-induced global increases in H3K9me3 and H3K27me3 and activated the apoptotic signaling pathway. Pretreatment of SSCs with melatonin alleviated Cr(VI)-induced apoptosis and the global increase of H3K9me3. Exposure to melatonin also attenuated the Cr(VI)-induced increase of the abundance of histone methyltransferase ESET. Furthermore, exogenous administration of melatonin protected mice against Cr(VI)-induced changes in testicular histology and germ cell apoptosis, which helped maintain normal spermatogenesis and male fertility. Our study revealed a potential new therapeutic approach for male reproductive injury caused by Cr(VI).


Assuntos
Células-Tronco Germinativas Adultas/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Cromo/toxicidade , Epigênese Genética/efeitos dos fármacos , Histonas/biossíntese , Melatonina/farmacologia , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/patologia , Animais , Antioxidantes/farmacologia , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Epigênese Genética/fisiologia , Histonas/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Distribuição Aleatória
20.
Int J Mol Sci ; 19(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29342112

RESUMO

The link between polyadenylation (pA) and various biological, behavioral, and pathological events of eukaryotes underlines the need to develop in vivo polyadenylation assay methods for characterization of the cis-acting elements, trans-acting factors and environmental stimuli that affect polyadenylation efficiency and/or relative usage of two alternative polyadenylation (APA) sites. The current protein-based CAT or luciferase reporter systems can measure the polyadenylation efficiency of a single pA site or candidate cis element but not the choice of two APA sites. To address this issue, we developed a set of four new bicistronic reporter vectors that harbor either two luciferase or fluorescence protein open reading frames connected with one Internal Ribosome Entry Site (IRES). Transfection of single or dual insertion constructs of these vectors into mammalian cells demonstrated that they could be utilized not only to quantify the strength of a single candidate pA site or cis element, but also to accurately measure the relative usage of two APA sites at both the mRNA (qRT-PCR) and protein levels. This represents the first reporter system that can study polyadenylation efficiency of a single pA site or element and regulation of two APA sites at both the mRNA and protein levels.


Assuntos
Regulação da Expressão Gênica , Genes Reporter , Poli A , Poliadenilação , RNA Mensageiro/genética , Sequências Reguladoras de Ácido Nucleico , Sequência de Bases , Linhagem Celular , Ordem dos Genes , Vetores Genéticos , Humanos , Mutação , Motivos de Nucleotídeos , RNA Mensageiro/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa