Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4421-4428, 2023 Aug.
Artigo em Zh | MEDLINE | ID: mdl-37802868

RESUMO

This study aimed to provide scientific evidence for predicting quality markers(Q-markers) of Elephantopus scaber by establishing UPLC fingerprint of E. scaber from different geographical origins and determining the content of 13 major components, as well as conducting in vitro anti-cancer activity investigation of the main components. The chromatographic column used was Waters CORTECS UPLC C_(18)(2.1 mm×150 mm, 1.6 µm), and the mobile phase consisted of acetonitrile and 0.1% formic acid solution(gradient elution). The column temperature was set at 30 ℃, and the flow rate was 0.2 mL·min~(-1). The injection volume was 1 µL, and the detection wavelength was 240 nm. The UPLC fingerprint of E. scaber was fitted using the Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine(2012 edition) to determine common peaks, evaluate similarity, identify and determine the content of major components. The CCK-8 assay was used to explore the inhibitory effect of the main components on the proliferation of lung cancer cells. The results showed that in the established UPLC fingerprint of E. scaber, 35 common peaks were identified. Thirteen major components, including neochlorogenic acid(peak 1), chlorogenic acid(peak 2), cryptochlorogenic acid(peak 3), caffeic acid(peak 4), schaftoside(peak 6), galuteolin(peak 9), isochlorogenic acid B(peak 10), isochlorogenic acid A(peak 12), isochlorogenic acid C(peak 18), deoxyelephantopin(peak 28), isodeoxyelephantopin(peak 29), isoscabertopin(peak 31), and scabertopin(peak 32) were identified and quantified, and a quantitative analysis method was established. The results of the in vitro anti-cancer activity study showed that deoxyelephantopin, isodeoxyelephantopin, isoscabertopin, and scabertopin in E. scaber exhibited inhibition rates of lung cancer cell proliferation exceeding 80% at a concentration of 10 µmol·L~(-1), higher than the positive drug paclitaxel. These results indicate that the fingerprint of E. scaber is highly characteristic, and the quantitative analysis method is accurate and stable, providing references for the research on quality standards of E. scaber. Four sesquiterpene lactones in E. scaber show significant anti-cancer activity and can serve as Q-markers for E. scaber.


Assuntos
Asteraceae , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Asteraceae/química , Neoplasias Pulmonares/tratamento farmacológico
2.
Front Biosci (Landmark Ed) ; 28(12): 329, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38179742

RESUMO

BACKGROUND: The purpose of this study was to elucidate the community structure of rhizosphere soil bacteria and endophytic bacteria during the growth of moso bamboo (Phyllostachys edulis) shoots. METHODS: This study collected the rhizospheric soil samples, tissue samples of rhizome roots, shoot buds, winter bamboo shoots, spring bamboo shoots, and samples of forest soil. Their metagenomic DNA was extracted, and the bacterial community structure and diversity characteristics were compared and analyzed using high-throughput sequencing technology. RESULTS: These samples enabled the identification of 32 phyla, 52 classes, 121 orders, 251 families, and 593 genera of bacteria. The phyla primarily included Proteobacteria, Acidobacteria, and Cyanobacteria among others. Proteobacteria was the dominant phylum in the samples of bamboo shoots and rhizome roots, whereas Acidobacteria was dominant in the rhizosphere and forest soil samples. The predominant genera of the rhizome root samples were Acidothermus, Bradyrhizobium and Acidobacterium, and the predominant genera of the soil samples were Acidothermus and Acidobacterium. CONCLUSIONS: This study preliminarily revealed the regularity between the growth and development of bamboo shoots and the changes in the community structure of rhizosphere soil and endophytic bacteria, which provides insights into the relationship between growth and the bacterial community structure in different stages of bamboo shoots.


Assuntos
Cianobactérias , Solo , Humanos , Rizosfera , Poaceae/microbiologia
3.
Sci Rep ; 13(1): 9833, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330578

RESUMO

To study the characteristics of bacterial community structure in high-yield and low-yield moso bamboo (Phyllostachys edulis) forests, we collected bamboo rhizome, rhizome root, stem, leaf, rhizosphere soil, and non-rhizosphere soil from high- and low-yield forests in Yong'an City and Jiangle County of Fujian Province, China. The genomic DNA of the samples was extracted, sequenced and analyzed. The results show that: the common differences between the high-yield and low-yield P. edulis forest samples in the two regions were mainly in bacterial community compositions in the bamboo rhizome, rhizome root, and soil samples. Differences in the bacterial community compositions in the stem and leaf samples were insignificant. The bacterial species and diversity in rhizome root and rhizosphere soil of high-yield P. edulis forests were less than those of low-yield forests. The relative abundance of Actinobacteria and Acidobacteria in rhizome root samples of high-yield forests was higher than that in low-yield forests. The relative abundance of Rhizobiales and Burkholderiales in bamboo rhizome samples in high-yield forests was higher than that in low-yield forests. The relative abundance of Bradyrhizobium in bamboo rhizome samples in high-yield forests was higher than that in low-yield forests in the two regions. The change of bacterial community composition in P. edulis stems and leaves showed little correlation with high- or low-yields of P. edulis forests. Notably, the bacterial community composition of the rhizome root system was correlated with the high yield of bamboo. This study provides a theoretical basis for using of microbes to enhance the yields of P. edulis forests.


Assuntos
Florestas , Poaceae , Bactérias/genética , Acidobacteria , Solo/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa